Smooth $S L(n, C)$ actions on ($2 n-1$)-manifolds

Dedicated to Professor Haruo Suzuki on his 60th birthday

Fuichi Uchida

(Received July 28, 1990)

0. Introduction.

Smooth $\boldsymbol{S L}(\mathbf{2}, \boldsymbol{C})$ actions on closed connected 3 -manifolds are classified by T. AsOH [1].

In this paper, we shall classify smooth $\boldsymbol{S L}(n, C)$ actions on closed connected $(2 n-1)$-manifolds for $n \geq 3$. We shall show that such a manifold is equivariantly diffeomorphic to the lens space $L^{2 n-1}(p)$ or the product space $P_{n-1}(\boldsymbol{C}) \times S^{1}$, with certain $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{C})$ action. Our main result is stated in Theorem 3 .

1. Certain subgroups of $S U(n)$.

Let K be a closed connected proper subgroup of $\boldsymbol{S} \boldsymbol{U}(n)$, and suppose $\operatorname{dim} \boldsymbol{S} \boldsymbol{U}(n) / K \leq 2 n-1$, that is, $\operatorname{dim} K \geq n(n-2)$. Notice that the inclusion $i: K \rightarrow \boldsymbol{S} \boldsymbol{U}(n)$ gives a unitary representation of K.

Suppose first that the representation i is reducible, that is, there is a positive integer k such that $2 k \leq n$ and K is contained in $\boldsymbol{S}(\boldsymbol{U}(k) \times \boldsymbol{U}(n$ $-k)$) up to an inner automorphism of $\boldsymbol{S} \boldsymbol{U}(n)$. If $k \geq 2$, then

$$
\begin{aligned}
2 n-1<k n \leq 2 k(n-k) & =\operatorname{dim} \boldsymbol{S} \boldsymbol{U}(n) / \boldsymbol{S}(\boldsymbol{U}(k) \times \boldsymbol{U}(n-k)) \\
& \leq \operatorname{dim} \boldsymbol{S} \boldsymbol{U}(n) / K
\end{aligned}
$$

Hence we obtain $k=1$. Moreover, we see that K coincides with $\boldsymbol{S} \boldsymbol{U}(n$ $-1)$ or $\boldsymbol{S}(\boldsymbol{U}(1) \times \boldsymbol{U}(n-1))$ up to an inner automorphism of $\boldsymbol{S} \boldsymbol{U}(n)$, by the fact that there is no closed subgroup of codimension 1 in $\boldsymbol{S} \boldsymbol{U}(n-1)$ for each $n \geq 3$.

Next we consider the case that the representation i is irreducible. We see that K is semi-simple, because K is contained in $\boldsymbol{S} \boldsymbol{U}(n)$.

Suppose that K is not simple. Then, there are closed normal subgroups H_{1}, H_{2} of K and irreducible unitary representations $r_{j}: H_{j} \rightarrow \boldsymbol{U}\left(n_{j}\right)$ such that the tensor product $r_{1} \otimes r_{2}$ is equivalent to $i \pi$, where $n=n_{1} n_{2}, n_{j}$ ≥ 2 and $\pi: H_{1} \times H_{2} \rightarrow K$ is a covering projection.

By our assupmtion, we obtain

$$
2 n-1 \geq \operatorname{dim} \boldsymbol{S} \boldsymbol{U}(n) / K \geq n^{2}-\left(n_{1}^{2}+n_{2}^{2}\right)=\left(n_{1}^{2}-1\right)\left(n_{2}^{2}-1\right)-1,
$$

and hence

$$
\left(n_{1}-1\right)\left(n_{2}-1\right) \leq 2 n_{1} n_{2} /\left(n_{1}+1\right)\left(n_{2}+1\right)<2 .
$$

This is a contradiction to $n_{j} \geq 2$. Therefore K is simple.
Now we consider the case that K is a simple and semi-simple Lie group, $i: K \rightarrow \boldsymbol{S} \boldsymbol{U}(n)$ is an irreducible representation and $\operatorname{dim} K \geq n(n-2)$. Denote by $\mathrm{m}_{1}(K)$ (resp. $m_{2}(K)$) the smallest (resp. the second smallest) degree of non-trivial irreducible unitary representation of the universal covering group K^{*} of K. We obtain the following table by Weyl's dimension formula.

