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Introduction

Expansiveness of homeomorphisms and flows has been studied by vari-
ous authors in the field of dynamical systems. In this note we introduce
this notion into the foliation theory and examine its influence on the topol-
ogy of leaves. In \S 1 we give a precise definition of expansive foliations.
In \S 2 we restrict our attention to the case of codimension one foliations
and show that in this case topological structures of foliations completely
characterize the expansiveness. As corollaries of this result we obtain
that the geometric entropy ([GLW]) of a codimension one expansive folia-
tion is positive and that the fundamental group of a manifold admitting a
codimension one expansive foliation has exponential growth. In \S 3 we
define another notion called strong expansiveness. We show that for
strongly expansive foliations results similar to (although somewhat wea-
ker than) those obtained in \S 2 hold in all codimensions.

The authors would like to thank S. Matsumoto for helpful conversa-
tions.

1. Definition

First we treat the case of codimension one. Let M be a closed C^{\infty}

Riemannian manifold and \mathscr{F} a codimension one C^{r} , r\geq 0 , foliation on M.
Fix a one dimensional foliation \mathscr{T} transverse to \mathscr{I}^{-} Throughout this
note we assume that all leaves of \mathscr{I}^{-} and \mathscr{T} are of class C^{1} . A curve
(resp. an embedded curve) contained in a leaf of \mathscr{I}^{-} (resp. \mathscr{T} ) is called an

\mathscr{F}^{-} curve (resp. a \mathscr{T}- arc). A continuous map F:[0, 1]\cross[0,1]arrow M is
called a fence if F|[0,1]\cross\{t\} is a C^{1}\mathscr{F}^{-}-curve for all t\in[0,1] and F|\{s\}\cross

[0,1] is a \mathscr{T}-arc for all s\in[0,1] . F|[0,1]\cross\{t\} is called a horizontal curve
(the lower side if t=0, the upper side if t=1) of F and F|\{s\}\cross[0,1] is
called a vertical arc (the left side if s=0, the right side if s=1) of F.
The lower, upper, left or right side of F is denoted by t(F) , u(F) , \lambda(F)
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or \rho(F) respectively. The holonomy map h_{F} associated with F is the
diffeomorphism from \lambda(F) onto \rho(F) defined by h_{F}(F(0, t))=F(1, t) .
(Here and hereafter we often confuse a curve with its image.)

Now we propose the following.

DEFINITION 1. 1. \mathscr{P}^{arrow} is expansive if there exists \delta>0 with the prop-
erty that for any compact \mathscr{T}-arc J there is a fence F such that \lambda(F)=J

and Length (\rho(F))\geq\delta .

This definition is independent of the Riemannian metric and the trans-
verse foliation \mathscr{T} because M is compact.

The constant \delta is called an expansive constant of \mathscr{F}.
Next we consider the case of general codimension. In this case there

does not necessarily exist a transverse foliation of complementary
codimension. So we are obliged to use a system of transverse disks as
below in place of a transverse foliation. Let M be a closed C^{\infty} Rieman-
nian manifold and \mathscr{F} a codimension q foliation on M. We assume that
\mathscr{I}^{-} has C^{1} leaves. Let f/ be the subbundle of TM orthogonal to the
leaves of \mathscr{F} and let f\prime_{r}\subset_{1\nearrow} be the associated bundle by closed disks of
radius r . For each x\in M let D_{r}(x) be the image of the q-disk \nu_{r}(x)

under the exponential map exp:TMarrow M. If r is sufficiently small, then
each D_{r}(x) is an embedded disk transverse to \mathscr{F}. We will define a fence
for codimension q foliations. Let \alpha:[0,1]arrow M be a C^{1}\mathscr{P}^{\vee}-curve and let
r>0 . Let N be a compact neighborhood of 0 in R^{q} . A continuous map
F:[0, 1]\cross N -arrow M is called a fence along \alpha if F|\{t\}\cross N is an embedding
into D_{r}(\alpha(t)) for all t\in[0,1] , if F|[0,1]\cross\{x\} is a C^{1}\mathscr{F}-curve for every
x\in N and if F|[0,1]\cross\{0\}=\alpha . F(\{0\}\cross N) (resp. F(\{1\}\cross N) ) is called the
left side (resp. the right side) of F and is denoted by \lambda(F) (resp. \rho(F) ).

