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0. Introduction

In this paper, we shall study twisted linear actions of noncompact Lie
groups on complex Grassmannians as the sequel to [3]. The first example
of twisted linear actions on spheres was given by F. Uchida (cf. [5], [6])
and later the author (cf. [3]) gave such an example over complex (or
quaternionic) projective spaces. It seems interesting to examine twisted
linear actions on simply connected compact irreducible symmetric spaces
of rank greater than one as well. The paper is organized as follows;
some preliminary facts are collected to describe complex Grassmannians
for our use in Section 1, the twisted linear actions are dealt with in Sec-
tion 2 and 3.

One of the main results is that any twisted linear actions of compact
Lie groups on complex Grassmannians are equivalent to the linear actions
(cf. Theorem 2. 2). On the contrary we emphasize that, as well as on the
complex projective spaces, there are uncountably many topologically ine-
quivalent twisted linear C^{\omega_{-}}actions of the noncompact Lie group SL(n, C)
on the complex Grassmannian G_{nk,m} of all m-dimensional linear subspaces
in the nk-dimensional complex Enclidean space C^{nk} . where n>mk and k

>1 (cf. Theorem 3. 3). For complex Grassmannians, the author could not
obtain the results corresponding to Theorem 3. 3 and 3. 5 of [3]. For
quaternionic Grassmannians, our methods can not be used, since the
quaternion field is noncommutative. The author does not know how twisted
ed linear actions of Lie groups on quaternionic Grassmannians are defined.

The author wishes to thank Professor Fuichi Uchida and Professor
Shin-ichi Watanabe for valuable suggestions and comments. He also
wishes to express his thanks to the referee for the kind advice.

1. A description of complex Grassmannian

1. 1. Let M(n, m;C) be the set of all complex matrices of type n\cross

m and put M_{n}(C)=M(n, n;C) . For X, Y\in M(n, m;C) , we define their
hermitian inner product by \langle X, Y\rangle=trace(X^{*}Y) and the norm of X by
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||X||=\sqrt{\langle X,X\rangle} . Then C^{n}=M(n, 1;C) is the n-dimensional complex Eu-
clidean space. Set C_{0}^{n}=C^{n}-\{0_{n}\} , C_{0}=C-\{O\}=GL(1, C) , where 0_{n} is the
zero vector of C^{n} We say that X\in M_{n}(C) satisfies the condition ( T) if
\frac{1}{2}(X+X^{*}) is a positive definite hermitian matrix. It is easy to see that

the condition ( T) is equivalent to the following:

(T’) \frac{d}{dt}||\exp(tX)z||>0 for each z\in C_{0}^{n} , t\in R .

If X satisfies ( T’) , then

\lim_{tarrow+\infty}||\exp(tX)z||=+\infty and \lim_{tarrow-\infty}||\exp(tX)z||=0

for each z\in C_{0}^{n} and hence there exists a unique real valued C^{\omega_{-}} function \tau

on C_{0}^{n} such that

||\exp(\tau(z)X)z||=1 for z\in C_{0}^{n} .

The following lemma is proved in [5, Lemma 2. 2].

LEMMA 1. 1. For X\in M_{n}(F) , assume that all the eigenvalues of X
have positive real parts, where F=R, C or H. Then there exists P\in
GL(n, F) such that P^{-1}XP satisfies the condition ( T) .

1. 2. For positive integers n . k such that n>k , set
\Lambda(n, k)=\{\alpha=(\alpha_{1}, \cdots, \alpha_{k})\in Z^{k}|1\leqq\alpha_{1}<\cdots<\alpha_{k}\leqq n\} .

By introducing the lexicographic order in \Lambda(n, k) , identify \Lambda(n, k) with
the orderd set \{ 1, \cdots , N\} of positive integers 1\leqq m\leqq N , where

N=(\begin{array}{l}nk\end{array})

throughout Section 1 and 2. We define complex analytic mappings \lambda^{k}

GL(n, C)arrow GL(N, C) , \mu_{k} M(n, k;C)arrow C^{N} by

(\lambda^{k}A)_{a,\rho}=\det(A(\alpha, \beta)) , (\mu_{k}Z)_{a}=\det(Z(\alpha)) ,

where A=(a_{p,q})\in GL(n, C) , Z=(z_{p,j})\in M(n, k;C);\alpha=(\alpha_{1},\cdots, \alpha_{k}) , \beta=(\beta_{1} ,
\ldots , \beta_{k} ) \in\Lambda(n, k);(\lambda^{k}A)_{a,\rho} , (\mu_{k}Z)_{a} are the (\alpha, \beta)-component of \lambda^{k}A\in

