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1. Introduction

In this note we shall be concerned with the behaviour of levels of the
distance function from the convex boundary of the 2-dimensional disc with
real analytic riemannian metric of nonnegative curvature. First we
explain the motivation. Let (S^{2}, g) be a riemannian metric of non-
negative curvature on the 2-sphere. A. D. Alexandrov conjectured the fol-
lowing inequality with respect to the area and the diameter:

(1) Area(S2,g)/(Diam(S^{2}, g))^{2}\leq\pi/2 ,

where the equality holds iff (S^{2}. g) is the double of the flat euclidean disc.
For the partial results we refer to [Sa2], [Shi].

Now we consider the isoperimetric quantity h := \inf\{length\partial\Omega/Area

(S^{2}, g):\Omega is a domain of S^{2} with smooth boundary such that Area\Omega=Area

(S^{2}, g)/2\} . Then in our case the infimum is realized by domain D whose
boundary c is a connected regular simple closed curve of constant mean
(i . e. , geodesic) curvature (see e. g. , [Ga]). Then S^{2}\backslash c is divided into the
two discs D_{1}=D , D_{2}=S^{2}\backslash \overline{D} with the same area and the boundary c . Set-
ting d_{i}^{*} := \max\{d(p, c);p\in D_{i}\}(i=1,2) , we easily see that d_{1}^{*}+d_{2}^{*}\leq

Diam(S^{2}, g) . Then if we may estimate Area D_{i}/(d_{i}^{*})^{2} . we may have esti-
mate for (1). Since d_{1}^{*}+d_{2}^{*} may smaller than Diam(S^{2}, g) this approach
doesn’t work very well for the original problem. Nevertheless it seems to
be interesting to estimate Area D_{i}/(d_{i}^{*})^{2}. For that purpose we consider
the length l_{t} of level d_{c}^{-1}(t) , 0\leq t\leq d_{i}^{*} , where d_{c} denotes the distance func-
tion from the boundary c . In the present article we restrict ourself to the
case when D=D_{i} is 2-disc with real analytic riemannian metric of non-
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negative curvature and convex boundary.
Now in his nice paper F. Fiala ([F]) studied the behaviour of the

length l_{t} of levels in general case (see also [Be], [Sal]). Under our
assumption we have the following:

THEOREM. Let D be the 2-disc with real analytic metric of non-
negative curvature and convex boundary, namely geodesic curvature of the
boudary curve c is positive. We denote by l_{t} the length of the level d_{c}^{-1}(t) ,
where d_{c} is the distance function from the boundary c.

(1) Set d^{*}: = \max\{d_{c}(q);q\in D\} . Then there exists the unique furthest
point p\in D from c which realizes d^{*} . The levels d_{c}^{-1}(t) , 0\leq t<d^{*}, are
connected simple closed curves and \Omega_{t} :=d_{c}^{-1}(t, d^{*}] are discs.

(2) tarrow l_{t} is continuous and real analytic except for at most finitely
many singular values 0<t_{1}<\ldots<t_{k}=d^{*}([F]) . Under our assumption we
have furthermore

d/dt l_{t}<0 , and \lim_{tarrow t\iota-0}d/dtl_{t}\geq\lim_{tarrow t\iota+0}d/dll_{t}

(3) For regular values t we have d^{2}/dt^{2}l_{t}\leq 0 .

As a corollary we get an estimate for Area D/(d^{*})^{2} . Note that in
genral we have no finite upper bound for Area D/(d^{*})^{2} .

COROLLARY. Under the assumption of the theorem we have the fol-

lowing.
(1) If there exist infifinitely many minimal geodesies from c to the fur-

thest point p, then we have Area D/(d^{*})^{2}\leq\pi.
(2) If there exist only fifinitely many minimal geodesies from c to p, let

\alpha_{1} , \ldots , \alpha_{k} be the angles between tangent vectors at p to above minimal
geodesies which are adjoining each other (\alpha_{1}+\ldots+\alpha_{k}=2\pi) . Then we have

Area D/(d^{*})^{2}\leq\pi+\Sigma_{i}(\tan\alpha_{i}/2-\alpha_{i}/2) .