We denote by Int \rho(F) the interior of \rho(F) in D_{r}(\alpha(1)) . The
diffeomorphism h_{F} from \lambda(F) onto \rho(F) defined by h_{F}(F(0, x))=F(1, x)

is called the holonomy map associated with F.

DEFINITION 1. 2. \mathscr{F} is expansive if there exists sufficiently small \delta>0

(called an expansive constant) that the following holds: For any x\in M

and any y\in D_{8}(x)-\{x\} , one can find an \mathscr{F}-curve \alpha with \alpha(0)=x and a
fence F along \alpha such that y\in\lambda(F)\subset D_{\delta}(x) and that h_{F}(y) does not
belong to D_{\delta}(\alpha(1)) .

It can be seen that for a codimension one foliation, Definitions (1. 1)

and (1. 2) are equivalent.
Orbits of a nonsingular flow \varphi form a one dimensional expansive

foliation if and only if \varphi is expansive as a flow (for definition see [KS]).
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Weakly stable foliations of Anosov flows are expansive.

2. Expansive foliations of codimension one

In this section we concern ourselves exclusively with codimension one
foliations. Let M be a closed C^{\infty} Riemannian manifold and \mathscr{F} a
codimension one C^{r} . r\geq 0 , foliation on M. As in \S 1, fix a one dimen-
sional foliation \mathscr{T} transverse to \mathscr{P}^{\vee} An open saturated subset U of \mathscr{F} is
an open local minimal set of \mathscr{P}^{\vee} if all leaves of \mathscr{F}|U are dense in U. An
open local minimal set is nontrivial if it contains a leaf with nontrivial
holonomy ( i,c. , there exists a fence F whose image is contained in U
such that t(F) is a loop and that the germ of h_{F} at t(F)(0) is not the
identity).

The following is the main result of this section.

THEOREM 2. 1. Let M be a closed manifold and \mathscr{F} a codimension
one C^{r}-r\geq 0 , foliation on M. Then the following are equivalent.

(i) \mathscr{P}^{\vee} is expansive.
(ii) There exist finitety many nontrivial open local minimal sets of

\mathscr{F} whose union is dense in M.

REMARK. If \mathscr{F} is of class C^{2} . the condition ( ii) implies that \mathscr{F}

has finite level (see [CC] for difinition of level). But we can construct an
example of a C^{0} expansive foliation which has leaves at infinite level.

REMARK. As a direct corollary of (2. 1), we have that every
codimension one Anosov flow has a locally dense weakly stable manifold.
This fact also holds for nonsingular expansive flows on closed 3-manif0lds
(see the end of this section).

By passing to a suitable double cover if necessary, we assume that \mathscr{I}^{\vee}

is transversely orientable. First we recall some basic definitions. An (\mathscr{F},
\mathscr{T})-that ( W, \varphi) is a pair of an embedding \varphi:D^{n-1}\cross D^{1}arrow M and the set
W=Image\varphi such that \varphi|D^{n-1}\cross\{t\} is an embedding into a leaf of \mathscr{I}^{-} for
each t\in D^{1} and \varphi|\{x\}XD^{1} is a \mathscr{T}-arc for each x\in D^{n-1}- An atlas \mathscr{V}=

\{(W_{i}, \varphi_{i})\}_{i=1}^{m} on M is a biregular cover of M if it satisfies the following
condition : (1) Each ( W_{i}, \varphi_{i}) is an (\mathscr{F}, \mathscr{T})-chart. (2) \{Int W_{i}\}_{i=1}^{m} is \dot{a}n

open cover of M. (3) If W_{i}\cap W_{j}\neq\emptyset , then there is an (\mathscr{F}, \mathscr{T})-tha t ( W,
\varphi) such that W_{i}\cup W_{j}\subset Int W. R_{i}=\varphi_{i}(\{0\}\cross D^{1}) is called the axis of W_{i} .
We fix such \mathscr{V} hereafter.

