Hokkaido Mathematical Journal Vol. 21(1992) p. 79-86

Smooth SL(n, C) actions on (2n-1)-manifolds

Dedicated to Professor Haruo Suzuki on his 60th birthday

Fuichi UCHIDA (Received July 28, 1990)

0. Introduction.

Smooth SL(2, C) actions on closed connected 3-manifolds are classified by T. ASOH [1].

In this paper, we shall classify smooth SL(n, C) actions on closed connected (2n-1)-manifolds for $n \ge 3$. We shall show that such a manifold is equivariantly diffeomorphic to the lens space $L^{2n-1}(p)$ or the product space $P_{n-1}(C) \times S^1$, with certain SL(n, C) action. Our main result is stated in Theorem 3.

1. Certain subgroups of SU(n).

Let K be a closed connected proper subgroup of SU(n), and suppose dim $SU(n)/K \le 2n-1$, that is, dim $K \ge n(n-2)$. Notice that the inclusion $i: K \rightarrow SU(n)$ gives a unitary representation of K.

Suppose first that the representation i is reducible, that is, there is a positive integer k such that $2k \le n$ and K is contained in $S(U(k) \times U(n - k))$ up to an inner automorphism of SU(n). If $k \ge 2$, then

 $2n-1 < kn \le 2k(n-k) = \dim SU(n)/S(U(k) \times U(n-k))$ $\leq \dim SU(n)/K.$

Hence we obtain k=1. Moreover, we see that K coincides with SU(n-1) or $S(U(1) \times U(n-1))$ up to an inner automorphism of SU(n), by the fact that there is no closed subgroup of codimension 1 in SU(n-1) for each $n \ge 3$.

Next we consider the case that the representation i is irreducible. We see that K is semi-simple, because K is contained in SU(n).

Suppose that K is not simple. Then, there are closed normal subgroups H_1 , H_2 of K and irreducible unitary representations $r_j: H_j \rightarrow U(n_j)$ such that the tensor product $r_1 \otimes r_2$ is equivalent to $i\pi$, where $n = n_1 n_2$, n_j ≥ 2 and $\pi: H_1 \times H_2 \rightarrow K$ is a covering projection.

By our assupption, we obtain

$$2n-1 \ge \dim SU(n)/K \ge n^2 - (n_1^2 + n_2^2) = (n_1^2 - 1)(n_2^2 - 1) - 1,$$

and hence

$$(n_1-1)(n_2-1) \le 2n_1n_2/(n_1+1)(n_2+1) \le 2$$
.

This is a contradiction to $n_j \ge 2$. Therefore K is simple.

Now we consider the case that K is a simple and semi-simple Lie group, $i: K \rightarrow SU(n)$ is an irreducible representation and dim $K \ge n(n-2)$. Denote by $m_1(K)$ (resp. $m_2(K)$) the smallest (resp. the second smallest) degree of non-trivial irreducible unitary representation of the universal covering group K^* of K. We obtain the following table by Weyl's dimension formula.

K*	dim K	$m_1 = m_1(K)$	$m_2 = m_2(K)$
G_2	14	7	
F_4	52	26	—
E_6	78	27	
E_7	133	56	
E_8	248	248	
$Spin(r), r \ge 7$	r(r-1)/2	r	
$Sp(r)$, $r \ge 1$	r(2r+1)	2r	
$SU(r)$, $r \ge 4$	$r^{2}-1$	r	r(r-1)/2
SU(3)	8	3	6

REMARK. Spin(6) = SU(4), Spin(5) = Sp(2), Spin(3) = SU(2) = Sp(1).

If K^* is an exceptional Lie group, Spin(r) $(r \ge 7)$ or Sp(r) $(r \ge 3)$, then $m_1(m_1-2) > \dim K$. Therefore such a case does not happen. If $K^* = SU(r)$ $(r \ge 3)$, then $m_2(m_2-2) > \dim K$. Therefore we obtain $n=m_1=r$. This is a contradiction to the assumption $K \neq SU(n)$. Therefore, the possibilities remain only when $K^* = Sp(r)$ (r=1,2). We see that K coincides with either SO(3) in SU(3) in Sp(2) in SU(4) up to an inner automorphism.

Summing up the above argument, we obtain the following :

LEMMA 1. Suppose $n \ge 3$. Let K be a closed connected proper subgroup of SU(n) such that dim $SU(n)/K \le 2n-1$. Then K coincides with standardly embedded one of the following :

$$SU(n-1)$$
, $S(U(1) \times U(n-1))$, $SO(3)$ (n=3) or $Sp(2)$ (n=4),

up to an inner automorphism of SU(n).