GL(N, C) , the \alpha-th component of \mu_{k}Z\in C^{N},\cdot respectively, and A(\alpha, \beta)=

(a_{a\iota’\beta j}) , Z(\alpha)=(Z_{a_{i},j})\in M_{k}(C) are square submatrices of A, Z, respective-
ly. Moreover we define a C-linear mapping \lambda_{k} M_{n}(C)arrow M_{N}(C) by
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(\lambda_{k}X)_{a,\beta}=\{_{0}^{\sum_{i=1}^{k}x_{a_{i},\beta_{i}}}(-1)^{i+j}x_{a_{i},\rho_{j}} (\alpha=\beta)otherwise,(\begin{array}{lllllll} \alpha_{i}\neq\beta_{j} (\alpha_{1}, \cdots \cdots \alpha_{i-1},\alpha_{i+1}, \ldots, \alpha_{k}) =(\beta_{1}, ’ \ldots, \beta_{j-1},\beta_{j+1}, \cdots \cdots, \beta_{k}\end{array})

where X=(x_{p,q})\in M_{n}(C) : \alpha=(\alpha_{1},\cdots, \alpha_{k}) , \beta=(\beta_{1},\cdots, \beta_{k})\in\Lambda(n, k) and
(\lambda_{k}X)_{a,\beta} is the (\alpha, \beta)-component of \lambda_{k}X\in M_{N}(C) . There is the following
lemma.

LEMMA 1. 2. i ) \lambda^{k} is a matrix representation of the Lie group
GL(n, C) .

ii) \mu_{k}(AZg)=(\lambda^{k}A)(\mu_{k}Z)\det g\in C^{N} for A\in GL(n, C) , Z\in

M(n, k;C) and g\in GL(k, C) .
iii) For Z, W\in M(n, k : C) such that Z^{*}Z , W^{*}W\in GL(k, C) , if

there is a certain element \zeta\in C_{0} such that \mu_{k}W=(\mu_{k}Z)\zeta , then there exists
some matrix g\in GL(k, C) such that W=Zg and \zeta=\det g .

iv) \langle\mu_{k}Z, \mu_{k}W\rangle=\det(Z^{*}W) for Z, W\in M(n, k ; C) .
v) \lambda_{k} is the differential representation of \lambda^{k} . i. e. ,

\exp(\theta\lambda_{k}X)=\lambda^{k}(\exp(\theta X))\in GL(N, C)

for \theta\in R, X\in M_{n}(C) .
vi) \lambda_{k}(P-1XP)=(\lambda^{k}P)^{-1}(\lambda_{k}X)\lambda^{k}P\in M_{N}( C) for X\in M_{n}(C) , P\in

GL(n, C) .
vii) \lambda^{k}(A^{*})=(\lambda^{k}A)^{*}\in GL(N, C), \lambda_{k}(X*)=(\lambda_{k}X)^{*}\in M_{N}( C) for A\in

GL(n, C) , X\in M_{n}(C) .
v\ddot{m}) If X\in M_{n}(C) is a positive definite hermitian matrix, then \lambda_{k}X\in

M_{N}(C) is also a positive definite hermitian matrix.

PROOF, i ) and ii ) are proved in [4, pp. 97-98]. iii ) and iv ) are
proved in [4, pp. 258-259 and pp. 78-80], respectively. Now consider v ).

We have only to show

\lambda_{k}X=(\frac{d}{d\theta}\lambda^{k}(\exp\theta X))_{\theta=0}=(\frac{d}{d\theta}\lambda^{k}(I_{n}+\theta X))_{\theta=0} .

Hence it needs to be proved that

( \lambda_{k}X)_{a,\beta}=(\frac{d}{d\theta}\det((I_{n}+\theta X)(\alpha, \beta)))_{\theta=0}

for \alpha=(\alpha_{1},\cdots, \alpha_{k}) , \beta=(\beta_{1},\cdots, \beta_{k})\in\Lambda(n, k) , where X=(x_{p,q})\in M_{n}(C) ,
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(\lambda_{k}X)_{a,\beta} is the (\alpha, \beta)-component of \lambda_{k}X\in M_{N}(C) and (I_{n}+\theta X)(\alpha, \beta)=

(\delta_{a_{i},\beta j}+\theta x_{a_{i}.\beta_{j}})\in M_{k}(C) . The following equality holds:

( \frac{d}{d\theta}\det((I_{n}+\theta X)(\alpha, \beta)))_{\theta=0}=tr(^{t}(\Delta(I_{n}(\alpha, \beta)))X(\alpha, \beta))

where the (i, j)-component of \Delta(I_{n}(\alpha, \beta))\in M_{k}(C) is the (i, j)-cofactor of
I_{n}(\alpha, \beta)=(\delta_{a_{i},\beta j})\in M_{k}(C)(1\leqq i, j\leqq k) and X(\alpha, \beta)=(x_{a_{i},\rho_{j}})\in M_{k}(C)(1\leqq i, j\leqq

k) . Then it is easily shown that
tr(^{t}(\Delta(I_{n}(\alpha, \beta)))X(\alpha, \beta))=(\lambda_{k}X)_{a,\beta}

for \alpha , \beta\in\Lambda(n, k) . Thus v) has been proved, vi ) follows immediately
from i ) and v ). vii ) follows directly from the definitions of \lambda^{k} and \lambda_{k} .
viii) is easily shown by the definition of \lambda_{k} , vi ) and vii). q . e . d .

1. 3. Set

V_{\acute{n},k}=\{Z\in M(n, k;C)|Z^{*}Z\in GL(k, C)\} ,

V_{n,k}=\{Z\in M(n, k;C)|Z^{*}Z=I_{k}\} ,

W_{\acute{n},k}=\mu_{k}(V_{n,k}’) , W_{n,k}=\mu_{k}(V_{n,k}) .

Then

\mu_{k} V_{\acute{n},k}arrow W_{\acute{n},k} , \mu_{k} V_{n,k}arrow W_{n,k}

are principal fibrations whose structure groups are SL(k, C) , SU(k) ,
respectively. It follows from iv ) of Lemma 1. 2 that

(1. 1) W_{\acute{n}.k}\subset C_{0}^{N}, W_{n,k}=S^{2N-1}\cap W_{\acute{n},k}

where S^{2N-1}=\{z\in C^{N}|||z||=1\} . For X\in M_{n}(C) , we define a real analytic
right C_{0^{-}}action \alpha_{X} : W_{\acute{n},k}\cross C_{0}arrow W_{\acute{n},k} by

\alpha_{X}(\mu_{k}Z, \zeta)=\exp((\log|\zeta|)(\lambda_{k}X))(\mu_{k}Z)\frac{\zeta}{|\zeta|} ,

where Z\in V_{n,k}’\tau It needs to be checked that \alpha_{X}(\mu_{k}Z, \zeta)\in W_{\acute{n},k} . For some
matrix g\in GL(k, C) such that \det g=\zeta/|\zeta| , it follows from ii ) and v) of
Lemma 1. 2 that \alpha_{X}(\mu_{k}Z, \zeta)=\mu_{k}(\exp((\log|\zeta|)X)Zg)\in W_{\acute{n},k} . Now, for the
above matrix X\in M_{n}(C) , assume that all the eigenvalues of X have posi-
tive real parts. Then by Lemma 1. 1, there exists P\in GL(n, C) such that
X_{0}=P^{-1}XP satisfies the condition ( T) . By v\ddot{m}) of Lemma 1. 2, one sees
easily that \lambda_{k}X_{0} satisfies also the condition ( T) . For this matrix X_{0} , we
define C^{\omega}-diffeomorphisms \Phi_{\lambda_{h}X_{0}} , \Psi_{\lambda pX_{0}} : C_{0}^{N}arrow C_{0}^{N} and a real analytic
mapping \Phi_{X_{0}} : V_{\acute{n},k}arrow V_{\acute{n},k} (unless k=1 , this is not a homeomorphism) by
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\Phi_{\lambda_{k}X_{0}}(z)=(\exp((\log||z||)(\lambda_{k}X_{0}))z/||z|| ,
\Psi_{\lambda pX_{0}}(w)=(\exp(\tau(w)\lambda_{k}X_{0}))we^{-\tau(\tau\nu)} ,

\Phi_{Xo}(Z)=(\exp((\frac{1}{2}\log(\det(Z^{*}Z)))X_{0}))Z(Z^{*}Z)^{-1/2}-

Then it is verified directly from their definitions that \Phi_{\lambda_{k}X_{0}}^{-1}=\Psi_{\lambda_{k}X_{0}} . More-
over, it is noted that

(1. 2) \mu_{k}\circ\Phi_{X_{0}}=\Phi_{\lambda_{h}X_{0}}\circ\mu_{k} .

This follows from ii ) iv ) and v) of Lemma 1. 2. Hence one has that
\Phi_{\lambda_{k}X_{0}}(W_{n,k}’)\subset W_{n,k}’ . It is easily proved that W_{n,k}’\supset\Psi_{\lambda_{k}X_{0}}(W_{n,k}’) . There-
fore \Phi_{\lambda_{k}Xo} , \Psi_{\lambda_{k}X_{0}} are C^{\omega}-diffeomorphisms of W_{n,k}’ and it is also true that
\Phi_{\lambda_{k}X_{0}}^{-1}=\Psi_{\lambda_{k}X_{0}} on W_{n,k}’ .