K^{*}	$\operatorname{dim} K$	$m_{1}=m_{1}(K)$	$m_{2}=m_{2}(K)$
G_{2}	14	7	-
F_{4}	52	26	-
E_{6}	78	27	-
E_{7}	133	56	-
E_{8}	248	248	-
$\boldsymbol{S p i n}(r), r \geq 7$	$r(r-1) / 2$	r	-
$\boldsymbol{S p}(r), r \geq 1$	$r(2 r+1)$	$2 r$	-
$\boldsymbol{S} \boldsymbol{U}(r), r \geq 4$	$r^{2}-1$	r	$r(r-1) / 2$
$\boldsymbol{S U}(3)$	8	3	6

Remark. $\quad \boldsymbol{S p i n}(6)=\boldsymbol{S U}(4), \boldsymbol{S p i n}(5)=\boldsymbol{S p}(2), \boldsymbol{S p i n}(3)=\boldsymbol{S} \boldsymbol{U}(2)=\boldsymbol{S p}(1)$.
If K^{*} is an exceptional Lie group, $\boldsymbol{\operatorname { S p i n }}(r)(r \geq 7)$ or $\boldsymbol{S p}(r)(r \geq 3)$, then $m_{1}\left(m_{1}-2\right)>\operatorname{dim} K$. Therefore such a case does not happen. If K^{*} $=\boldsymbol{S} \boldsymbol{U}(r)(r \geq 3)$, then $m_{2}\left(m_{2}-2\right)>\operatorname{dim} K$. Therefore we obtain $n=m_{1}=$ r. This is a contradiction to the assumption $K \neq \boldsymbol{S} \boldsymbol{U}(n)$. Therefore, the possibilities remain only when $K^{*}=\boldsymbol{S} \boldsymbol{p}(r)(r=1,2)$. We see that K coincides with either $\boldsymbol{S O}(3)$ in $\boldsymbol{S U}(3)$ in $\boldsymbol{S} \boldsymbol{p}(2)$ in $\boldsymbol{S U}(4)$ up to an inner automorphism.

Summing up the above argument, we obtain the following :
Lemma 1. Suppose $n \geq 3$. Let K be a closed connected proper subgroup of $\boldsymbol{S} \boldsymbol{U}(n)$ such that $\operatorname{dim} \boldsymbol{S U}(n) / K \leq 2 n-1$. Then K coincides with standardly embedded one of the following :

$$
\boldsymbol{S U}(n-1), \boldsymbol{S}(\boldsymbol{U}(1) \times \boldsymbol{U}(n-1)), \boldsymbol{S O}(3)(n=3) \text { or } \boldsymbol{S} \boldsymbol{p}(2)(n=4),
$$

up to an inner automorphism of $\boldsymbol{S} \boldsymbol{U}(n)$.

2. Certian subgroups of $S L(n, C)$

Let $L(n), L^{*}(n), N(n)$ and $N^{*}(n)$ denote the closed connected subgroups of $\boldsymbol{S L}(n, \boldsymbol{C})$ consisting of matrices in the form

$$
\left(\begin{array}{c|cc}
1 & * & \cdots
\end{array}\right)\left(\begin{array}{c|cc}
1 & 0 & \cdots \\
\hline 0 & & 0 \\
\vdots & * & * \\
0 & & * \\
* & &
\end{array}\right),\left(\begin{array}{c|c}
* & * \cdots
\end{array}\right),\left(\begin{array}{c|c}
* & 0 \\
\hline & \\
\vdots & * \\
0 &
\end{array}\right) \text { and }\left(\begin{array}{c}
* \\
\vdots \\
*
\end{array}\right)
$$

respectively.
Lemma 2.1. Suppose $n \geq 3$. Let G be a closed connected proper subgroup of $\boldsymbol{S L}(n, \boldsymbol{C})$ such that G contains $\boldsymbol{S U}(n-1)$ and

$$
\operatorname{dim} \boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{C}) / G \leq 2 n-1 .
$$