2. Proof of the theorem and corollary.

Let the boundary curve c(s)(0\leq s\leq l) be parametrized by arc length
and n(s) be the unit inward normal vector to c at c(s) . Then the
geodesic curvature \chi of c at c(s) is given by \langle n(s), \nabla_{\partial/\partial s}\dot{c}(s)\rangle where \langle , \rangle

and \nabla denote the inner product and Levi-Civita covariant derivative
respectively. Using normal exponential map exp we have a real analytic
map

(2) x(t, s):=\exp_{c(s\rangle}tn(s)
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Since tarrow x(t, s) is a geodesic \gamma_{s} parametrized by arc length and \partial x/\partial s(0 ,

s)=\dot{c}(s) is a unit vector perpendicular to \partial x/\partial t(0, s)=n(s) , we have
\langle\partial x/\partial t, \partial x/\partial s\rangle=0 everywhere. Note that the vector field Y_{S} : tarrow\partial x/\partial s(t ,

s) along \gamma_{s} is a c-Jacobi field.

LEMMA 1. Up to the fifirst focal value t(s) of c along the c -Jacobi
fifield Y_{s}, we have

(3) \langle\nabla_{\partial/\partial t}\partial x/\partial s, \partial x/\partial s\rangle(t, s)<0 (0<t<(s))

PROOF. First we have
d/dt\{\langle\nabla_{\partial/\partial t}\partial x/\partial s, \partial x/\partial s\rangle/|\partial x/\partial s|\}=

\{\langle\nabla_{\partial/\partial t}\nabla_{\partial/\partial s}\partial x/\partial t, \partial x/\partial s\rangle+|\nabla_{\partial/\partial t}\partial x/\partial s|^{2}\}/|\partial x/\partial s|-

\langle\nabla_{\partial/\partial t}\partial x/\partial s, \partial/\partial s\rangle^{2}/|\partial x/\partial s|^{3}=\langle R(\partial x/\partial t, \partial x/\partial s)\partial x/\partial t, \partial x/\partial s\rangle\cdot|\partial x/\partial s|^{-1}

+\{|\nabla_{\partial/\partial t}\partial x/\partial s|^{2}|\partial x/\partial s|^{2}-\langle\nabla_{\partial/\partial t}\partial x/\partial s, \partial x/\partial s\rangle^{2}\}\cdot|\partial x/\partial s|^{-3}

where R denotes the curvature tensor. Now the first term of the last

equality is nonpositive because of the assumption on the curvature. Since

Jacobi field Y_{s}(t)=\partial x/\partial s(t, s) is perpendicular to \gamma_{s} for every value of t ,

\nabla Y_{s}(t)=\nabla_{\partial/\partial t}\partial x/\partial s is also perpendicular to \gamma_{s} and linearly dependent on
Y_{s}(t) . This implies that the second term vanishes. On the other hand for

initial value we get
\langle\nabla_{\partial/\partial t}\partial x/\partial s, \partial x/\partial s\rangle(0, s)=\langle\nabla_{\partial/\partial S}\partial x/\partial t, \partial x/\partial s\rangle(0, s)=

-\langle n(s), \nabla_{\partial/\partial s\dot{C}^{i}}(s)\rangle<0 ,

because c is convex. This completes the proof of the lemma.

Next we shall give key observation for our purpose.

LEMMA 2. There is only one point at which d_{c} takes relative nmi-
mum. Thus we have the unique furthest point p from c with d_{c}(p)=d^{*} .

PROOF. Let p be a point with d_{c}(p)=d^{*} and suppose that d_{c} takes

relative maximum at p_{1}\neq p . Then from the convexity of D, the minimal
geodesic \tau joining p to p_{1} lies in D . We may take a point r in the inte-

rior of \tau at which d_{c}|\tau takes the minimum. Take a minimal geodesic \sigma :
[o, a]arrow\overline{D} from c to r parametrized by arc length which realizes the dis-

tance d_{c}(r) . By the first variation formula \sigma is orthogonal to c at \sigma(0)=

c(s) and to \tau at r=\sigma(a) . Now consider the unit parallel vector field X
along \sigma with X(0)=\dot{c}(s) . Since X(a) is tangent to the geodesic \tau , we
have by the second variation formula (see e . g. , [B-C] )
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(4) D^{2}L(X, X)= \int_{0}^{a}\{\langle\nabla X(t), \nabla X(t)\rangle-\langle R(X(t)\dot{\sigma}(t))\dot{\sigma}(t), X(t)\rangle\}dt

+\langle AX(0), X(0)\rangle ,

where A denotes the shape operator of c with respect to the normal n . In
our case we have \nabla X(t)=0 and

\langle AX(0), X(0)\rangle=\langle A\dot{c}(s),\dot{c}(s)\rangle=\langle\nabla_{\partial/\partial t}\partial x/\partial s, \partial x/\partial s\rangle(0, s)=

-geodesic curvature of c at c(s)<0
because of convexity. Then we have D^{2}L(X, X)<0 which contradicts
the fact that d_{c}|\tau takes the minimum at r . q . e . d .