For the above matrices P and X_{0} , let us define a C^{\omega_{-}}diffeomorphism
F_{\lambda_{k}X} of C_{0}^{N} and a real analytic mapping F_{X} of V_{n,k}’ by

F_{\lambda_{k}X}=L_{\lambda^{k}P}\circ\Phi_{\lambda_{k}X_{0}} , F_{X}=L_{P}\circ\Phi_{X_{0}} ,

where L_{\lambda^{k}P}(z)=(\lambda^{k}P)z for z\in C_{0}^{N} and L_{P}(Z)=PZ for Z\in V_{n,k}’ . The map-
pings F_{\lambda_{k}X} and F_{X} depend on a choice of P. By (1. 2) and that \mu_{k}\circ L_{P}=

L_{\lambda^{k}P}\circ\mu_{k} , it is also true that

(1. 3) \mu_{k}\circ F_{X}=F_{\lambda_{k}X}\circ\mu_{k} .

Hence F_{\lambda_{k}X} is a C^{\omega_{-}}diffeomorphism of W_{\acute{n},k} and it holds that F_{\lambda_{k}X}^{-1}=\Psi_{\lambda_{k}X_{0}}\circ

L_{(\lambda^{k}P)^{-1}} on W_{\acute{n},k} . We have the commutative diagram:

W_{\acute{n},k}\cross C_{0} W_{\acute{n},k}

\alpha_{In}

|

(1. 4) F_{\lambda_{k}X}\cross 1

\downarrow

W_{\acute{n},k}\cross C_{0} Tl
\alpha_{X}

F_{\lambda_{k}X}

We denote the orbit space of the action \alpha_{X} by G_{n,k}^{X} .
If we choose the identity matrix as X, then the orbit G_{n,k}^{I_{n}} is the usual

complex Grassmannian G_{n,k} of all k-dimensional linear subspaces of C^{n} .

In fact, the C_{0}-action \alpha_{X} : W_{\acute{n},k}\cross C_{0}arrow W_{\acute{n},k} is extended to a real analytic
right C_{0}-action \alpha_{X} : C_{0}^{N}\cross C_{0}arrow C_{0}^{N}. If the matrix X is the identity matrix
I_{n} , then \alpha_{X}=\alpha_{In} is the usual right C_{0}-action on C_{0}^{N}. Hence its orbit space
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is the usual (N-1)-dimensional complex projective space P_{N-1}(C) . Then
the orbit space G_{n,k}^{In} of \alpha_{In} : W_{\acute{n},k}\cross C_{0}arrow W_{\acute{n},k} is an image of the Pl\"ucker
embedding of the usual complex Grassmannian G_{n,k} into P_{N-1}(C) (cf. [1,
pp. 209 -211]). Thus G_{n,k}^{In} may be identified with G_{n,k} .

Let [z]_{X}=[\mu_{k}Z]_{X} denote the \alpha_{X^{-}}orbit through z=\mu_{k}Z\in W_{\acute{n},k} , where Z
\in V_{\acute{n},k} and \pi_{X} denote the canonical projection of W_{n,k}’ onto G_{n,k}^{X} . Then
there is the commutative diagram:

F_{\lambda_{k}X}

W_{\acute{n}.k} W_{\acute{n},k}

(1. 5) \downarrow\pi

\tilde{F}_{\lambda_{k}X}

\downarrow\pi_{X}

G_{n,k} G_{\acute{n},k} ,

where \pi=\pi_{In},\tilde{F}_{\lambda_{k}X} is a homeomorphism defined by \tilde{F}_{\lambda_{k}X}([\mu_{k}Z])=

\overline{F}_{\lambda_{k}X}([_{\lambda_{k}X}(\mu_{k}Z)]_{X} and [\mu_{k}Z]=[\mu_{k}Z]_{In} for Z\in V_{n,k}’ . Now we introduce a
C^{\omega_{-}}manifold structure to G_{n,k}^{X} induced from the usual C^{\omega}-manifold struc-
ture of G_{n,k} by the homeomorphism \tilde{F}_{\lambda_{k}X} : G_{n,k}arrow G_{n,k}^{X} and regard G_{n,k}^{X} as
a C^{\omega_{-}}manifold with this structure. Then local expressions of \tilde{F}_{\lambda_{k}X} :
G_{n.k}arrow G_{n,k}^{X} are identity mappings of open sets in the k(n-k)-dimen-
sional complex Euclidean space C^{k(n-k)} . Hence the homeomorphism \tilde{F}_{\lambda_{k}X} :
G_{n,k}arrow G_{n,k}^{X} is a C^{\omega_{-}}diffeomorphism. It follows from the commutative
diagram (1. 5) that \pi_{X}=\tilde{F}_{\lambda_{k}X}\circ\pi\circ F_{\lambda_{k}X}^{-1} . Thus \pi_{X} is a C^{\omega}-mapping. Since
\pi:W_{\acute{n},k}- G_{n,k} is a principal fibration induced from the Hopf fibration \pi :
C_{0}^{N}arrow P_{N-1}(C) by the Pl\"ucker embedding, \pi_{X} : W_{\acute{n},k}– G_{n,k}^{X} is also a prin-
cipal fibration whose structure group is C_{0}=GL(1, C) .