An open saturated subset U of M is a foliated product if every leaf
of \hat{i}^{*}\mathscr{T} is a compact arc, where \^i denotes the canonical immersion from
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the metric completion \overline{U} of U into M. The thickness of a foliated prod-
uct U (resp. an ( \mathscr{F}, \mathscr{T})-tha t ( W, \varphi) ) is the maximum length of leaves of
\hat{i}^{*}\mathscr{T}(resP\cdot \mathscr{I}^{-|W)}\cdot

Now we will show the implication ( i)\Rightarrow(ii) of Theorem 2. 1. Sup-
pose \mathscr{F} is expansive with expansive constant \delta . The following is obvi-
ous by the definition of expansiveness.

LEMMA 2. 2. \mathscr{F} does not possess a foliated product of thickness less
than \delta.

By taking a refinement if necessary, we may assume hereafter that
each element W_{i} of \mathscr{V} has thickness less than \delta/3 .

LEMMA 2. 3. There exist finitety many open local minimal sets of \mathscr{F}

whose union is dense in M.

PROOF. Put W_{i}(t)=\varphi_{i}(D^{n-1}\cross[-t, t]) , P_{2i-1}(t)=\varphi_{i}(D^{n-1}\cross\{-t\}) and
P_{2i}(t)=\varphi_{i}(D^{n-1}\cross\{t\}) . By the definition of the biregular cover, there is a
constant 0<c<1 such that if c<t\leq 1 then \bigcup_{i=1}^{m}W_{i}(t)=M . Denote by
L_{j}(t) the leaf of \mathscr{F} which contains P_{j}(t) , 1\leq j\leq 2m , and put S(t)= \bigcup_{j=1}^{2m}

L_{j}(t) . Fix t_{0} such that c<t_{0}<1 . We will claim that S(t_{0}) is dense in M.
In fact, otherwise one easily sees that each connected component of M

\backslash -\overline{S(t_{0})} is a foliated product of thickness <\delta/3 , contradicting (2. 2).
Next, we will claim that there exist j_{1},1\leq j_{1}\leq 2m , and t_{1} , t_{2} , c<t_{1}<t_{0}<t_{2}<

1 , such that L_{j_{1}}(t) is locally dense for each t , t_{1}<t<t_{2} . Indeed if this
claim is not true, then, for each j , 1\leq j\leq 2m , one can find s_{j} arbitrarily
near t_{0} such that L_{j}(s_{j}) is not locally dense. But the set \bigcup_{j=1}^{2m}L_{j}(s_{j}) must
be dense in M by the same reason as in the preceding claim. This con-
tradiction proves the claim. Now, obviously, \bigcup_{t_{1}<t<t_{2}}L_{j_{1}}(t) is an open
local minimal set. We denote this set by U_{1} . If U_{1}=M , then we are
done. Otherwise we can show that there exists j_{2},1\leq j_{2}\leq 2m , suet that j_{2}

satisfies the \underline{property} similar to the one for j_{1} in the second claim and that
L_{j_{2}}(t_{0})\subset M-U_{1} . Hence we find another open local minimal set U_{2} , which
contains L_{jz}(t_{0}) . Repeating this procedure, we attain the desired conclu-
sion. (2. 3) is proved.

LEMMA 2. 4. Every open local minimal set of \mathscr{F} is nontrivial.