Now we recall the notion of the critical point of the distance function
due to Gromov ([G]): q\in D\backslash c is called a critical point of d_{C} if for any unit
tangent vector u\in T_{q}D , there exists a minimal geodesic (parametrized by
arc length) \sigma such that the angle <X ( \dot{\sigma}(d_{c}(q)), u)\leq\pi/2 . It is known that
the furthest point p from c is d_{c}-critical

LEMMA 3. p is the only one critical point of d_{c} . Namely for any
point q of D\backslash c different from p, the tangent vectors to minimal geodesies
from c to q at q are contained in an open half plane of T_{q}D.

PROOF. Let q\neq p be a critical point of d_{C} . Take a minimal geodesic
\tau(\subset D) from p to q parametrized by arc length and set u:=\dot{\tau}(d(p, q))\in

T_{q}D , where d(p, q) denotes the distance between p and q . Then there
exists a minimal geodesic \sigma from c to q with 4 ( \dot{\sigma}(d_{c}(q)), u)\leq\pi/2 . If
this angle is less than \pi/2 , then from the first variation formula we may
find points of \tau whose distance from c is less than d_{c}(q) . In case where4
(\dot{\sigma}(d_{c}(q), u)=\pi/2 , the same argument as in the proof of Lemma 2 implies
the same conclusion. Namely we see that d_{c}|\tau takes the minimum at an
interior point of \tau . Again the same argument as in the proof of Lemma 2
derives a contradiction, q . e . d .

Note that for Lemma 1–3 we don’t need real analycity of the metric.
Now following Fiala ([F]) we investigate the behaviour of l_{t} by consider-
ing the cut locus of c in D (see also [B], [M], [Sal]). We list up some
properties of cut locus which is necessary for later use. We mainly follow
the notation of [Sal]. We denote by N(c) the normal bundle of c . Let C
(resp. \tilde{C} ) be the (resp. tangent) cut locus of c . We may write as \tilde{C}=\{(s ,
g_{1}(s)):=g_{1}(s)n(s)\in N(c) , s\in[0,1]/\{0,1\}\} . Then g_{1}(s)\in(0, d^{*}] is continu-
ous with respect to s . The normal exponential map exp is a
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diffeomorphism on the set \tilde{X}:=\{(s, t):=tn(s)\in N(c);s\in[0,1]/\{0,1\} , 0\leq t

<g_{1}(s)\} and we get \partial\tilde{{?}}=\tilde{C} .

CASE 1. If the first focal locus F of c reduces to one point, then
C=F=\{p\} and all unit speed geodesies emanating from c perpendicularly
reach p at the same parameter value d^{*} . In this case we have g_{1}(s)\equiv d^{*} .

CASE 2. Otherwise we have the following ,\cdot

1^{o} There are only finitely many cut points which are also focal points

of c along geodesies emanating from c perpendicularly.
2^{o} The cut locus is a tree in the curve theory (i . e.,1 -complex without

closed curves). Its end points are the first focal points.
3^{o} For q\in C , the number of minimal geodesies from c to q is finite

and equal to the number of 1-cells of C which issue from q . This number
will be called the order of the cut point q . In fact exactly one l-cell
issues from q between the two minimal geodesies from c to q adjoining

each other. Note that end points are cut points of order 1.
4^{o} Cut point q\in C is called regular if q is of order 2 and is not a focal

point. Otherwise q\in C is called singular. The lift of regular (resp. sin-
gular) cut ponts to \tilde{C}\subset N(c) via exp are called regular (resp. singular)

tangent cut points. Then there are only finitely many singular (tangent)

cut points. Singular cut points and the furthest point p from c form the
set of vertices of the tree C.