2. Twisted linear actions on complex Grassmannians

2. 1. Let G be a Lie group, \rho:Garrow GL(n, C) a matrix representa-
tion and X a square C-matrix of degree n whose all eigenvalues have
positive real parts. We call (\rho, X) a TC -pair of degree n , if \rho(g)X=

X\rho(g) for each g\in G . For TC-pair (\rho, X) of degree n , define a C^{\omega}-map-
ping \xi:G\cross G_{n,k}^{X}arrow G_{n,k}^{X} by

\xi(g, [\mu_{k}Z]_{X})=[\mu_{k}(\rho(g)Z)]_{X} ,
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where Z\in V_{n,k}’ . It is easily seen that \xi is a real analytic G-action on
G_{n,k}^{X} . We call \xi=\xi_{(\rho,X)} a twisted linear action G on G_{n,k}^{X} determined by
TC-pair (\rho, X) and we say that \xi is associated to the matrix representa-
tion \rho . Moreover a real analytic G-action \xi^{0} : G\cross G_{n,k}arrow G_{n,k} is defined
by

\xi^{0}(g, [\mu_{k}Z])=[F_{\lambda_{k}X}^{-1}(\lambda^{k}(\rho(g))F_{\lambda_{k}X}(\mu_{k}Z))]

=[\Psi_{\lambda_{k}X_{0}}(\lambda^{k}(P^{-1}\rho(g)P)\Phi_{\lambda_{k}X_{0}}(\mu_{k}Z))]

=[\Psi_{\lambda_{k}X_{0}}(\mu_{k}(P^{-1}\rho(g)P\Phi_{X_{0}}(Z)))] ,

where Z\in V_{\acute{n},k} , P\in GL(n, C) and X_{0}=P^{-1}XP satisfies the condition ( T) .
The the following diagram is commutative:

\xi^{0}

G\cross G_{n,k} G_{n,k}

|

(2. 1) 1\cross\tilde{F}_{\lambda_{k}X}

\downarrow

\xi

G\cross G_{n,k}^{X}

\overline{F}_{\lambda_{k}X}

G_{n.k}^{X} .

We call also \xi^{0}=\xi_{(\rho,X)}^{0} a twisted linear action of G on G_{n,k} determined by
the TC-pair (\rho, X) and we say that \xi^{0} is associated to the matrix repre-
relation \rho .

2. 2. For a given Lie group G, we introduce an equivalence relation
on TC-pairs. Let (\rho, X) and (\sigma, Y) be TC-pairs of degree n . Note
that \rho , \sigma:Garrow GL(n, C) are matrix representations and X, Y are square
C-matrices of degree n whose all eigenvalues have positive real parts.
We say that (\rho, X) is algebraically equivalent to (\sigma, Y) , if there exist A\in

GL(n, C) , a positive real number c and a real number d satisfying

(2. 2) Y=cAXA^{-1}+\sqrt{-1}dI_{n}, \sigma(g)=A\rho(g)A^{-1}

for each element g\in G . We say that (\rho, X) is C^{r}- equivalent to (\sigma, Y) , if
there exists a C^{r}-diffeomorphism f : G_{n,k}^{X}arrow G_{n,k}^{Y}(r=0,1,2^{ },\cdots, \infty, \omega)

such that the following diagram is commutative:
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\xi_{(\rho,X)}

G\cross G_{n,k}^{X} G_{n,k}^{X}

(2.3) 1\cross f\downarrow| \downarrow f

\xi_{(\sigma,Y)}

G\cross G_{n,k}^{Y} G_{n,k}^{Y} .

We call f a G-equivariant Cr -diffeomorphism. The following results are
proved similarly as in [3, Lemma 1. 2, Theorem 1. 4].

LEMMA 2. 1. If (\rho, X) is algebraically equivalent to (\sigma, Y) , then (\rho,
X) is C^{\omega_{-}} equivalent to (\sigma, Y) .