Then, either $L(n) \subset G \subset N(n)$ or $L^{*}(n) \subset G \subset N^{*}(n)$.
Proof. As usual, we regard $M_{n}(\boldsymbol{C})$ with the bracket operation [A, $B]=A B-B A$ as the Lie algebra of $\boldsymbol{G} \boldsymbol{L}(n, \boldsymbol{C})$. Let $\mathfrak{g l}(n, \boldsymbol{C})$ and $\mathfrak{\mathcal { u }}(n)$ denote the Lie subalgebras of $M_{n}(\boldsymbol{C})$ corresponding to the subgroups $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{C})$ and $\boldsymbol{S} \boldsymbol{U}(n)$ respectively. Then

$$
\begin{aligned}
\mathfrak{H l}(n, \boldsymbol{C}) & =\left\{X \in M_{n}(\boldsymbol{C}): \text { trace } X=0\right\}, \\
\mathfrak{B u}(n) & =\left\{X \in M_{n}(\boldsymbol{C}): X+X^{*}=0, \text { trace } X=0\right\} .
\end{aligned}
$$

Define certain real linear subspaces of $\mathfrak{z l}(n, \boldsymbol{C})$ as follows:

$$
\begin{aligned}
& \mathfrak{H I}(n-1, \boldsymbol{C})=\left\{\left(a_{i j}\right): a_{i 1}=a_{1 j}=0, \text { for each } i, j\right\}, \\
& \mathfrak{S u}(n-1)=\mathfrak{z u}(n) \cap \mathfrak{S l}(n-1, \boldsymbol{C}), \\
& \mathfrak{h}(n-1)=\left\{X \in \mathfrak{K l}(n-1, \boldsymbol{C}): X=X^{*}\right\}, \\
& \mathfrak{a}=\left\{\left(a_{i j}\right): a_{i j}=0 \text { for } i \neq 1\right\}, \\
& \mathfrak{a}^{*}=\left\{\left(a_{i j}\right): a_{i j}=0 \text { for } j \neq 1\right\}, \\
& \mathfrak{b}=\left\{\left(a_{i j}\right): a_{i j}=0 \text { for } i \neq j, a_{22}=a_{33}=\cdots=a_{n n}\right\} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \mathfrak{S l}(n, \boldsymbol{C})=\mathfrak{z l}(n-1, \boldsymbol{C}) \oplus \mathfrak{a} \oplus \mathfrak{a}^{*} \oplus \mathfrak{b}, \\
& \mathfrak{z l}(n-1, \boldsymbol{C})=\mathfrak{z u}(n-1) \oplus \mathfrak{h}(n-1)
\end{aligned}
$$

as direct sums of real vector spaces. We have

$$
\begin{equation*}
\left[\mathfrak{a}, \mathfrak{a}^{*}\right]=\mathfrak{h r}(n-1, C) \oplus \mathfrak{b} . \tag{i}
\end{equation*}
$$

Let $A d: S L(n, \boldsymbol{C}) \rightarrow \boldsymbol{G L}(\mathfrak{k l}(n, \boldsymbol{C}))$ be the adjoint representation defined by $\operatorname{Ad}(A) X=A X A^{-1}$ for $A \in \boldsymbol{S L}(n, \boldsymbol{C}), X \in \mathfrak{l l}(n, \boldsymbol{C})$. Then the linear
subspaces $\mathfrak{s l}(n-1, \boldsymbol{C}), \mathfrak{a}, \mathfrak{a}^{*}$ and \mathfrak{b} are $\operatorname{Ad}(\boldsymbol{S L}(n-1, \boldsymbol{C}))$ invariant, and the linear subspaces $\mathfrak{B u}(n-1)$ and $\mathfrak{\mathfrak { h }}(n-1)$ are $\operatorname{Ad}(\boldsymbol{S} \boldsymbol{U}(n-1))$ invariant. Moreover, the linear subspaces $\mathfrak{a}, \mathfrak{a}^{*}$ and $\mathfrak{h}(n-1)$ are irreducible $\operatorname{Ad}(\boldsymbol{S} \boldsymbol{U}(n-1))$ spaces respectively.