5^{o} There are only finitely many connected components of the set of
regular cut points and each component, which is a l-cell of C, is a regu-

lar analytic arc parametrized by analytic function t=g_{1}(s) . The number
of critical points of g_{1}(s) is at most finite in general. Moreover for regu-

lar cut point q\in C , two minimal geodesies from c to q make the equal

angle at q with the real analytic curve t=g_{1}(s) which is a l-cell of the cut

locus C (condition of bisection).
6^{o} Now we consider the level \Lambda_{t} :=d_{c}^{-1}(t) and \tilde{\Lambda}_{t} :=\{(t, s)\in N(s) ,

which lies in the closure of\tilde{X}}. Then \tilde{\Lambda}_{t}\cap C consists of at most finitely

many points. Now the value t_{0}(0<t_{0}<d^{*}) will be called regular if \tilde{\Lambda}_{t_{0}}\cap

C either is empty or consists only of regular tangent cut points. In the

latter case for each tangent cut point (g_{1}(\sigma_{0}), \sigma_{0})\in\tilde{\Lambda}t_{0}\cap\tilde{C} , the equation
t=g_{1}(s) for \tilde{C} is locally solvable in a neighbourhood of t_{0}=g_{1}(\sigma_{0}) in the

form s=\sigma(t) with \sigma_{0}=\sigma(t_{0}) , where \sigma(t) is real analytic. Note that the

value t is singular iff \Lambda_{t} contains a singular cut point. Then for regular

value t_{0} , by changing the origin of c if necessary, we have real analytic

functions s=\sigma_{i}^{\pm}(t)(i=1, \ldots, k) defined in a neighbourhood of t_{0} with 0<
\sigma_{1}^{-}(t)<\sigma_{1}^{+}(t)<\ldots\sigma_{k}^{-}(t)<\sigma_{k}^{+}(t)<l so that we have \tilde{\Lambda}_{t}=\bigcup_{i=1}^{k}\{t\}\cross[\sigma_{i}^{-}.(t) ,
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\sigma_{i}^{+}(t)] and \tilde{\Lambda}_{t}\cap\tilde{C}=\{(t, \sigma_{i}^{\pm}(t))\}_{i=1}^{k} . Then \Lambda_{t}=\exp\tilde{\Lambda}_{t} is obtained from \tilde{\Lambda}_{t} by
identifying each (t, \sigma_{i}^{\mp}(t)) with exactly one (t, \sigma_{j}^{\pm}(t)) under exp. Note
that x|\{t\}\cross(\sigma_{i}^{-}(t), \sigma_{i}^{+}(t)) is a diffeomorphism. From this we see that for
regular value t\Lambda_{t} consists of finitely many Jordan closed curves and we
have

(5) l_{t}= \Sigma_{i=1}^{k}\int_{\sigma_{i^{-}}(t)}^{\sigma_{i^{+}}(t)}|\partial x/\partial s(t, s)|ds

Now we turn to our situation.

LEMMA 4. Under the assumption of the theorem, for every 1-cell e
of C, which is a real analytic curve consisting of regular cut points, there
exists no critical points of real analytic function d_{c}|e(i. e., g_{1}(s)) .

PROOF. If q\in e is a critical point of d_{c}|e , then by the first variation
formula the two minimal geodesies \gamma_{1} , \gamma_{2} from c to q intersect e perpen-
dicularly at q . By parallel translating the unit tangent vector u to e at q
along \gamma_{i}^{-1}(i=1,2) , we see by the same argument as in Lemma 2 that d_{c}

takes a local maximum at q along a geodesic sarrow\exp su . From this we
see that d_{c}|_{e} also takes a local maximum at q . Since e is contained in the
cut locus, d_{c} : Darrow R takes a local maximum at q . This contradicts
Lemma 2. q. e . d .

Now consider a
1-cell e of C issuing
from an end point q of
C. Since there is only
one minimal geodesic
from c to q , the condi-
tion of bisection, the
first variation formula
and Lemma 4 i mply
that d_{c}|e is strictly
increasing. Next we
consider a vertex q of C
different from p in gen-
eral. Since q is not
d_{c^{-}}critical, unit tangent
vectors at q to the mini- Figure 1
mal geodesies \gamma_{1},\ldots , \gamma_{k}

from c to q adjoining each other are contained in an open half plane of
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T_{q}D . We chose \gamma_{1},\ldots , \gamma_{k} so that the only one 1-cell e_{k} issuing from q ,

which lies in the above half plane, is adjoining to \gamma_{1} and \gamma_{k} (see Figure 1).

