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0. Introduction.

Smooth SL(2, C) actions on closed connected 3-manifolds are
classified by T. ASOH [1].

In this paper, we shall classify smooth SL(n, C) actions on closed
connected (2n-1)-manifold for n\geq 3 . We shall show that such a mani-
fold is equivariantly diffeomorphic to the lens space L^{2n-1}(p) or the prod-
uct space P_{n-1}(C)\cross S^{1} . with certain SL(n, C) action. Our main result is
stated in Theorem 3.

1. Certain subgroups of SU(n) .
Let K be a closed connected proper subgroup of SU(n) , and suppose

dim SU(n)/K\leq 2n-1 , that is, dim K\geq n(n-2) . Notice that the inclusion
i:Karrow SU(n) gives a unitary representation of K.

Suppose first that the representation i is reducible, that is, there is a
positive integer k such that 2k\leq n and K is contained in S(U(k)\cross U(n

-k)) up to an inner automorphism of SU(n) . If k\geq 2 , then

2n-1<kn\leq 2k(n-k)=\dim SU(n)/S(U(k)\cross U(n-k))

\leq\dim SU(n)/K .

Hence we obtain k=1 . Moreover, we see that K coincides with SU(n
-1) or S(U(1)\cross U(n-1)) up to an inner automorphism of SU(n) , by the
fact that there is no closed subgroup of codimension 1 in SU(n-1) for
each n\geq 3 .

Next we consider the case that the representation i is irreducible.
We see that K is semi-simple, because K is contained in SU(n) .

Suppose that K is not simple. Then, there are closed normal sub-
groups H_{1} , H_{2} of K and irreducible unitary representations r_{j} : H_{j}arrow U(n_{j})

such that the tensor product r_{1}\otimes r_{2} is equivalent to in, where n=n_{1}n_{2} , n_{j}

\geq 2 and \pi:H_{1}\cross H_{2}arrow K is a covering projection.
By our assupmtion, we obtain
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2n-1\geq\dim SU(n)/K\geq n^{2}-(n_{1}^{2}+n_{2^{2}})=(n_{1}^{2}-1)(n_{2^{2}}-1)-1 ,

and hence

(n_{1}-1)(n_{2}-1)\leq 2n_{1}n_{2}/(n_{1}+1)(n_{2}+1)<2 .

This is a contradiction to n_{j}\geq 2 . Therefore K is simple.
Now we consider the case that K is a simple and semi-simple Lie

group, i:Karrow SU(n) is an irreducible representation and dim K\geq n(n-2) .
Denote by m_{1}(K) (resp. m_{2}(K) ) the smallest (resp. the second smallest)
degree of non-trivial irreducible unitary representation of the universal
covering group K^{*} of K. We obtain the following table by Weyl’s
dimension formula.

REMARK. Spin(6)=SU(4) , Spin(5) =Sp(2) , SpSu(3) =SU(2)=Sp(1) .

If K^{*} is an exceptional Lie group, Spin(r) (r\geq 7) or Sp(r) (r\geq 3) ,
then m_{1}(m_{1}-2)>\dim K . Therefore such a case does not happen. If K^{*}

SU\{r ) (r\geq 3) , then m_{2}(m_{2}-2)>\dim K . Therefore we obtain n=m_{1}=

r . This is a contradiction to the assumption K\neq SU(n) . Therefore, the
possibilities remain only when K^{*}=Sp(r) (r=1,2) . We see that K coin-
cides with either SO(3) in SU(3) in Sp(2) in SU(4) up to an inner
automorphism.

Summing up the above argument, we obtain the following:

LEMMA 1. Suppose n\geq 3 . Let K be a closed connected proper sub-
group of SU(n) such that dim SU(n)/K\leq 2n-1 . Then K coincides with
standardly embedded one of the following :

SU(n-1) , S(U(1)\cross U(n-1)) , SO(3) (n=3) or Sp(2)(n=4) ,

up to an inner automo7phism of SU(n) .
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2. Certian subgroups of SL(n,C)

Let L(n) , L^{*}(n) , N(n) and N^{*}(n) denote the closed connected sub-
groups of SL(n, C) consisting of matrices in the form

(\begin{array}{llll}1 * \cdots *0 \vdots * 0 \end{array}) , (_{*}^{1}*..\cdot\ulcorner_{*}^{0\cdots 0}) , (_{0}^{*}0..\cdot\ulcorner_{*}^{*\cdots*}) and (_{*}^{*}*..\cdot\ulcorner_{*}^{0\cdots 0})

respectively.