THEOREM 2. 2. Let G be a compact Lie group and \rho : Garrow
GL(n, C) a matrix representation. Then any TC -pair (\rho, X) is C^{\omega}- equiv-
alent to (\rho, I_{n}) . In other words, any twisted linear action of G on G_{n,k}

associated to \rho is equivariantly C^{\omega_{-}}diffeomo7phic to the linear action of G
on G_{n,k} associated to \rho .

3. Example

In this section, We shall study twisted linear actions of G=SL(n, C)
on the complex Grassmannian G_{nk,m} (n>mk and k>1 ) associated to a
representation \rho=\rho_{n}\otimes I_{k} , that is, \rho(A)=A\otimes I_{k} for each element A\in G .

3. 1. For A\in M_{n}(C) , B\in M_{k}(C) , let A\otimes B stand for the Kronecker
product which has the form

A\otimes B=

b_{11}A\cdots\cdots\cdots\cdots\cdots\cdots\cdots b_{1k}A

: :: :: :: :: :: :
.\cdot.\cdot.\cdot

:
::

b_{k1}A\cdots\cdots\cdots\cdots\cdots\cdots\cdots b_{kk}A

\in M_{nk}(C) .

We obtain the following lemma.

LEMMA 3. 1. Let \hat{K} be a square C-matrix of degree nk. Then the
commutativity \hat{K}(A\otimes I_{k})=(A\otimes I_{k})\hat{K} holds for each \^A SL(n, C) if and
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only if \hat{K}=I_{n}\otimes K, where K is a certain square C-matrix of degree k. It
is noted that all the eigenvalues of I_{n}\otimes K have positive real parts if and
only if all the eigenvalues of K have positive real parts.

By this lemma, for \hat{K}\in M_{nk}(C) whose all eigenvalues have positive
real parts, (\rho_{n}\otimes I_{k},\hat{K}) is a TC-pair if and only if \hat{K}=I_{n}\otimes K for K\in

M_{k}(C) whose all eigenvalues have positive real parts. Furthermore
TC-pairs (\rho_{n}\otimes I_{k}, I_{n}\otimes K) and (\rho_{n}\otimes I_{k}, I_{n}\otimes L) are algebraically equivalent
if and only if there exist X\in GL(k, C) , a positive real number c and a
real number d satisfying L=cXKX^{-1}+\sqrt{-1}dI_{k} .

3. 2 Let K be a square C-matrix of degree k whose all eigenvalues
have positive real parts. Denote by \zeta_{K} the twisted linear SL(n, C)-action
on the complex Grassmannian G_{nk,m}^{K} determined by the TC -pair (\rho_{n}\otimes I_{k},

I_{n}\otimes K) , where \hat{K}=I_{n}\otimes K. From now on, assume that n>mk and k>1 .

We define a matrix J_{n,m}^{(i)}\in M(n, m;C) by

J_{n,m}^{(i)}=(\begin{array}{l}O_{i}I_{m}O_{\acute{i}}\end{array}) (i=1,\cdots,k)

where 0_{i}\in M(m(i-1), m:C) and 0 i’\in M (n-mi,m;C) are zero
matrices. Moreover we set

Z_{0}=(\begin{array}{l}J_{n,m}^{(1)}\vdots J_{nm}^{(k)}\end{array})

,

\in V_{\acute{n}k,m} .

With respect to the twisted linear action \zeta_{K} , let I(K) denote the isotropy
group at the point

[\mu_{m}Z_{0}]_{R}\in G_{nk,m}^{K}

and O(K) denote the orbit through this point. Define an injective
homomorphism \phi_{K} : GL(m, C)arrow GL(mk, C) by

\phi_{K}(g)=h\otimes\exp(\theta^{t}K) ,

where h=|\det g|^{-1/m}g , \theta=\frac{1}{m}\log|\det g| . Then the following lemma is

obtained.

LEMMA 3. 2. Suppose that n>mk>m . Then
i) the isotropy group I(K) is written in the form
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I(K)=\{(\cdots\phi_{K}\ldots(..g.)\ldots..\cdot.\cdot.\cdot.\cdot.\cdot.\cdots.*\ldots)0.*\in SL(n, C);g\in GL(m, C)\} ;

ii) the orbit O(K) is equal to

\{[\mu_{m}((A\otimes I_{k})Z_{0})]_{\hat{K}}\in G_{nk,m}^{K}|A\in SL(n, C)\} :

iii) the orbit O(K) is an open dense subset of G_{nk,m}^{\hat{K}} .

3. 3. The purpose of this section is to prove the following theorem.