Then e_{k} makes an obtuse angle with \gamma_{1}^{-1} and \gamma_{k}^{-1} at q and d_{c}|e_{k} is strictly
increasing as above. Along other 1-cells e_{1} , \ldots , e_{k-1} of C issuing from q ,
d_{c} is strictly decreasing. Thus for every cut point r , we can reach the
furthest point p from r in the unique way along 1-cells of C so that d_{c} is
strictly increasing.

LEMMA 5. The level d_{c}^{-1}(t)(0\leq t<d^{*}) is a connected simple closed
curve and \Omega_{t} :=d_{c}^{-1}([t, d^{*}]) is a disc.

PROOF. First we consider the case when t is a regular value. Then
from 6^{o}d_{c}^{-1}(t) consists of finitely many disjoint Jordan closed curves \tau_{i}(i=

1,\ldots , l) . Now we show that \Omega_{t} is connected. In fact for every point q\in

\Omega_{t} first proceed to a cut point q_{1} along a minimal geodesic from c to q .
Then we may reach p along cut locus as above. Thus we have a curve
from q to p. By the same reason d_{c}^{-1}((t, d^{*}]) is connected. On the other
hand d_{c}^{-1}([0, t)) is obviously connected. Now suppose that l>1 . Then
point r_{1} of d_{c}^{-1}((t, d^{*}]) and point r_{2} of d_{c}^{-1}([0, t)) , which are close to \tau_{1} ,

can be connected by a curve. In fact first take a curve from r_{1} to a point
of \tau_{2} in d_{\overline{c}}1([t, d^{*}])\backslash \tau_{1} and then join this point to r_{2} by a curve in d_{c}^{-1}([0 ,
t])\backslash \tau_{1} . Then we see that D\backslash \tau_{1} is connected which is a contradiction.
Then we see that l=1 and \Omega_{t} is connected. By a limitting argument we
have the same conclusion also for singular value t . q . e . d .

Now F. Fiala computed the first derivative d/dtl_{t} for a regular value
t in the following way: We denote by \theta_{i}^{\pm}(t) the angle between \mp(\partial x/\partial s)

(t, \sigma_{i}^{\pm}(t)) and the tangent vector at x(\sigma_{i}^{\pm}(t), t) to the 1-cell tarrow x(t, \sigma_{i}^{\pm}(t))

of the cut locus (i=1, \ldots, k) . Then 0<\theta_{i}^{\pm}(t)\leq\pi/2 and we get by setting
\Lambda_{t} :=d_{c}^{-1}(t)

(6) d/dtl_{t}=- \int_{\Lambda_{t}}\langle\partial x/\partial t, \nabla_{\partial/\partial s}(\partial x/\partial s/|\partial x/\partial s|)\rangle ds-\Sigma\cot\theta_{i}^{\pm}(t)

(see [F], [Sal])

Note that 0<\theta_{i}^{\pm}(t)<\pi/2 in our case.

REMARK. If \Lambda_{t} contains no cut points then the second term of right
side of (6) vanishes. Next the geodesic curvature \chi_{t} of the curve sarrow x(t ,

s) , \sigma_{i}^{-}(t)<s<\sigma_{i}(t) is given by

x_{t}d\sigma=\langle\partial x/\partial t, \nabla\partial/\partial s/|\partial x/\partial s|(\partial x/\partial s/|\partial x/\partial s|\rangle)|\partial x/\partial s|ds ,
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where \sigma denotes arc length of sarrow x(t, s) . Thus the integrand of the first
term of right side is the geodesic curvature of \Lambda_{t} .

LEMMA 6 Under the assumption of the theorem we have d/dtl_{t}<0

for regular value t.

PROOF. This is clear from
\langle\partial x/\partial t, \nabla\partial/\partial s/|\partial x/\partial s|(\partial x/\partial s/|\partial x/\partial s|)\rangle=

-|\partial x/\partial s|^{-1}<\nabla_{\partial/\partial s}\partial x/\partial t , \partial x/\partial s/|\partial x/\partial s|\rangle>0

by virtue of lemma 1. Note that this means that the geodesic curvature \chi_{t}

of the level is positive, q. e . d .

Now we apply Gauss-Bonnet to \Omega_{t} . Since \Omega_{t} is a disc we get by
denoting K and ds Gauss curvature and area element respectively

(7) d/dtl_{t}= \int_{\Omega_{t}}Kds-2\pi-\sum\{\tan(\pi/2-\theta_{i}^{\pm}(t))-(\pi/2-\theta_{i}^{\pm}(t))\}

We set \eta_{i}^{\pm}(t):=\pi/2-\theta_{i}^{\pm}(t) .