2. Certian subgroups of SL(n, C)

Let L(n), $L^*(n)$, N(n) and $N^*(n)$ denote the closed connected subgroups of SL(n, C) consisting of matrices in the form

$$\begin{pmatrix} 1 & \ast \cdots & \ast \\ \hline 0 & & \\ \vdots & \ast \\ 0 & & \\ \end{pmatrix}, \begin{pmatrix} 1 & 0 & \cdots & 0 \\ \hline \ast & & \\ \ast & & \\ \ast & & \\ \end{pmatrix}, \begin{pmatrix} \ast & \ast & \cdots & \ast \\ \hline 0 & & \\ \vdots & \ast \\ 0 & & \\ \end{pmatrix} \text{ and } \begin{pmatrix} \ast & 0 & \cdots & 0 \\ \hline \ast & & \\ \vdots & \ast \\ \ast & & \\ \end{pmatrix}$$

respectively.

LEMMA 2.1. Suppose $n \ge 3$. Let G be a closed connected proper subgroup of SL(n, C) such that G contains SU(n-1) and

dim $SL(n, C)/G \leq 2n-1$.

Then, either $L(n) \subset G \subset N(n)$ or $L^*(n) \subset G \subset N^*(n)$.

PROOF. As usual, we regard $M_n(C)$ with the bracket operation [A, B] = AB - BA as the Lie algebra of GL(n, C). Let $\mathfrak{Sl}(n, C)$ and $\mathfrak{Su}(n)$ denote the Lie subalgebras of $M_n(C)$ corresponding to the subgroups SL(n, C) and SU(n) respectively. Then

 $\mathfrak{Sl}(n, \mathbf{C}) = \{X \in M_n(\mathbf{C}) : \text{trace } X = 0\},\\ \mathfrak{Su}(n) = \{X \in M_n(\mathbf{C}) : X + X^* = 0, \text{ trace } X = 0\}.$

Define certain real linear subspaces of $\mathfrak{Sl}(n, C)$ as follows:

$$\mathfrak{Sl}(n-1, C) = \{(a_{ij}) : a_{i1} = a_{1j} = 0, \text{ for each } i, j\},\$$

 $\mathfrak{Su}(n-1) = \mathfrak{Su}(n) \cap \mathfrak{Sl}(n-1, C),\$
 $\mathfrak{h}(n-1) = \{X \in \mathfrak{Sl}(n-1, C) : X = X^*\},\$
 $\mathfrak{a} = \{(a_{ij}) : a_{ij} = 0 \text{ for } i \neq 1\},\$
 $\mathfrak{a}^* = \{(a_{ij}) : a_{ij} = 0 \text{ for } j \neq 1\},\$
 $\mathfrak{b} = \{(a_{ij}) : a_{ij} = 0 \text{ for } i \neq j, a_{22} = a_{33} = \cdots = a_{nn}\}.\$

Then

$$\mathfrak{sl}(n, C) = \mathfrak{sl}(n-1, C) \oplus \mathfrak{a} \oplus \mathfrak{a}^* \oplus \mathfrak{b},$$

 $\mathfrak{sl}(n-1, C) = \mathfrak{su}(n-1) \oplus \mathfrak{b}(n-1)$

as direct sums of real vector spaces. We have

(i) $[a, a^*] = \mathfrak{sl}(n-1, C) \oplus \mathfrak{b}.$

Let $Ad: SL(n, \mathbb{C}) \rightarrow GL(\mathfrak{Sl}(n, \mathbb{C}))$ be the adjoint representation defined by $Ad(A)X = AXA^{-1}$ for $A \in SL(n, \mathbb{C})$, $X \in \mathfrak{Sl}(n, \mathbb{C})$. Then the linear subspaces $\mathfrak{Sl}(n-1, \mathbb{C})$, a, a^{*} and b are $Ad(SL(n-1, \mathbb{C}))$ invariant, and the linear subspaces $\mathfrak{Su}(n-1)$ and $\mathfrak{h}(n-1)$ are Ad(SU(n-1)) invariant. Moreover, the linear subspaces a, a^{*} and $\mathfrak{h}(n-1)$ are irreducible Ad(SU(n-1)) spaces respectively.