PROOF. Let U be an open local minimal set of \mathscr{F}. First we see
that there is some i , 1\leq i\leq m , such that W_{i}\subset U . In fact, if we take an
arbitrary compact \mathscr{T}^{-}arc J contained in U, then by the expansiveness of

\mathscr{I}^{-} . there exists a fence F such that \lambda(F)=J and Length(\rho (F)) \geq\delta . By
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the choice of \mathscr{V} . \rho(F) penetrates some W_{i} . Thus W_{i}\subset U . Now let W_{io}

be a chart contained in U. Then by an argument similar to the above,
there is a holonomy map h_{1} such that the image h_{1}(R_{io}) of the axis R_{io} by
h_{1} penetrates some W_{i_{1}} . We may assume without loss of generality that
Int h_{1}(R_{i_{0}})\supset R_{i_{1}} . Iterating this procedure, we obtain a sequence of
holonomy maps \{h_{k}\}_{k=1}^{\infty} and a sequence of axes \{R_{i_{k}}\}_{k=1}^{\infty} such that Int
h_{k}(R_{i_{k-1}})\supset R_{i_{k}} for all k . Since the number of axes are finite, there exist p

<q such that i_{p}=i_{q} . Then for the composite map h=h_{q^{\circ\cdots\circ}}h_{p+1} we
have that Int h(R_{ip})\supset R_{ip} . Hence h has a fixed point in R_{ip} . This means
that U contains a leaf with nontrivial holonomy, as desired.

The proof of the implication ( i)\Rightarrow(ii) is complete.
To show that ( ii) implies ( i ) , let us suppose that there exist finitely

many nontrivial open local minimal sets of \mathscr{F} whose union is dense in M.

LEMMA 2. 5. LelU be an open local minimal set of \mathscr{F} Then \mathscr{T}|

U is expansive.

PROOF. By the hypothesis of \mathscr{F}. we can choose a leaf L in U
which has expanding holonomy. That is, there exists a fence F_{0} such that
t(F_{0}) is a loop on L based at, say, z and that the length of the arrow q^{-}-arc [z ,
h_{F_{0}}(x)] is greater than that of [z, x] for all x\in\lambda(F_{0}) . We set \delta_{U}=\lambda(F_{0})/2

and will claim that \delta_{U} is an expansive constant for \mathscr{F}|U . Let J be any
compact \mathscr{F}-arc in U. It suffices to show that there exists a fence F such
that \lambda(F)\subset J and Length (\rho(F))\geq\delta_{U} . Since L is dense in U, we can find
a point w in IntJ\cap L . Take any \mathscr{F}-curve \alpha which joins w to z . Clear-
ly, there exists a fence F_{1} such that \lambda(F_{1})\subset J , \rho(F_{1})\subset\lambda(F_{0}) and t(F_{1})=\alpha .
By the choice of F_{0} and \delta_{U} , Length(h_{Fo}^{N}(\rho(F_{1})))\geq\delta_{U} for some N. Then
the fence F with \lambda(F)=\lambda(F_{1}) and t(F)=\alpha*t(F_{0})^{N} satisfies Length (\rho(F))

\geq\delta_{U} , as desired. Lemma is proved.
Now let J_{0} be any compact \mathscr{T}- arc in M. Since the union of all open

local minimal sets is dense in M, there exists a compact subarc J of J_{0}

which is contained in some open local minimal set, say U. By (2. 5), we
find a fence F such that \lambda(F)=J and Length (\rho(F))\geq\delta_{U} , where \delta_{U} is an
expansive constant for \mathscr{F}|U . Thus, if we put \delta=\min\{\delta_{U}|U is an open
local minimal set of \mathscr{F}} >0 , we see that \mathscr{F} is expansive with expansive
constant \delta . This proves ( ii)\Rightarrow(i ) . The proof of Theorem 2. 1 is com-
plete.

Recall that a leaf L of \mathscr{F} is resilient if there exists a fence F with
the following properties: u(F)\subset L , t(F) is a loop in L based at, say, x
and h_{F} is a contraction to x . Since a nontrivial open local minimal set
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clearly contains a resilient leaf, by (2. 1) we have the following.

COROLLARY 2. 6. Let M be a closed manifold and \mathscr{F} a codimension
one C^{r} . r\geq 0 , expansive foliation on M. Then \mathscr{F} has a resilient leaf

COROLLARY 2. 7. Let M be a closed 3-manifold. If M admits a
codimension one C^{r}-r\geq 0 , expansive foliation, then \pi_{1}(M) has exponential
growth.