LEMMA 7. Let T<d^{*} be a singular value. Then we have \lim_{tarrow T+0}d/dt

l_{t} \leq\lim_{tarrow T-0}d/dtl_{t}<0

PROOF. Let q be a singular cut point in d_{c}^{-1}(t) of order k . Then
from the argument given before Lemma 5, there exists only one 1-cell e_{k}

of C issuing from q along which d_{c} is monotone increasing and other
1-cells e_{i} (i=1, \ldots, k-1) of C issuing from q are contained in an open half
plane of T_{q}D (see Figure 1). Now for t<T_{-} where T-t is small, con-
sider the contribution of \eta_{i}^{\pm}(t) to (7) in a neighbourhood of q . Let \alpha_{1} , \ldots ,
\alpha_{k-1} be the angles at q between adjoing minimal geodesies \gamma_{1},\ldots , \gamma_{k} from c
to q contained in the open half plane. Then as tarrow T-0 , the above con-
tribution to (7) converges to -2 \Sigma (tan \alpha_{i}/2-\alpha_{i}/2 ) by the condition of
bisection. On the other hand for t>T . the 1-cell e_{k} of C consists only of
regular cut points and as tarrow T+0 the contribution of the angles \eta^{\pm}(t) to
(7) converges to

-2\{\tan((\alpha_{1}+\ldots+\alpha_{k-1})/2)-(\alpha_{1}+\ldots+\alpha_{k-1})/2\} .

Now since (\alpha_{1}+\ldots+\alpha_{k-1})/2<\pi/2 by virtue of Lemma 3, we have
\tan((\alpha_{1}+\ldots+\alpha_{k-1})/2)\geq\tan\alpha_{1}/2+\ldots+\tan\alpha_{k-1}/2 .
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Then summing up the above contributions for all singular cut points in \Lambda_{T}

we have easily the conclusion of the Lemma.

LEMMA 8. Under the assumption of the theorem we have for regular
value t d^{2}/dt^{2}l_{t}\leq 0 .

PROOF. we differentiate (7) for regular value t . Denoting d\sigma the
induced measure on \Lambda_{t_{0}} we get by Coarea formula (or directly by Fubini’s
theorem)

(8) d^{2}/dt^{2}l_{t}|_{t=to}=- \int_{\Lambda_{to}}Kd\sigma-\Sigma d^{\pm}\eta_{i}/dt(t_{0})\cdot \{1/\cos^{2}\eta_{i^{\pm}}(t_{0})-1\}

Thus to prove the lemma it e
suffices to show that d\eta_{i}\pm/dt(t_{0})

is nonnegative. Now recall that
each \eta_{i^{\pm}}(t) is equal to the half
of the angle of the tangent
vectors at cut point q :=x(t ,
\sigma_{i}^{\pm}(t)) to two minimal geodesies
from c to q by virtue of the con-
dition of bisection. We par-
ametrize the 1-cell e of the cut
locus C containing q in the form
t -arrow x(t, \sigma_{1}(t))=x(t, \sigma_{2}(t)) , where
\tauarrow x(\tau, \sigma_{i}(t)) , 0\leq\tau\leq t(i=1,2)

are two minimal geodesies from
c to the point of e . Here note
that we parametrize e in a Figure 2
neighbourhood of \sigma_{i}(t_{0}) so that t

arrow s=\sigma_{i}(t)(i=1 , 2) are increas-
ing (see Figure 2). We denote
by 2\eta(t) the angle between the tangent vectors at cut point x(t, \sigma_{i}(t)) to
two minimal geodesies from c to the cut point, namely we have

cos 2 \eta(t)=\langle\partial x/\partial t(t, \sigma_{1}(t)), \partial x/\partial t(t, \sigma_{2}(t))\rangle .