Let g be the Lie subalgebra of $\mathfrak{B l}(n, \boldsymbol{C})$ corresponding to G. Since G contains $\boldsymbol{S} \boldsymbol{U}(n-1), \mathrm{g}$ is $\operatorname{Ad} \boldsymbol{S} \boldsymbol{U}(n-1))$ invariant, and

$$
\text { (ii) } g=\mathfrak{z u}(n-1) \oplus(g \cap \mathfrak{b}(n-1)) \oplus\left(g \cap\left(\mathfrak{a} \oplus \mathfrak{a}^{*}\right)\right) \oplus(\mathfrak{g} \cap \mathfrak{b}) \text {. }
$$

Here $\mathfrak{g} \cap \mathfrak{h}(n-1)=\{0\}$ or $\mathfrak{h}(n-1)$, because $\mathfrak{h}(n-1)$ is an irreducible $\operatorname{Ad}(\boldsymbol{S U}(n-1))$ space. Notice that
(iii) $\mathrm{g} \cap\left(\mathrm{a} \oplus \mathrm{a}^{*}\right) \neq \mathrm{a} \oplus \mathrm{a}^{*}$
by (i) and the assumption $g \neq \operatorname{si}(n, \boldsymbol{C})$.
Suppose $g \cap \mathfrak{h}(n-1)=\{0\}$. Then, by (i) and (ii), we obtain

$$
\operatorname{dim} \mathfrak{H}(n, \boldsymbol{C})-\operatorname{dim} \mathfrak{g} \geq \operatorname{dim} \mathfrak{h}(n-1)+\operatorname{dim} \mathfrak{a}=n^{2}-2 .
$$

But $n^{2}-2>2 n-1$ for each $n \geq 3$. This is a contradiction to the assumption $\operatorname{dim} \boldsymbol{S L}(n, \boldsymbol{C}) / G \leq 2 n-1$. Therefore, g contains $\mathfrak{h}(n-1)$, and hence g contains $\mathfrak{z l}(n-1, \boldsymbol{C})$, that is, G contains $\boldsymbol{S L}(n-1, \boldsymbol{C})$. Then g is $\operatorname{Ad}((\boldsymbol{S L}(n-1, \boldsymbol{C}))$ invariant.

Suppose $n \geq 4$. Then \mathfrak{a} and \mathfrak{a}^{*} are inequivalent as $\operatorname{Ad}(\boldsymbol{S L}(n-1, \boldsymbol{C}))$ spaces. Therefore, by (iii), we see that

$$
\mathrm{g}=\mathfrak{h l}(n-1, \boldsymbol{C}) \oplus \mathfrak{a} \oplus(\mathrm{g} \cap b) \text { or } \mathrm{g}=\boldsymbol{\mathfrak { h l }}(n-1, \boldsymbol{C}) \oplus \mathfrak{a}^{*} \oplus(\mathrm{~g} \cap \mathfrak{b}) .
$$