PROOF. Let \mathscr{F} be an expansive foliation on M. By (2. 1) \mathscr{F} con-
tains no Reeb components, hence, by [N] \mathscr{F} admits no null homotopic
closed transversals. Then, as is well-known (see e . g. , the proof of [PI ,
Lemma 7 2]), the growth of \pi_{1}(M) dominates the growth of each leaf of
\mathscr{F}. On the other hand, it is well-known that a resilient leaf has
exponential growth (see e . g. , [HH, Chapter 9, 2. 1. 8]). From these facts
and (2. 6) we have the desired conclusion.

Since a transversely real analytic foliation admits no null homotopic
closed transversals ([Ha]), by the same argument as above we also obtain
the following.

COROLLARY 2. 8. Let M be a closed manifold. If M admits a
codimension one real analytic expansive foliation, then \pi_{1}(M) has
exponential growth.

A notion of geometric entropy for foliations has been introduced by
Ghys, Langevin and Walczak [GLW]. In [GLW], it is shown, among
others, that if a codimension one foliation \mathscr{F} on a closed Riemannian
manifold (M, g) has a resilient leaf, then the geometric entropy h(\mathscr{F}, g)>

0 . Thus by (2. 6) we have the following.

COROLLARY 2. 9. Let M be a closed manifold with a Riemannian
metric g and \mathscr{F} a codimension one C^{r} r\geq 0 , expansive foliation on M.
Then h(\mathscr{F}, g)>0 .

We conclude this section by remarking briefly that most of the results
obtained in this section can be extended to foliations with circle prong
singularities (see [IM] for definition). Such a singular foliation naturally
arises as the stable foliation of a nonsingular expansive flow on a closed 3
-manifold. Let \mathscr{F} be a codimension one foliation with circle prong singu-
larities. Then (2. 1) is valid for \mathscr{F} In fact, the proof given there goes
through almost without change. Also, (2. 6) and (2. 9) are valid for
expansive \mathscr{F} and (2. 7) is valid for expansive \mathscr{F} which satisfies the prop-
erties 1) and 2) in Theorem 1.6 of [IM]. Thus we reprove, by a some-
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what different method, Paternain’s theorem [Pa] which says that if a
closed 3-manifold M admits a nonsingular expansive flow, then \pi_{1}(M)

has exponential growth.

3. Strongly expansive foliations of arbitrary codimension

Foliations considered in this section may have arbitrary codimension.
Let M be a closed C^{\infty} Riemannian manifold and \mathscr{P}^{\vee} a codimension q

foliation on M with C^{1} leaves. As in \S 1, we consider a system of trans-
verse disks \{D_{r}(x)\}_{x\in M} as a substitute for a transverse foliation in
codimension one.

We introduce the following.

DEFINITION 3. 1. \mathscr{F} is strongly expansive if there exists \delta>0 (called
a strongly expansive constant) with the following property: for any x\in M

and any \epsilon>0 , there are an \mathscr{F}-curve \alpha with \alpha(0)=x and a fence F along
\alpha such that \lambda(F)\subset D_{\epsilon}(x) and that Int \rho(F)\supset D_{8}(\alpha(1)) .

Clearly, strong expansiveness implies expansiveness.
Weakly stable foliations of Anosov flows are strongly expansive.
A distinguished chart ( W, \varphi) is a pair of an embedding \varphi : D^{n-q}\cross

D^{q}arrow M and the set W=Image\varphi such that \varphi|D^{n-q}\cross\{y\} is an embedding
into a leaf of \mathscr{F} for each y\in D^{q} and that \varphi|\{x\}\cross D^{q} is contained in the
disk D_{r_{X}}(\varphi(x, 0)) for some r_{x}>0 . Max \{r_{x}|x\in D^{n-q}\} is called a transverse
width of ( W, \varphi) . An atlas \mathscr{V}=\{(W_{i}, \varphi_{i})\}_{i=1}^{m} on M is a distinguished cover
of M if it satisfies the following two conditions: (1) Each (W_{i}, \varphi_{i}) is a
distinguished chart. (2) \{Int W_{i}\}_{i=1}^{m} is an open cover of M. Each of the
sets \varphi_{i}(D^{n-q}\cross\{y\}) , 1\leq i\leq m , y\in D^{q} is called a plaque. From now on we
fix such \mathscr{V} .