Note that each angle \eta_{i^{\pm}}(t) may be written in this form \eta(t) . Now since
\nabla_{\partial/\partial t}\partial x/\partial t=0 , we get

d/dt_{|t=to}\langle\partial x/\partial t(t, \sigma_{1}(t)), \partial x/\partial t(t, \sigma_{2}(t))\rangle

=\sigma_{1}’(t_{0})\langle\nabla_{\partial/\partial s}\partial x/\partial t(t_{0}, \sigma_{1}(t_{0})), \partial x/\partial t(t_{0}, \sigma_{2}(t_{0}))\rangle
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+\sigma_{\acute{2}}(t_{0})\langle\partial x/\partial t(t_{0}, \sigma_{1}(t_{0})), \nabla_{\partial/\partial S}\partial x/\partial t(t_{0}, \sigma_{2}(t_{0}))\rangle

we consider the first term of the right side of the above equality. Since t
arrow\partial x/\partial s(t, s) is a c-Jacobi field along \gamma_{s} which is perpendicular to \gamma_{s}

everywhere we may write
\nabla_{\partial/\partial S}\partial x/\partial t(t, \sigma_{1}(t))=\nabla_{\partial/\partial t}\partial x/\partial s(t, \sigma_{1}(t))

=\{\langle\nabla_{\partial/\partial t}\partial x/\partial s, \partial x/\partial s/|\partial x/\partial s|\rangle\partial x/\partial s/|\partial x/\partial s|\}(t, \sigma_{1}(t))

up to the first focal value. Thus the above first term is equal to
\sigma_{1}’(t_{0})\langle\nabla_{\partial/\partial t}\partial x/\partial s, \partial x/\partial s/|\partial x/\partial s|\rangle(t_{0}, \sigma_{1}(t_{0}))\cdot\langle\partial x/\partial s/|\partial x/\partial s|(t_{0}, \sigma_{1}(t_{0})) ,

\partial x/\partial t(t_{0}, \sigma_{2}(t_{0}))\rangle

Now \sigma_{1}’(t_{0})>0 , and we see that from lemma 1
\langle\nabla_{\partial/\partial t}\partial x/\partial s, \partial x/\partial s/|\partial x/\partial s|\rangle<0

Moreover from lemmas 3, 4 4 (\partial x/\partial t(t_{0}, \sigma_{1}(t_{0}), \partial x/\partial t(t_{0}, \sigma_{2}(t_{0}))<\pi and recal-
ling the way of the parametrization of \sigma_{1}(t) , \sigma_{2}(t) we have

\langle\partial x/\partial s/|\partial x/\partial s|(t_{0}, \sigma_{1}(t_{0})), \partial x/\partial t(t_{0}, \sigma_{2}(t_{0}))\rangle<0

Then the first term is negative and the same argument for the second term
implies that tarrow cos 2\eta(t) is decreasing and we have d/dt\eta(t)\geq 0 . This
completes the proof of the lemma, q. e . d .

REMARK. Consider the domain of revolution (\tilde{D},\tilde{g}),\tilde{D}=[0, d^{*}]\cross S^{1} ,
\tilde{g}=dt^{2}+(l_{t}/2\pi)^{2}g_{s_{1}} , where g_{s_{1}} denotes the canonical metric of unit circle
S^{1} and \{d^{*}\}\cross S^{1} reduces to one point \tilde{p} . Then the Gauss curvature \tilde{K} of
(\tilde{D},\tilde{g}) is positive except singular values of t , because \tilde{K}=-(d^{2}/dt^{2}l_{t})/l_{t} .

Now the theorem follows immediately from lemma lMemma 8.
Finally we give a proof of the corollary: First consider the case (1). In
this case the cut locus C consists of one point p. Then we have from (7)

\lim_{tarrow d^{*}}d/dtl_{t}=\lim_{tarrow d^{*}}(\int_{\Omega t}Kds-2\pi)=-2\pi .

Now from lemma 8 we get d/dtl_{t}\geq-2\pi and consequently l_{t}\leq 2\pi(d^{*}

-t) . This implies that

Area D \leq 2\pi\int_{0}^{d^{*}}(d^{*}-t)dt=\pi(d^{*})^{2}

We turn to the second case. Since by the same argument as in the proof
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of lemma 7 we have

\lim_{tarrow d^{*}}d/dtl_{t}=-2\pi-2\sum(\tan\alpha_{i}/2-\alpha_{i}/2) .

Then we get the desired inequality by lemmas 5, 6, 7 as above.
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Added in proof : d_{c} is a concave function (J. Cheeger-D. Gromoll, Ann. of Math., 96(1974),

413-443). Using their argument it is possible to prove Theorem and Corollary under the
weaker condition that the geodesic curvature \chi of c is nonnegative.
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