Suppose $n=3$. Then \mathfrak{a} and \mathfrak{a}^{*} are equivalent as $\operatorname{Ad}(\boldsymbol{S L}(2, \boldsymbol{C}))$ spaces. Put

$$
\mathfrak{f}(u: v)=\left\{\left(\begin{array}{c|c}
0 & v^{t}(P X) \\
\hline u X & 0
\end{array}\right): X \in \boldsymbol{C}^{2}\right\}
$$

for $u, v \in \boldsymbol{C}$ and $P=\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$. We see that each $\operatorname{Ad}(\boldsymbol{S} \boldsymbol{L}(2, \boldsymbol{C}))$ invariant proper subspace of $\mathfrak{a} \oplus \mathfrak{a}^{*}$ coincides with certain $\mathfrak{f}(u: v)$. We have

$$
\begin{aligned}
& {[\mathfrak{k}(u: v), \mathfrak{f}(u: v)]=\mathfrak{b} \text { for } u v \neq 0,} \\
& {[\mathfrak{b}, \mathfrak{k}(u: v)]=\mathfrak{k}(u:-v) .}
\end{aligned}
$$

Hence $\mathfrak{g} \cap\left(\mathfrak{a} \oplus \mathfrak{a}^{*}\right)=\mathfrak{a}$ or \mathfrak{a}^{*} for $n=3$.
Therefore, we see that

$$
L(n) \subset G \subset N(n) \text { or } L^{*}(n) \subset G \subset N^{*}(n)
$$

for each $n \geq 3$. q.e.d.
Lemma 2.2. (a) If G is a closed subgroup of $\boldsymbol{S L}(4, \boldsymbol{C})$ such that G contains $\boldsymbol{S p}(2)$ and $\operatorname{dim} \boldsymbol{S} \boldsymbol{L}(4, \boldsymbol{C}) / G \leq 7$, then $G=\boldsymbol{S} \boldsymbol{L}(4, \boldsymbol{C})$.
(b) If G is a closed subgroup of $\boldsymbol{S L}(3, \boldsymbol{C})$ such that G contains $\boldsymbol{S O}(3)$ and $\operatorname{dim} \boldsymbol{S} \boldsymbol{L}(3, \boldsymbol{C}) / G \leq 5$, Then $G=\boldsymbol{S L}(3, \boldsymbol{C})$.

Proof. Decompose $\mathfrak{s l}(4, \boldsymbol{C})$ (resp. $\mathfrak{E l}(3, \boldsymbol{C})$) into four irreducible $\operatorname{Ad}(\boldsymbol{S p}(2))$ (resp. $\operatorname{Ad}(\boldsymbol{S O}(3)))$ spaces, and consider the bracket operation. Then we obtain the desired result. We omit the detail. q. e.d.
3. $S L(n, C)$ actions on $(2 n-1)$-manifolds.

Here we introduce two types of $\boldsymbol{S} \boldsymbol{L}(\boldsymbol{n}, \boldsymbol{C})$ actions on ($2 n-1$)-manifolds. Denote by $S^{2 n-1}$ the unit sphere of C^{n}, and let $L^{2 n-1}(p)$ be the quotient space of $S^{2 n-1}$ by the equivalence relation: $z \sim \lambda z$ for $z \in S^{2 n-1}$ and $\lambda^{p}=1$, where p is a positive integer. Denote by $[z]$ the equivalence class of $z \in S^{2 n-1}$. For each real number c, define $\Phi_{c}, \Phi_{c}{ }^{*}: \boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{C}) \times$ $L^{2 n-1}(p) \rightarrow L^{2 n-1}(p)$ by

$$
\Phi_{c}(A,[z])=[\exp ((i c-1) \log \|A z\|) A z], \Phi_{c}{ }^{*}(A,[z])=\Phi_{c}\left(A^{*-1},[z]\right)
$$

for $A \in \boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{C}),[z] \in L^{2 n-1}(p)$, where $i=\sqrt{-1}$. Then we see that Φ_{c} and $\Phi_{c}{ }^{*}$ are smooth $\boldsymbol{S L}(n, C)$ actions on $L^{2 n-1}(p)$.