Let L be a leaf of \mathscr{P}’ and x\in L . The growth function of L at x is
defined by g(r)=(the number of distinct plaques which can be joined to x
by \mathscr{F} -curves of length \leq r ). Let G be a finitely generated group and G^{1}

a finite set of generators for G . The growth function of G relative to G^{1}

is defined by g(r)=(the number of distinct elements of G which have word
-length\leq r ). L or G is said to have exponential growth (resp. quasi
-exponential growth) if its growth function g satisfies that \lim\inf_{rarrow\infty}(1/r)

log g(r)>0 (resp. \lim\sup_{rarrow\infty}(1/r) log g(r)>0 ).

THEOREM 3. 2. Let M be a closed manifold and \mathscr{F} a codimension q

strongly expansive foliation on M with C^{1} leaves. Then \mathscr{F} has a leaf with
quasi-exponential growth.

The idea of proof is due to Plante-Thurston ([PT]) and Paternain
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([Pa]).
Assume that \mathscr{F} is strongly expansive with strongly expansive con-

stant \delta . First we prepare the following lemma, which is a version of
[KS, Corollary (2. 11)].

LEMMA 3. 3. For any \epsilon , 0<\epsilon<\delta, there exists t=t(\epsilon)>0 with the
following property : for any x\in M, there are an \mathscr{F}-curve \alpha_{x} and a fence
F_{x} along \alpha_{x} such that (1) \alpha_{x}(0)=x, (2) Length \alpha_{X}\leq t, (3) \lambda(F_{x})\subset D_{\epsilon}(x) and
(4) Int \rho(F_{x})\supset D_{\delta}(\alpha_{x}(1)) . Furthermore, we may assume that there is \zeta>0

with the property that for any x\in M and any y\in\lambda(F_{x}) , Length (F_{x}|[0,1]\cross

\{y\})/Length\alpha_{x}<\zeta .

PROOF. Suppose the first statement does not hold. Then there are a
constant \epsilon , 0<\epsilon<\delta , a divergent sequence \{t_{n}\} of positive numbers and a
sequence \{x_{n}\} of points of M such that if \alpha is an \mathscr{F}^{-}curve with \alpha(0)=x_{n}

and with Length \alpha\leq t_{n} and if F is a fence along \alpha satisfying that \lambda(F)\subset

D_{\epsilon}(x_{n}) , then D_{8}(\alpha(1)) is not a subset of Int(p(F)). By choosing a subse-
quence if necessary we may assume that \{x_{n}\} converges to a point x_{\infty} of
M. Then for any \mathscr{F}-curve \alpha with \alpha(0)=x_{\infty} and for any fence F along \alpha

satisfying \lambda(F)\subset D_{\epsilon}(x_{\infty}) , D_{\delta}(\alpha(1)) is not a proper subset of Int(p(F)).
This contradicts the strong expansiveness of \mathscr{F}\tau

The second statement easily follows from the compactness of M and
the following standard fact: Let x\in M and let F_{x} be a fence with the
properties (1) to (4) of (3. 3). Then there exists a neighborhood U of x
in M such that for each y\in U , we can choose as F_{y} a fence whose image
is close to that of F_{X} . (3. 3) is proved.

Taking \delta smaller if necessary we may assume the following: for any
x\in M , any y\in D_{8}(x) and any sufficiently small \epsilon>0 , define B_{\epsilon}(y) by
B_{\epsilon}(y)=\{z\in D_{8}(x)|dist(y, z)\leq\epsilon\} , where dist means the distance induced
from the Riemannian metric on D_{\delta}(x)\subset M . Let \eta_{xy} : B_{\epsilon}(y)arrow D_{8}(y) be the
embedding which is uniquely determined by requiring that for any z\in
B_{\epsilon}(y) , z and \eta_{xy}(z) lie on the same plaque. Then there exists a small
number x=x(\epsilon)>0 not depending on x and y such that for any z\in B_{\epsilon}(y) ,
z and \eta_{xy}(z) can be joined by an \mathscr{F}-curve of length <x .