1 *\cdots *
0
.\cdot.

0
*

Lemma 2. 1. Suppose n\geq 3 . Let G be a closed connected proper sub-
group of SL(n, C) such that G contains SU(n-1) and

dim SL(n, C)/G\leq 2n-1 .

Then, either L(n)\subset G\subset N(n) or L^{*}(n)\subset G\subset N^{*}(n) .

PROOF. As usual, we regard M_{n}(C) with the bracket operation [A ,
B]=AB-BA as the Lie algebra of GL(n,C) . Let \mathfrak{s}\mathfrak{l}(n, C) and \mathfrak{s}\mathfrak{U}(n)

denote the Lie subalgebras of M_{n}(C) corresponding to the subgroups
SL(n, C) and SU(n) respectively. Then

\mathfrak{s}1(n,C)= {X\in M_{n}(C) : trace X=0},
\mathfrak{s}\mathfrak{U}(n)= {X\in M_{n}(C):X+X^{*}=0 , trace X=0}.

Define certain real linear subspaces of \mathfrak{s}\mathfrak{l}(n, C) as follows:
\mathfrak{s}\mathfrak{l}(n-1, C)= { (a_{ij}):a_{i1}=a_{1j}=0 , for each i, j},
\mathfrak{s}\mathfrak{U}(n-1)=\mathfrak{s}\mathfrak{U}(n)\cap \mathfrak{s}\mathfrak{l}(n-1, C) ,
\mathfrak{h}(n-1)=\{X\in \mathfrak{s}1(n-1, C):X=X^{*}\} ,
(l= { (a_{ij}):a_{ij}=0 for i\neq 1 },
\mathfrak{a}^{*}= { (a_{ij}):a_{ij}=0 for j\neq 1 },
b= { (a_{ij}) : a_{ij}=0 for i\neq j , a_{22}=a_{33}=\cdots=a_{nn}}.

Then
\mathfrak{s}\mathfrak{l}(n, C)=\mathfrak{s}\mathfrak{l}(n-1, C)\oplus \mathfrak{a}\oplus \mathfrak{a}^{*}\oplus b ,
\mathfrak{s}\mathfrak{l}(n-1, C)=\mathfrak{s}\mathfrak{U}(n-1)\oplus \mathfrak{h}(n-1)

as direct sums of real vector spaces. We have

(i) [_{Q(l^{*}},]=\mathfrak{s}\mathfrak{l}(n-1, C)\oplus b .

Let Ad:SL(n, C)arrow GL(\mathfrak{s}\mathfrak{l}(n, C)) be the adjoint representation defined
by Ad(A)X=AXA^{-1} for \^A SL\{n ,C), X\in \mathfrak{s}1(n, C) . Then the linear
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subspaces \mathfrak{s}\mathfrak{l}(n-1, C) , Q , (l^{*} and b are Ad(SL(n-1, C)) invariant, and
the linear subspaces \mathfrak{s}\mathfrak{U}(n-1) and \mathfrak{h}(n-1) are Ad(SU(n-1)) invariant.
Moreover, the linear subspaces t1 , (l^{*} and \mathfrak{h}(n-1) are irreducible
Ad(SU(n-1)) spaces respectively.

Let \mathfrak{g} be the Lie subalgebra of \mathfrak{s}\mathfrak{l}(n, C) corresponding to G. Since G

contains SU(n-1) , \mathfrak{g} is Ad(SU(n-1)) invariant, and

(ii) \mathfrak{g}=\mathfrak{s}\mathfrak{U}(n-1)\oplus(\mathfrak{g}\cap \mathfrak{h}(n-1))\oplus(\mathfrak{g}\cap(\mathfrak{a}\oplus(l^{*}))\oplus(\mathfrak{g}\cap b) .