Let g be the Lie subalgebra of $\mathfrak{Sl}(n, \mathbb{C})$ corresponding to G. Since G contains SU(n-1), g is Ad(SU(n-1)) invariant, and

(ii)
$$g = \mathfrak{su}(n-1) \oplus (g \cap \mathfrak{h}(n-1)) \oplus (g \cap (\mathfrak{a} \oplus \mathfrak{a}^*)) \oplus (g \cap \mathfrak{b}).$$

Here $g \cap h(n-1) = \{0\}$ or h(n-1), because h(n-1) is an irreducible Ad(SU(n-1)) space. Notice that

(iii) $g \cap (a \oplus a^*) \neq a \oplus a^*$

by (i) and the assumption
$$g \neq \mathfrak{sl}(n, C)$$
.
Suppose $g \cap \mathfrak{h}(n-1) = \{0\}$. Then, by (i) and (ii), we obtain

dim $\mathfrak{sl}(n, \mathbb{C})$ -dim $\mathfrak{g} \ge \dim \mathfrak{h}(n-1)$ +dim $\mathfrak{a}=n^2-2$.

But $n^2-2>2n-1$ for each $n\geq 3$. This is a contradiction to the assumption dim $SL(n, C)/G \leq 2n-1$. Therefore, g contains $\mathfrak{h}(n-1)$, and hence g contains $\mathfrak{sl}(n-1, C)$, that is, G contains SL(n-1, C). Then g is Ad((SL(n-1, C))) invariant.

Suppose $n \ge 4$. Then a and a^{*} are inequivalent as Ad(SL(n-1, C)) spaces. Therefore, by (iii), we see that

 $g = \mathfrak{sl}(n-1, C) \oplus \mathfrak{a} \oplus (\mathfrak{g} \cap b)$ or $g = \mathfrak{sl}(n-1, C) \oplus \mathfrak{a}^* \oplus (\mathfrak{g} \cap \mathfrak{b}).$

Suppose n=3. Then a and a^{*} are equivalent as Ad(SL(2,C)) spaces. Put

$$\mathfrak{t}(u:v) = \left\{ \left(\begin{array}{c|c} 0 & v^t(PX) \\ \hline uX & 0 \end{array} \right) : X \in \mathbb{C}^2 \right\}$$

for $u, v \in C$ and $P = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. We see that each Ad(SL(2, C)) invariant proper subspace of $a \oplus a^*$ coincides with certain $\mathfrak{t}(u:v)$. We have

$$[\mathfrak{k}(u:v), \mathfrak{k}(u:v)] = \mathfrak{b} \text{ for } uv \neq 0,$$

$$[\mathfrak{b}, \mathfrak{k}(u:v)] = \mathfrak{k}(u:-v).$$

Hence $g \cap (a \oplus a^*) = a$ or a^* for n=3.

Therefore, we see that

$$L(n) \subset G \subset N(n)$$
 or $L^*(n) \subset G \subset N^*(n)$

for each $n \ge 3$. q. e. d.

LEMMA 2.2. (a) If G is a closed subgroup of SL(4, C) such that G contains Sp(2) and dim $SL(4, C)/G \leq 7$, then G = SL(4, C).

(b) If G is a closed subgroup of SL(3, C) such that G contains SO(3) and dim $SL(3, C)/G \le 5$, Then G = SL(3, C).

PROOF. Decompose $\mathfrak{Sl}(4, \mathbb{C})$ (resp. $\mathfrak{Sl}(3, \mathbb{C})$) into four irreducible Ad(Sp(2)) (resp. Ad(SO(3))) spaces, and consider the bracket operation. Then we obtain the desired result. We omit the detail. q. e. d.

3. SL(n, C) actions on (2n-1)-manifolds.

Here we introduce two types of SL(n, C) actions on (2n-1)-manifolds. Denote by S^{2n-1} the unit sphere of C^n , and let $L^{2n-1}(p)$ be the quotient space of S^{2n-1} by the equivalence relation : $z \sim \lambda z$ for $z \in S^{2n-1}$ and $\lambda^p = 1$, where p is a positive integer. Denote by [z] the equivalence class of $z \in S^{2n-1}$. For each real number c, define $\Phi_c, \Phi_c^* : SL(n, C) \times L^{2n-1}(p) \to L^{2n-1}(p)$ by

$$\Phi_c(A,[z]) = [\exp((ic-1) \log ||Az||)Az], \ \Phi_c^*(A,[z]) = \Phi_c(A^{*-1}, [z])$$

for $A \in SL(n, C)$, $[z] \in L^{2n-1}(p)$, where $i = \sqrt{-1}$. Then we see that Φ_c and Φ_c^* are smooth SL(n, C) actions on $L^{2n-1}(p)$.