Let $P_{n-1}(\boldsymbol{C})$ be the projective space as the quotient space of $\boldsymbol{C}^{n}-\{0\}$ by the equivalence relation: $z \sim \lambda z$ for $z \in C^{n}-\{0\}$ and a non-zero complex number λ. Denote by $[z]$ the equivalence class of $z \in \boldsymbol{C}^{n}-\{0\}$. Let $\phi: \boldsymbol{R}$ $\times S^{1} \rightarrow S^{1}$ be a smooth \boldsymbol{R} action on \boldsymbol{S}^{1}, and define $\Psi_{\phi}, \Psi_{\phi}{ }^{*}: S L(n, C) \times$ $P_{n-1}(\boldsymbol{C}) \times S^{1} \rightarrow P_{n-1}(\boldsymbol{C}) \times S^{1}$ by

$$
\begin{aligned}
& \Psi_{\phi}(A,([z], x))=\left([A z], \phi\left(\log \left(\|z\|^{-1}\|A z\|\right), x\right)\right) \\
& \Psi_{\phi}^{*}(A,([z], x))=\Psi_{\phi}\left(A^{*-1},([z], x)\right)
\end{aligned}
$$

for $A \in S L(n, \boldsymbol{C}),[z] \in P_{n-1}(\boldsymbol{C})$ and $x \in S^{1}$. Then we see that Ψ_{ϕ} and $\Psi_{\phi}{ }^{*}$ are smooth $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{C})$ actions on $P_{n-1}(\boldsymbol{C}) \times S^{1}$.

THEOREM 3. Suppose $n \geq 3$. Then any non-trivial smooth $\boldsymbol{S L}(n, C)$ action on a closed connected ($2 n-1$)-manifold is equivariantly diffeomorphic to $\Phi_{c}, \Phi_{c}{ }^{*}, \Psi_{\phi}$ or $\Psi_{\phi}{ }^{*}$.

PROOF. Let $\Phi: \boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{C}) \times M \rightarrow M$ be a smooth $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{C})$ action on a closed connected ($2 n-1$)-manifold M, and denote by Φ_{0} its restricted $\boldsymbol{S} \boldsymbol{U}(n)$ action. Denote by $\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{C})_{x}$ (resp. $\left.\boldsymbol{S} \boldsymbol{U}(n)_{x}\right)$ the isotropy group at $x \in M$ with respect to the action $\Phi\left(\right.$ resp. $\left.\Phi_{0}\right)$. Then we see
(i) $\boldsymbol{S} \boldsymbol{U}(n)_{x}=\boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{C})_{x} \cap \boldsymbol{S} \boldsymbol{U}(n)$.

If the identity component of $\boldsymbol{S} \boldsymbol{U}(n)_{x}$ is conjugate to $\boldsymbol{S} \boldsymbol{O}(3)(n=3)$ or $\boldsymbol{S p}(2)(n=4)$, then $\boldsymbol{S L}(n, \boldsymbol{C})_{x}=\boldsymbol{S L}(n, \boldsymbol{C})$ by Lemma 2.2. This is a contradiction to (i).

Therefore, by Lemma 1, we see that the identity component of $\boldsymbol{S} \boldsymbol{U}(n)_{x}$ is conjugate to $\boldsymbol{S} \boldsymbol{U}(n-1), \boldsymbol{S}(U(1) \times \boldsymbol{U}(n-1))$ or $\boldsymbol{S} \boldsymbol{U}(n)$ for each $x \in M$.
3. 1. Suppose first that the identity component of $\boldsymbol{S} \boldsymbol{U}(n)_{x}$ is conjugate to $\boldsymbol{S} \boldsymbol{U}(n-1)$ for some $x \in M$. Then the action Φ_{0} is transitive, and we see that the $\boldsymbol{S} \boldsymbol{U}(n)$ manifold M is equivariantly diffeomorphic to $L^{2 n-1}(p)$ with the natural $\boldsymbol{S} \boldsymbol{U}(n)$ action given by $[z] \rightarrow[K z]$ for $K \in$ $\boldsymbol{S} \boldsymbol{U}(n)$, where p is the number of connected components of $\boldsymbol{S} \boldsymbol{U}(n)_{x}$. In the following, we can assume that $M=L^{2 n-1}(p)$ and the action Φ satisfies the condition :
(ii) $\Phi(K,[z])=[K z]: K \in \boldsymbol{S U}(n),[z] \in L^{2 n-1}(p)$.