Here \mathfrak{g}\cap \mathfrak{h}(n-1)=\{0\} or \mathfrak{h}(n-1) , because \mathfrak{h}(n-1) is an irreducible
Ad(SU(n-1)) space. Notice that

(iii) \mathfrak{g}\cap(\mathfrak{a}\oplus \mathfrak{a}^{*})\neq_{t1\oplus t1^{*}}

by ( i) and the assumption \mathfrak{g}\neq \mathfrak{s}\mathfrak{l}(n, C) .
Suppose \mathfrak{g}\cap \mathfrak{h}(n-1)=\{0\} . Then, by ( i) and ( ii) , we obtain

dim \mathfrak{s}\mathfrak{l}(n, C)- dim \mathfrak{g}\geq\dim \mathfrak{h}(n-1)+\dim(l=n^{2}-2 .

But n^{2}-2>2n-1 for each n\geq 3 . This is a contradiction to the assump-
tion dim SL(n, C)/G\leq 2n-1 . Therefore, \mathfrak{g} contains \mathfrak{h}(n-1) , and hence \mathfrak{g}

contains \mathfrak{s}\mathfrak{l}(n-1, C) , that is, G contains SL(n-1, C) . Then \mathfrak{g} is
Ad((SL(n-1, C)) invariant.

Suppose n\geq 4 . Then Q and \mathfrak{a}^{*} are inequivalent as Ad(SL(n-1, C))
spaces. Therefore, by (iii), we see that

\mathfrak{g}=\mathfrak{s}\mathfrak{l}(n-1, C)\oplus t1\oplus(\mathfrak{g}\cap b) or \mathfrak{g}=\mathfrak{s}\mathfrak{l}(n-1, C)\oplus(l^{*}\oplus(\mathfrak{g}\cap b) .

Suppose n=3 . Then (l and t1^{*} are equivalent as Ad( SL(2, C))
spaces. Put

f(_{\mathcal{U}} ^{:} ^{v})=\{(\begin{array}{ll}0 v^{t}(PX)uX 0\end{array}) : X\in C^{2}\}
0 v^{t}(PX)

uX 0

for u , v\in C and P=(\begin{array}{ll}0 1-1 0\end{array}) . We see that each Ad(SL(2, C)) invariant

proper subspace of \mathfrak{a}\oplus \mathfrak{a}^{*} coincides with certain f(u:v) . We have

[f(u : v), f(u : v)]=b for uv\neq 0 ,
[b, f(u : v)]=f(u :-v) .

Hence \mathfrak{g}\cap(()\oplus tx^{*})=_{tl} or c\iota^{*} for n=3.
Therefore, we see that

L(n)\subset G\subset N(n) or L^{*}(n)\subset G\subset N^{*}(n)
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for each n\geq 3 . q . e . d .

LEMMA 2. 2. (a) If G is a closed subgroup of SL(4, C) such that G

contains Sp(2) and dim SL(4, C)/G\leq 7 , then SL(4, C) .
(b) If G is a closed subgroup of SL(3, C) such that G contains SO(3)

and dim SL(3, C)/G\leq 5 , Then SL(3, C) .

PROOF. Decompose \mathfrak{s}\mathfrak{l}(4, C) (resp. \mathfrak{s}\mathfrak{l} (3, C )) into four irreducible
Ad(Sp(2)) (resp. Ad(SO(3))) spaces, and consider the bracket operation.
Then we obtain the desired result. We omit the detail, q . e . d .

3. SL(n, C) actions on (2n-1) -manifolds.

Here we introduce two types of SL(n, C) actions on (2n-1) -mani-
folds. Denote by S^{2n-1} the unit sphere of C^{n}- and let L^{2n-1}(p) be the qu0-

tient space of S^{2n-1} by the equivalence relation: z\sim \mathcal{A}z for z\in S^{2n-1} and
\lambda^{p}=1 , where p is a positive integer. Denote by [z] the equivalence class
of z\in S^{2n-1} . For each real number c , define \Phi_{C} , \Phi_{C}^{*} : SL(n, C)\cross
L^{2n-1}(p)arrow L^{2n-1}(p) by

\Phi_{C}(A,[z])=[\exp((ic-1)\log||Az||)Az] , \Phi_{c}^{*}(A, [z])=\Phi_{C}(A^{*-1}-[z])

for SL(n, C) , [z]\in L^{2n-1}(p) , where i=\sqrt{-1} . Then we see that \Phi_{C} and
\Phi_{c}^{*} are smooth SL(n, C) actions on L^{2n-1}(p) .