Let $P_{n-1}(C)$ be the projective space as the quotient space of $C^n - \{0\}$ by the equivalence relation : $z \sim \lambda z$ for $z \in C^n - \{0\}$ and a non-zero complex number λ . Denote by [z] the equivalence class of $z \in C^n - \{0\}$. Let $\phi : \mathbf{R} \times S^1 \to S^1$ be a smooth \mathbf{R} action on S^1 , and define $\Psi_{\phi}, \Psi_{\phi}^* : SL(n, C) \times P_{n-1}(C) \times S^1 \to P_{n-1}(C) \times S^1$ by

$$\Psi_{\phi}(A, ([z], x)) = ([Az], \phi(\log(||z||^{-1} ||Az||), x)), \\ \Psi_{\phi}^{*}(A, ([z], x)) = \Psi_{\phi}(A^{*-1}, ([z], x))$$

for $A \in SL(n, C)$, $[z] \in P_{n-1}(C)$ and $x \in S^1$. Then we see that Ψ_{ϕ} and Ψ_{ϕ}^* are smooth SL(n, C) actions on $P_{n-1}(C) \times S^1$.

THEOREM 3. Suppose $n \ge 3$. Then any non-trivial smooth SL(n, C)action on a closed connected (2n-1)-manifold is equivariantly diffeomorphic to $\Phi_c, \Phi_c^*, \Psi_{\phi}$ or Ψ_{ϕ}^* .

PROOF. Let $\Phi: SL(n, C) \times M \to M$ be a smooth SL(n, C) action on a closed connected (2n-1)-manifold M, and denote by Φ_0 its restricted SU(n) action. Denote by $SL(n, C)_x$ (resp. $SU(n)_x$) the isotropy group at $x \in M$ with respect to the action $\Phi(\text{resp. }\Phi_0)$. Then we see

(i) $SU(n)_x = SL(n, C)_x \cap SU(n).$

If the identity component of $SU(n)_x$ is conjugate to SO(3) (n=3) or Sp(2) (n=4), then $SL(n, C)_x = SL(n, C)$ by Lemma 2.2. This is a contradiction to (i).

Therefore, by Lemma 1, we see that the identity component of $SU(n)_x$ is conjugate to SU(n-1), $S(U(1) \times U(n-1))$ or SU(n) for each $x \in M$.

3.1. Suppose first that the identity component of $SU(n)_x$ is conjugate to SU(n-1) for some $x \in M$. Then the action Φ_0 is transitive, and we see that the SU(n) manifold M is equivariantly diffeomorphic to $L^{2n-1}(p)$ with the natural SU(n) action given by $[z] \rightarrow [Kz]$ for $K \in SU(n)$, where p is the number of connected components of $SU(n)_x$. In the following, we can assume that $M = L^{2n-1}(p)$ and the action Φ satisfies the condition:

(ii)
$$\Phi(K, [z]) = [Kz] : K \in SU(n), [z] \in L^{2n-1}(p).$$

Then $F(SU(n-1)) = \{[we_1] : w \in U(1)\}$, where $e_1 = {}^t(1, 0, \dots, 0) \in C^n$, and F(H) denotes the fixed point set of the restricted H action on M. By Lemma 2.1, we obtain

$$F(L(n)) \cup F(L^*(n)) = F(SU(n-1)).$$

Since $F(L(n)) \cap F(L^*(n)) = F(SL(n, C))$, we can show that F(L(n)) and $F(L^*(n))$ are disjoint, from the condition (ii). Then we obtain

$$F(SU(n-1)) = F(L(n))$$
 or $F(SU(n-1)) = F(L^{*}(n))$,

because F(SU(n-1)) is connected.