THEOREM 3. 3. Assume that n>mk>m . Then two of TC -pairs in
the form (\rho_{n}\otimes I_{k}, I_{n}\otimes K) algebraically equivalent if and only if they are
C^{0_{-}} equivalent

REMARK. This theorem implies that if, for any positive real number
c and any real number d , the matrix cK+\sqrt{-1}dI_{k} is not similar to L,
then \zeta_{K} is not C^{0_{-}}equivalent to \zeta_{L} , where K, L\in M_{k}(C) whose all
eigenvalues have positive real parts. Therefore there are uncountably
many topologically inequivalent C^{\omega_{-}} actions of the noncompact Lie group
SL(n, C) on the complex Grassmannian G_{nk,m}(n>mk>m) .

First we prepare two lemmas for the proof.

LEMMA 3. 4. For K\in M_{k}(C) whose all eigenvalues have positive real
parts, the homomorphism \phi_{K} ; GL(m, C)arrow GL(mk, C) defined in Subsec-
tion 3. 2 is an intO-homeomorphism.

PROOF. Set

H(m)=\{g\in GL(m, C);|\det g|=1\} .

Then H(m) is a closed subgroup of GL(m, C) . Define an isomorphism \phi_{m}

of a Lie group H(m)\cross R onto GL(m, C) by \phi_{m}(h, \theta)=e^{\theta}h . Moreover
define an injective homomorphism \tilde{\phi}_{K} ; H(m)\cross R-H(mk)\cross R by

\tilde{\phi}_{K}(h, \theta)=(h\otimes\exp(\theta^{t}M), a\theta) ,

where a= \frac{1}{k}({\rm Re}(trK)) , M=K-aI_{k} . Then it is easy to see that \tilde{\phi}_{K} is an
int0-homeomorphism and the following diagram is commutative;
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\tilde{\phi}_{K}

H(m)\cross R H(mk)\cross R

\downarrow\phi_{m} \downarrow\phi_{mk}

\phi_{K}

GL(m, C) GL(m, C),

Hence \phi_{K} is an int0-homeomorphism. q. e . d .
Set

\mathfrak{s}1(m, C)=\{X\in M_{m}(C)|trX=0\} .

We regard \mathfrak{s}\mathfrak{l}(m, C) as a real Lie algebra. For each element A\in \mathfrak{s}\mathfrak{l}(m, C) ,

define an automorphism \tau_{A} of \mathfrak{s}\mathfrak{l}(m, C) by \tau_{A}(X)=AXA^{-1} , where X\in \mathfrak{s}\mathfrak{l}(m ,
C) . Moreover define two automorphisms \gamma , \chi of \mathfrak{s}\mathfrak{l}(m, C) by \gamma(X)=-{}^{t}X ,
\chi(X)=\overline{X} , where X\in \mathfrak{s}\mathfrak{l}(m, C) . Then it is easy to see that these automor-
phisms satisfy the following relations:

7^{\circ\iota_{A}=}\mathcal{L}^{l}A^{-\iota O}\gamma , \chi\circ\iota_{A}=\iota_{\overline{A}}\circ\chi , \gamma\circ\chi=\chi\circ\gamma , \gamma^{2}=\chi^{2}=1 ,

where A\in SL(m, C) . Denote by A_{R}(\mathfrak{s}\mathfrak{l}(m, C)) the group of all automor-
phisms of \mathfrak{s}\mathfrak{l}(m, C) . Shin-ichi Watanabe pointed out the following fact to
the author.

LEMMA 3. 5. Each element of A_{R}(\mathfrak{s}\mathfrak{l}(m, C))(m\geqq 2) is equal to one
of

\iota_{A} , \gamma\circ\iota_{A} , \chi\circ\iota_{A} , \gamma\circ\chi\circ\iota_{A}

for some element \^A SL(m, C) .

The author learned its proof from him. We refer to [2] for detail.

PROOF OF THEOREM 3. 3. Since the only-if part follows immediately
from Lemma 2. 1, we have only to show the if part. For K, L\in M_{k}(C)

whose all eigenvalues have positive real parts, assume that f:G_{nk,m}^{K}arrow

G_{nk,m}^{L} is an SL(n, C)-equivariant homeomorphism between twisted linear
actions \zeta_{K} and \zeta_{L} , where n>mk>m . Since f maps the orbit O(K) onto
the orbit O(L) , the isotropy subgroup I(K) is conjugate to the isotropy
subgroup I(L) by some element T. namely I(L)=TI(K)T^{-1} in SL(n, C) .
Then it is easily shown that
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T=(\begin{array}{ll}C EO D\end{array})

for some matrices C\in GL(mk, C) , D\in GL(n- mk, C) and E\in

M( mk, n-mk :C). Now we assign to each matrix g(\in GL(m, C)) a
matrix g’(\in GL(m, C)) such that C\phi_{K}(g)C^{-1}=\Phi_{L}(g’) , where C is the
above one. This correspondence defines a homomorphism q of GL(m, C)
onto itself. Moreover q must be a homeomorphism of GL(m, C) be
Lemma 3. 4. Therefore q is an automorphism of the Lie group GL(m, C) .