PROOF OF (3. 2). Put P_{i}=\varphi_{i}(D^{n-q}\cross\{0\}) . By taking a refinement of
\mathscr{U}^{r} if necessary, we assume that each distinguished chart W_{i} has
sufficiently small transverse width that for any x\in M , D_{8}(x) intersects at
least one of the P_{i} ’s. We will construct a (formal disjoint) union A_{n} of
compact transverse disks inductively. First, let xo be any point of M and
put A_{0}=D_{8}(x_{0}) . Next, suppose that we have constructed A_{n}=\square ^{2^{n}}p=1A_{n}^{p},
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where A_{n}^{p}=D_{8}(x_{n}^{p}) for some x_{n}^{p}\in M . Take two points x_{n}^{p+} and x_{n}^{p-} in
D_{\delta/2}(x_{n}^{p}) such that dist (x_{n}^{p+}. x_{n}^{p-})>\delta/2 . Let \epsilon>0 be sufficiently closer to 0
than \delta . By (3. 3) one can find a fence F_{n}^{p+} along an \mathscr{F}-curve \alpha_{n}^{p+} satis-
fying the following property P(F_{n}^{p+}):\alpha_{n}^{p+}(0)=x_{n-}^{p+}\lambda(F_{n}^{p+})\subset D_{\epsilon}(x_{n}^{p+}) , Length
(\alpha_{n}^{p+})\leq t=t(\epsilon) , \rho(F_{n}^{p+})=D_{8}(\alpha_{n}^{p+}(1)) and Length (F_{n}^{p+}|[0,1]\cross\{y\})/Length\alpha_{n}^{p+}

<\zeta for all y\in\lambda(F_{n}^{p+}) (see (3. 3)). Similarly one finds a fence F_{n}^{p-} along
an \mathscr{F}-curve \alpha_{n}^{p-} satisfying the property P(F_{n}^{p-}) . Put A_{n+1}^{2p-1}=\rho(F_{n}^{p-}) and
A_{n+1}^{2p}=\rho(F_{n}^{p+1}) , and set A_{n+1}=\coprod_{p=1}^{2^{n+1}}A_{n+1}^{p} . Now since A_{n}^{p}=D_{8}(x_{n}^{p}) , by the
choice of \delta and the distinguished cover, A_{n} intersects \cup^{m}{}_{i=1}P_{i} in at least
2^{n} points, Hence for each n there is 1\leq i_{n}\leq m such that A_{n}\cap P_{i_{n}} consists
of at least [2^{n}/m] points. Since P_{i} ’s are finite in number, one can find a
divergent subsequence \{n_{k}\} and a suffix i , 1\leq i\leq m , such that for each k,
A_{n_{k}}\cap P_{i} consists of at least [2^{n_{k}}/m] points. Notice here that by the
choice of \delta and the construction of A_{n} , every point of A_{n}^{p} can be joined
to a point of A_{0} by an \mathscr{F}-curve of Length \leq n(\zeta t+x) . Therefore if for
each point x\in A_{0} we choose a plaque P_{\chi} which contains x , and if we
take y\in P_{i} as a base point, we see that at least [2^{n_{k}}/m] dictinct plaques
in \{P_{x}\}_{x\in A_{0}} can be joined to y by \mathscr{F}-curves of Length \leq n_{k}(\zeta t+x)+D ,
where D is the diameter of P_{i} . This implies that the leaf of \mathscr{F} which
contains P_{i} has quasi-exponential growth. The proof of (3. 2) is com-
plete.