Then $F(\boldsymbol{S} \boldsymbol{U}(n-1))=\left\{\left[w \boldsymbol{e}_{1}\right]: w \in \boldsymbol{U}(1)\right\}$, where $\boldsymbol{e}_{1}={ }^{t}(1,0, \cdots, 0) \in \boldsymbol{C}^{n}$, and $F(H)$ denotes the fixed point set of the restricted H action on M. By Lemma 2.1, we obtain

$$
F(L(n)) \cup F\left(L^{*}(n)\right)=F(\boldsymbol{S} \boldsymbol{U}(n-1))
$$

Since $F(L(n)) \cap F\left(L^{*}(n)\right)=F(\boldsymbol{S L}(n, \boldsymbol{C}))$, we can show that $F(L(n))$ and $F\left(L^{*}(n)\right)$ are disjoint, from the condition (ii). Then we obtain

$$
F(\boldsymbol{S} \boldsymbol{U}(n-1))=F(L(n)) \text { or } F(\boldsymbol{S} \boldsymbol{U}(n-1))=F\left(L^{*}(n)\right)
$$

because $F(\boldsymbol{S} \boldsymbol{U}(n-1))$ is connected.
Now we assume $F(\boldsymbol{S} \boldsymbol{U}(n-1))=F(L(n))$. Since $F(L(n))$ is $N(n)$ invariant, the action Φ induces naturally a \boldsymbol{C}^{\times}action ξ on $F(L(n))$ given by

$$
\Phi(T,[z])=\xi\left(t_{11},[z]\right) \text { for } T=\left(t_{i j}\right) \in N(n)
$$

Here \boldsymbol{C}^{\times}denotes the multiplicative group of non-zero complex numbers. By the condition (ii), we see that the \boldsymbol{C}^{\times}action ξ satisfies

$$
\boldsymbol{\xi}(u,[z])=[u z] \text { for } u \in \boldsymbol{U}(1),[z] \in F(L(n)) .
$$

On the other hand, we obtain a smooth mapping $f: \boldsymbol{R} \rightarrow \boldsymbol{U}(1)$ determined by $\boldsymbol{\xi}\left(e^{t},\left[\boldsymbol{e}_{1}\right]\right)=\left[f(t) \boldsymbol{e}_{1}\right]$, and we see that f is a homomorphism. Hence, there exists a real number c such that $f(t)=\exp (i c t)$. Therefore,

$$
\xi(u,[z])=[\exp ((i c-1) \log |u|) u z]
$$

for $u \in \boldsymbol{C}^{\times},[z] \in F(L(n))$. Since $T \boldsymbol{e}_{1}=t_{11} \boldsymbol{e}_{1}$ for $T=\left(t_{i j}\right) \in N(n)$, we obtain (iii) $\Phi(T,[z])=[\exp ((i c-1) \log \|T z\|) T z]$
for $T \in N(n),[z] \in F(L(n))$. Consequently, by the conditions (ii) and (iii), we obtain $\Phi=\Phi_{c}$, because there is a decomposition $A=K T: K \in$ $\boldsymbol{S} \boldsymbol{U}(n)$ and $T \in N(n)$ for each $A \in \boldsymbol{S} \boldsymbol{L}(n, \boldsymbol{C})$, and the restricted $\boldsymbol{S} \boldsymbol{U}(n)$ action Φ_{0} on $L^{2 n-1}(p)$ is transitive. Similarly, we obtain $\Phi=\Phi_{c}{ }^{*}$, for the case $F(\boldsymbol{S} \boldsymbol{U}(n-1))=F\left(L^{*}(n)\right)$.
3.2. Suppose next that the identity component of $\boldsymbol{S} \boldsymbol{U}(n)_{x}$ is conjugate to $\boldsymbol{S}(\boldsymbol{U}(1) \times \boldsymbol{U}(n-1))$ or $\boldsymbol{S} \boldsymbol{U}(n)$ for each $x \in M$. Then the action Φ_{0} has codimension one principal orbits. If Φ_{0} has a nonprincipal orbit, then it is a fixed point. Considering the slice representation at the fixed point, we see that Φ_{0} has no nonprincipal orbit, because $P_{n-1}(C)$ is not homeomorphic to the ($2 n-2$)-sphere. Then we see that the $\boldsymbol{S} \boldsymbol{U}(n)$ manifold M is equivariantly diffeomorphic to $P_{n-1}(\boldsymbol{C}) \times S^{1}$, where $\boldsymbol{S} \boldsymbol{U}(n)$ acts on $P_{n-1}(C)$ by $[z] \rightarrow[K z]$ for $K \in \boldsymbol{S} \boldsymbol{U}(n)$ and trivially on \boldsymbol{S}^{1}. In the following, we can assume that $M=P_{n-1}(\boldsymbol{C}) \times S^{1}$ and the action Φ satisfies