Now we assume F(SU(n-1))=F(L(n)). Since F(L(n)) is N(n) invariant, the action Φ induces naturally a C^{\times} action ξ on F(L(n)) given by

$$\Phi(T, [z]) = \xi(t_{11}, [z]) \text{ for } T = (t_{ij}) \in N(n).$$

Here C^{\times} denotes the multiplicative group of non-zero complex numbers. By the condition (ii), we see that the C^{\times} action ξ satisfies

$$\boldsymbol{\xi}(\boldsymbol{u}, [\boldsymbol{z}]) = [\boldsymbol{u}\boldsymbol{z}] \text{ for } \boldsymbol{u} \in \boldsymbol{U}(1), [\boldsymbol{z}] \in F(L(\boldsymbol{n})).$$

On the other hand, we obtain a smooth mapping $f: \mathbf{R} \to \mathbf{U}(1)$ determined by $\boldsymbol{\xi}(e^t, [\boldsymbol{e}_1]) = [f(t)\boldsymbol{e}_1]$, and we see that f is a homomorphism. Hence, there exists a real number c such that $f(t) = \exp(ict)$. Therefore, $\boldsymbol{\xi}(\boldsymbol{u}, [\boldsymbol{z}]) = [\exp((i\boldsymbol{c}-1) \log |\boldsymbol{u}|)\boldsymbol{u}\boldsymbol{z}]$

for $u \in C^{\times}$, $[z] \in F(L(n))$. Since $Te_1 = t_{11}e_1$ for $T = (t_{ij}) \in N(n)$, we obtain (iii) $\Phi(T, [z]) = [\exp((ic-1) \log ||Tz||)Tz]$

for $T \in N(n)$, $[z] \in F(L(n))$. Consequently, by the conditions (ii) and (iii), we obtain $\Phi = \Phi_c$, because there is a decomposition $A = KT : K \in$ SU(n) and $T \in N(n)$ for each $A \in SL(n, C)$, and the restricted SU(n)action Φ_0 on $L^{2n-1}(p)$ is transitive. Similarly, we obtain $\Phi = \Phi_c^*$, for the case $F(SU(n-1)) = F(L^*(n))$.

3.2. Suppose next that the identity component of $SU(n)_x$ is conjugate to $S(U(1) \times U(n-1))$ or SU(n) for each $x \in M$. Then the action Φ_0 has codimension one principal orbits. If Φ_0 has a nonprincipal orbit, then it is a fixed point. Considering the slice representation at the fixed point, we see that Φ_0 has no nonprincipal orbit, because $P_{n-1}(C)$ is not homeomorphic to the (2n-2)-sphere. Then we see that the SU(n) manifold M is equivariantly diffeomorphic to $P_{n-1}(C) \times S^1$, where SU(n) acts on $P_{n-1}(C)$ by $[z] \rightarrow [Kz]$ for $K \in SU(n)$ and trivially on S^1 . In the following, we can assume that $M = P_{n-1}(C) \times S^1$ and the action Φ satisfies

(iv)
$$\Phi(K, ([z], x)) = ([Kz], x)$$

for $K \in SU(n)$, $[z] \in P_{n-1}(C)$ and $x \in S^1$. Then

$$F(SU(n-1)) = [e_1] \times S^1$$

and F(SU(n-1))=F(L(n)) or $F(SU(n-1))=F(L^*(n))$ as above. Now we assume F(SU(n-1))=F(L(n)). Then the action Φ induces naturally a C^* action ξ on S^1 given by

$$\Phi(T, ([e_1], x)) = ([e_1], \xi(t_{11}, x))$$

for $T = (t_{ij}) \in N(n)$. If $T \in N(n) \cap SU(n)$, then each point of F(SU(n - 1)) leaves fixed by T under the action Φ . Therefore, the C^{\times} action ξ satisfies $\xi(u, x) = x$ for |u| = 1. On the other hand, we obtain a smooth \mathbf{R} action $\phi: \mathbf{R} \times S^1 \to S^1$ given by $\phi(t, x) = \xi(e^t, x)$. Then we see that

$$(v) \quad \Phi(T, ([e_1], x)) = ([e_1], \phi(\log ||Te_1||, x))$$

for $T \in N(n)$ and $x \in S^1$. Consequently, by the conditions (iv) and (v), we obtain $\Phi = \Psi_{\phi}$, because the SU(n) action on $P_{n-1}(C)$ is transitive. Similarly we obtain $\Phi = \Psi_{\phi}^*$, for the case $F(SU(n-1)) = F(L^*(n))$.

This completes the proof of Theorem 3. Similar argument is used in [2].

References

- [1] T. ASOH: On smooth SL(2, C) actions on 3-manifolds, Osaka J. Math. 24 (1987), 271 -298.
- [2] F. UCHIDA: Actions of special linear groups on a product manifold, Bull. of Yamagata Univ., Nat. Sci. 10-3 (1982), 227-233.

Department of Mathematics Faculty of Science, Yamagata University Koshirakawa, Yamagata 990, Japan