Let P_{n-1}(C) be the projective space as the quotient space of C^{n}-\{0\}

by the equivalence relation: z\sim\lambda z for z\in C^{n}-\{0\} and a non-zero complex
number \mathcal{A} . Denote by [z] the equivalence class of z\in C^{n}-\{0\} . Let \phi:R

\cross S^{1}arrow S^{1} be a smooth R action on S^{1} . and define \Psi_{\phi} , \Psi_{\phi}^{*}: SL(n, C)\cross

P_{n-1}(C)\cross S^{1}arrow P_{n-1}(C)\cross S^{1} by

\Psi_{\phi}(A, ([z], x))=([Az], \phi(\log(||z||^{-1}||Az||), x)) ,
\Psi_{\phi}^{*}(A, ([z], x))=\Psi_{\phi}(A^{*-1}, ([z],x))

for A\in SL(n, C) , [z]\in P_{n-1}(C) and x\in S^{1} . Then we see that \Psi_{\phi} and
\Psi_{\phi}^{*} are smooth SL(n, C) actions on P_{n-1}(C)\cross S^{1}-

THEOREM 3. Suppose n\geq 3 . Then any non-trivial smooth SL(n, C)
action on a closed connected (2n-1)-manifold is equivariantly
diffeomorphic to \Phi_{C} , \Phi_{C}^{*} , \Psi_{\phi} or \Psi_{\phi}^{*} .

PROOF. Let \Phi : SL(n, C)\cross M-arrow M be a smooth SL(n, C) action on a
closed connected (2n-1)-manifold M, and denote by \Phi 0 its restricted
SU(n) action. Denote by SL(n, C)_{x} (resp. SU(n)_{\chi}) the isotropy group
at x\in M with respect to the action \Phi(resp. \Phi_{0}) . Then we see
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(i) SU(n)_{X}=SL(n, C)_{\chi}\cap SU(n) .

If the identity component of SU(n)_{x} is conjugate to 50(3) (n=3) or
Sp(2)(n=4) , then SL(n, C)_{x}=SL(n, C) by Lemma 2. 2. This is a con-
tradiction to ( i ) .

Therefore, by Lemma 1, we see that the identity component of
SU(n)_{\chi} is conjugate to SU(n-1) , S(U(1)\cross U(n-1)) or SU(n) for each
x\in M .

3. 1. Suppose first that the identity component of SU(n)_{\chi} is conju-
gate to SU(n-1) for some x\in M . Then the action \Phi_{0} is transitive, and
we see that the SU(n) manifold M is equivariantly diffeomorphic to
L^{2n-1}(p) with the natural SU(n) action given by [z]arrow[Kz] for K\in

SU\{n), where p is the number of connected components of SU(n)_{X} . In
the following, we can assume that M=L^{2n-1}(p) and the action \Phi satisfies
the condition:

(ii) \Phi(K, [z])=[Kz] : K\in SU(n) , [z]\in L^{2n-1}(p) .

Then F(SU(n-1))=\{[we_{1}]:w\in U(1)\} , where e_{1}={}^{t}(1,0, \cdots, 0)\in C^{n}\wedge and
F(H) denotes the fixed point set of the restricted H action on M. By
Lemma 2. 1, we obtain

F(L(n))\cup F(L^{*}(n))=F(SU(n-1)) .