Let \pi:\overline{M}arrow M be the universal covering of M and \overline{\mathscr{F}} the pulled-back
foliation on \overline{M} . A distinguished chart of \overline{\mathscr{F}} means a connected comp0-
nent of \pi^{-1}(W_{i}) where W_{i} is a distinguished chart of \mathscr{F}

COROLLARY 3. 4. Let M and \mathscr{F} be as in (3. 2). Suppose that \mathscr{F}

has the following property : For any leaf \tilde{L} of \mathscr{T}\sim and for any distin-
guished chart \overline{W} for J^{\tilde{}} \overline{L}\cap\overline{W} consists of at most one plaque. Then
\pi_{1}(M) has exponential growth.

PROOF. If \mathscr{F} has the property in (3. 4), then, as is well known (see
e . g. , the proof of [PI , Lemma 7. 2] ) , the growth of \pi_{1}(M) dominates the
growth of each leaf of \mathscr{F}. It follows from this fact and (3. 2) that \pi_{1}(M)

has quasi-exponential growth. But then \pi_{1}(M) must necessarily have
exponential growth by [HH, Chapter 9, 1. 2. 4].

REMARK. \mathscr{P}^{\vee} satisfies the hypothesis of (3. 4) if \mathscr{F} has a structure of
a foliated bundle.

COROLLARY 3. 5. Let M be a closed manifold with a Riemannian
metric g and \mathscr{F} a codimension q strongly expansive foliation on M. Then
the geometric entropy h(\mathscr{F}, g)>0 .



48 T. Inaba and N. Tsuchiya

To prove (3. 5), we need to recall the entropy relative to a distin-
guished cover (Our definition is slightly different from that of [GLW] and
may be related to Hurder’s one [Hu] ) . Let \mathscr{V}=\{W_{i}, \varphi_{i})\}_{i=1}^{m} be a distinct
guished cover of M. We say that a subset E of M is (\mathscr{F}. (\mathscr{V}, r, \epsilon)- separ-
ated if for any two distinct points x , y of E , one of the following two
conditions is verified : ( i) There exists no W_{i} such that \{x, y\}\subset W_{i} .
(ii) There exist a chart W_{i} , an \mathscr{F}-curve \alpha and a fence F:[0, 1]\cross N- M
along \alpha such that (a) \lambda(F)\subset W_{i} , (b) \alpha(0)=x , (c) y and a point, say z , of
\lambda(F) belong to the same plaque of W_{i} , (d) {\rm Max}_{x\in N}(LengthF|[0,1]\cross\{x\})\leq r

and (e) dist (h_{F}(x), h_{F}(z))\geq\epsilon . We denote by N(\mathscr{F}, \mathscr{V}. r, \epsilon) the maximum
cardinality of (\mathscr{F}, \mathscr{V}, r, \epsilon)-separated sets and define h( \mathscr{F}, \mathscr{V}, \epsilon)=\lim\sup

rarrow\infty(1/r) log N(\mathscr{F}. \mathscr{V}, r, \epsilon) . Then by [GLW, Th\’eor\‘eme 3. 4], h(\mathscr{F}, g)>0 if
h(\mathscr{F}, \mathscr{V}, \epsilon)>0 . Therefore in order to prove (3. 5), we have only to show
that h(\mathscr{F}, \mathscr{V}, \epsilon)>0 for some \epsilon .

PROOF OF (3. 5). Let \delta be a strongly expansive constant for \mathscr{F}

Let t , A_{n} , x_{n}^{p} , F_{n}^{p\pm} . \chi and \zeta be as in the proof of (3. 2). Denote by y_{n}^{p} the
point of A_{0} which is joined to x_{n}^{p} by an \mathscr{F}-curve along \mathscr{F}-curves in the
fences F_{i}^{j\pm} . Put E_{n}=\{y_{n}^{p}|1\leq p\leq 2^{n}\} . Then E_{n} is (\mathscr{F}, \mathscr{V}_{r}n(\zeta t+x) , \delta)-se-
parated and has cardinality 2^{n} . From this it follows that h(\mathscr{F}. \mathscr{V}. \delta)>0 ,
completing the proof.
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