$$
\text { (iv) } \quad \Phi(K,([z], x))=([K z], x)
$$

for $K \in \boldsymbol{S} \boldsymbol{U}(n),[z] \in P_{n-1}(\boldsymbol{C})$ and $x \in S^{1}$. Then

$$
F(\boldsymbol{S} \boldsymbol{U}(n-1))=\left[\boldsymbol{e}_{1}\right] \times S^{1},
$$

and $F(\boldsymbol{S} \boldsymbol{U}(n-1))=F(L(n))$ or $F(\boldsymbol{S U}(n-1))=F\left(L^{*}(n)\right)$ as above. Now we assume $F(\boldsymbol{S} \boldsymbol{U}(n-1))=F(L(n))$. Then the action Φ induces naturally a \boldsymbol{C}^{\times}action $\boldsymbol{\xi}$ on S^{1} given by

$$
\Phi\left(T,\left(\left[e_{1}\right], x\right)\right)=\left(\left[e_{1}\right], \xi\left(t_{11}, x\right)\right)
$$

for $T=\left(t_{i j}\right) \in N(n)$. If $T \in N(n) \cap \boldsymbol{S U}(n)$, then each point of $F(\boldsymbol{S} \boldsymbol{U}(n$ $-1)$) leaves fixed by T under the action Φ. Therefore, the C^{\times}action ξ satisfies $\boldsymbol{\xi}(u, x)=x$ for $|u|=1$. On the other hand, we obtain a smooth \boldsymbol{R} action $\phi: \boldsymbol{R} \times S^{1} \rightarrow S^{1}$ given by $\phi(t, x)=\xi\left(e^{t}, x\right)$. Then we see that
(v) $\Phi\left(T,\left(\left[e_{1}\right], x\right)\right)=\left(\left[e_{1}\right], \phi\left(\log \left\|T e_{1}\right\|, x\right)\right)$
for $T \in N(n)$ and $x \in S^{1}$. Consequently, by the conditions (iv) and (v), we obtain $\Phi=\Psi_{\varphi}$, because the $\boldsymbol{S} \boldsymbol{U}(n)$ action on $P_{n-1}(\boldsymbol{C})$ is transitive. Similarly we obtain $\Phi=\Psi_{\phi}{ }^{*}$, for the case $F(\boldsymbol{S U}(n-1))=F\left(L^{*}(n)\right)$.

This completes the proof of Theorem 3. Similar argument is used in [2].

References

[1] T. ASOH: On smooth $\boldsymbol{S L}(2, \boldsymbol{C})$ actions on 3-manifolds, Osaka J. Math. 24 (1987), 271 -298.
[2] F. UCHIDA: Actions of special linear groups on a product manifold, Bull. of Yamagata Univ., Nat. Sci. 10-3 (1982), 227-233.

Department of Mathematics
Faculty of Science, Yamagata University
Koshirakawa, Yamagata 990, Japan