Since F(L(n))\cap F(L^{*}(n))=F(SL(n, C)) , we can show that F(L(n)) and
F(L^{*}(n)) are disjoint, from the condition ( ii) . Then we obtain

F(SU(n-1))=F(L(n)) or F(SU(n-1))=F(L^{*}(n)) ,

because F(SU(n-1)) is connected.
Now we assume F(SU(n-1))=F(L(n)) . Since F(L(n)) is N(n)

invariant, the action \Phi induces naturally a C^{\cross} action \xi on F(L(n))
given by

\Phi(T, [z])=\xi(t_{11}, [z]) for T=(t_{ij})\in N(n) .

Here C^{x} denotes the multiplicative group of non-zero complex numbers.
By the condition ( ii) , we see that the C^{\cross} action \xi satisfies

\xi(u, [z])=[uz] for u\in U(1) , [z]\in F(L(n)) .

On the other hand, we obtain a smooth mapping f:Rarrow U(1) determined
by \xi(e^{t}, [e_{1}])=[f(t)e_{1}] , and we see that f is a homomorphism. Hence,
there exists a real number c such that f(t)=\exp(ict) . Therefore,
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\xi(u, [z])=[\exp((ic-1)\log|u|)uz]

for u\in C^{\cross}[z]\in F(L(n)) . Since Te_{1}=t_{11}e_{1} for T=(t_{ij})\in N(n) , we obtain

(iii) \Phi(T[z])=[\exp((ic-1)\log||Tz||)Tz]

for T\in N(n) , [z]\in F(L(n)) . Consequently, by the conditions ( ii) and
(iii), we obtain \Phi=\Phi_{c} , because there is a decomposition A=KT : K\in

SU(n) and T\in N(n) for each \^A SL(n, C) , and the restricted SU(n)
action \Phi 0 on L^{2n-1}(p) is transitive. Similarly, we obtain \Phi=\Phi_{C}^{*} , for the
case F(SU(n-1))=F(L^{*}(n)) .

3. 2. Suppose next that the identity component of SU(n)_{x} is conju-
gate to S(U(1)\cross U(n-1)) or SU(n) for each x\in M . Then the action \Phi_{0}

has codimension one principal orbits. If \Phi_{0} has a nonprincipal orbit, then
it is a fixed point. Considering the slice representation at the fixed point,
we see that \Phi 0 has no nonprincipal orbit, because P_{n-1}(C) is not
homeomorphic to the (2n-2)-sphere. Then we see that the SU(n) mani-
fold M is equivariantly diffeomorphic to P_{n-1}(C)\cross S^{1} . where SU(n) acts
on P_{n-1}(C) by [z]arrow[Kz] for K\in SU(n) and trivially on S^{1} . In the fol-
lowing, we can assume that M=P_{n-1}(C)\cross S^{1} and the action \Phi satisfies

(iv) \Phi(K, ([z], x))=([Kz], x)

for K\in SU(n) , [z]\in P_{n-1}(C) and x\in S^{1}- Then

F(SU(n-1))=[e_{1}]\cross S^{1} ,

and F(SU(n-1))=F(L(n)) or F(SU(n-1))=F(L^{*}(n)) as above. Now
we assume F(SU(n-1))=F(L(n)) . Then the action \Phi induces naturally
a C^{\cross} action \xi on S^{1} given by

\Phi(T. ([e_{1}], x))=([e_{1}], \xi(t_{11}, x))

for T=(t_{ij})\in N(n) . If T\in N(n)\cap SU(n) , then each point of F(SU(n
-1)) leaves fixed by T under the action \Phi . Therefore, the C^{\cross} action \xi

satisfies \xi(u, x)=x for |u|=1 . On the other hand, we obtain a smooth R
action \phi : R\cross S^{1}arrow S^{1} given by \phi(t, x)=\xi(e^{t}\eta x) . Then we see that

(v) \Phi(T. ([e_{1}], x))=([e_{1}], \phi(\log||Te_{1}||, x))

for T\in N(n) and x\in S^{1} . Consequently, by the conditions (iv) and ( v) ,

we obtain \Phi=\Psi_{\phi} , because the SU(n) action on P_{n-1}(C) is transitive.
Similarly we obtain \Phi=\Psi_{\phi}^{*} , for the case F(SU(n-1))=F(L^{*}(n)) .

This completes the proof of Theorem 3. Similar argument is used in
[2].
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