Each element g\in GL(m, C) is written in the form g=\exp(X+zI_{m}) ,

where X\in 8\mathfrak{l}(m, C) , z=x+\sqrt{-1}y\in C(x, y\in R) . It holds that q(\exp Y)=

\exp(dq(Y)) for each matrix Y\in \mathfrak{g}\mathfrak{l}(m, C)=M_{m}(C) , where dq is the
differential of the automorphism q and an automorphism of the real Lie
algebra \mathfrak{g}\mathfrak{l}(m, C)=M_{m}(C) . It is well known that \mathfrak{s}\mathfrak{l}(m, C)=[\mathfrak{s}\mathfrak{l}(m, C) ,
\mathfrak{s}\mathfrak{l}(m, C)] . Thus it is easy to see that dq(\mathfrak{s}\mathfrak{l}(m, C))\subset \mathfrak{s}\mathfrak{l}(m, C) . On the
other hand, it is easily shown that dq maps the center of \mathfrak{g}\mathfrak{l}(m, C)=M_{m}(C)

into itself. Hence there exist some element \eta\in A_{R}(\mathfrak{s}\mathfrak{l}(m, C)) and a certain
automorphism \tilde{\omega} of the real Lie algebra C such that (dq)(X+zI_{m})=\eta(X)
+\tilde{\omega}(z)I_{m} for each matrix X\in \mathfrak{s}\mathfrak{l}(m, C) , each element z\in C . Therefore it
is obtained that

q(\exp(X+zI_{m}))=\exp(\eta(X)+\tilde{\omega}(z)I_{m})

for each matrix X\in \mathfrak{s}\mathfrak{l}(m, C) , each element z\in C . Hence it follows from
the definition of q that

C(\phi_{K}(\exp(X+zI_{m}))C^{-1}=\phi_{L}(\exp(\eta(X)+\tilde{\omega}(z)I_{m}))

for each matrix X\in \mathfrak{s}\mathfrak{l}(m, C) , each element z\in C .
Since \tilde{\omega} is a linear bijection of the 2-dimensional real vector space C ,

it is given by the form

\tilde{\omega}(z)=ax+cy+\sqrt{-1}(bx+dy)

(z=x+\sqrt{-1}y\in Cjx, y\in R) , where a , b , c , d\in R satisfy that ad-bc\neq 0 .
Hence we obtain that

C(\exp(X+\sqrt{-1}yI_{m})\otimes\exp(x^{t}K))

=(\exp(\eta(X)+\sqrt{-1}(bx+dy)I_{m})\otimes\exp((ax+cy)^{t}L))C

for each matrix X\in \mathfrak{s}\mathfrak{l}(m, C) , arbitrary element x , y\in R . By
differentiating both sides of this equality, it is obtained that

C(X\otimes I_{k})+xC(I_{m}\otimes^{t}K)+\sqrt{-1}yC=(\eta(X)\otimes I_{k})C

+x(I_{m}\otimes(a^{t}L+\sqrt{-1}bI_{k}))C+y(I_{m}\otimes(c^{t}L+\sqrt{-1}dI_{k}))C
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for each matrix X\in \mathfrak{s}\mathfrak{l}(m, C) , arbitrary element x , y\in R .
Thus the equality:

(3. 1) C(I_{m}\otimes^{t}K)=(I_{m}\otimes(a^{t}L+\sqrt{-1}bI_{k}))C

holds and it follows that

(3. 2) C(X\otimes I_{k})=(\eta(X)\otimes I_{k})C

for each matrix X\in \mathfrak{s}\mathfrak{l}(m, C) . Moreover it is also seen that c=0 and d=
1 .

By Lemma 3. 5, the equality (3. 2) holds for each matrix X\in \mathfrak{s}\mathfrak{l}(m, C)

if and only if there exist matrices A\in SL(m, C) , B\in GL(k, C) such that \eta

=\iota_{A} and C=A\otimes B . Hence we obtain

L=( \frac{1}{a})tB^{-1}K^{t}B+\sqrt{-1}(-\frac{b}{a})I_{k}

from (3. 1). Therefore TC-pairs (\rho_{n}\otimes I_{k}, I_{n}\otimes K) and \rho_{n}\otimes I_{k} , I_{n}\otimes L) are
algebraically equivalent, q . e . d .
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