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1. Introducion

The qualitative theory of foliations has been developed for foliations of
codimension one (see Sacksteder [7], Cantwell-Conlon [1] and Hector [4]

for example). Now we intend to study qualitative properties of foliations
of higher codimensions. Note that all the non-singular dynamical systems
can be considered as foliations and there are numberless researches on the
qualitative theory of dynamical systems. Such researches are not our
intention. So we must make our purpose more concrete. The most typi-
cal result in the qualitative theory of codimension one foliations is the
following theorem.

THEOREM (Sacksteder’s Theorem, see Sacksteder [7]). Let \mathscr{T} be a

codimension one C^{2} foliation of a closed manifold M, and \mathscr{M}\subset M an excep-
tional minimal set with respect to \mathscr{F} Then there exists a leaf F of \mathscr{F}

contained in \mathscr{M} such that F has a contracting element in its linear
holonomy group LHol(F).

We demand that our intended study should contain an analogy of the
above theorem, and look for an appropriate and simple category of folia-
tions on which we should work. A natural idea is to consider foliations
with transverse geometric structure (see Godbillon [3] for example). The
automorphism groups of the appropriate geometric structures are requested
ed to contain contracting elements for an expected analogy of Sacksteder’s
theorem. These considerations guide us to investigate foliations with
transverse similarity structure (see Ghys [2] and Nishimori [6]).

In this paper, we are going to treat similarity pseudogroups \Gamma on R^{q}

in place of codimension q foliations \mathscr{F} with tranverse similarity structure.
As is well known, there exist natural correspondences between the terms
in the qualitative theories of these objects. For example, one considers
\Gamma-orbits in place of leaves of \mathscr{F}

, and the stabilizer at a point in a \Gamma-orbit
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in place of the holonomy group of a leaf of \mathscr{F}. It is easy to translate
results on pseudogroups to those on foliations. The reason why we treat
pseudogroups is to avoid the ambiguities completely and to make the skel-
eton of our arguments simple and apparent.

The plan of this paper is as follows. In \S 2 we give our formulation
for similarity pseudogroups. In \S 3, we introduce a concept “

\Gamma-orbits with
bubbles ” and state our main theorem (Theorem 3.3), which is an analogy
of Sacksteder’s theorem. In \S 4, we prove this theorem.

2. Similarity pseudogroups and the qualitative theory

In this section, we give a convenient formulation of similarity pseud0-
groups for our purpose. This formulation makes the arguments simple
and avoids the ambiguities (for example, those on the domains of ele-
ments of pseudogroups) but does not lose the generality of phenomena in
the view point of the qualitative theory.

DEFINITION 2. 1. (1) Denote by \Gamma_{q,+}^{s1m,*} the set of homeomorphisms h :
Uarrow V satisfying the following conditions:

(a) The domain U and the range V of h are non-empty, bounded,
convex, open subsets of R^{q} . (We denote D(h)=U and R(h)=
V.)

(b) There exists an orientation preserving similarity transforma-
tion \overline{h}:R^{q}arrow R^{q} such that \overline{h}(U)=V and \overline{h}|_{U}=h . (Such \overline{h} is
determined uniquely by h and we call \overline{h} the extension of h. )

(2) Let \Gamma_{q,+}^{s1m}=\Gamma_{q,+}^{s1m,*}\cup\{id_{R^{q}}, id_{\emptyset}\} , where ide is the unique transformation on
the empty set \emptyset . (We bring in the transformation id_{\mathfrak{g}} in order that we can
cosider the composition for any paris of elements of pseudogroups and
make the description simple.)

DEFINITION 2. 2. (1) For f, g\in\Gamma_{q,+}^{s1m} , let U=g-1(R(g)\cap D(f)) and V
=f(R(g)\cap D(f)) , and difine the composition f\circ g:Uarrow V by

(f\circ g)(x)=f(g(x)) for all x\in U .

(2) For f\in\Gamma_{q,+}^{s1m} , let U=R(f) and V=D(f) , and define the inverse f^{-1} : U
arrow V by

f^{-1}(f(x))=x for all x\in V1

(Note that if f, g\in\Gamma_{q,+}^{s1m} then f\circ g , f^{-1}\in\Gamma_{q,+}^{s1m}. )

DEFINITION 2. 3. A subset \Gamma of \Gamma_{q,+}^{s1m} is called a pseudogroup if it
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satisfies the following conditions:

(a) id_{R^{q}}\in\Gamma r

(b) If f, g\in\Gamma . then f\circ g\in\Gamma .
(c) If f\in\Gamma , then f^{-1}\in\Gamma

(Noe that \Gamma_{q,+}^{s1m} is itself a pseudogroup.)

DEFINITION 2. 4. Let \Gamma 0 be a subset of \Gamma_{q,+}^{s1m,*} .
(1) \Gamma 0 is called symmetric if h\in\Gamma_{0} implies h^{-1}\in\Gamma_{0} .
(2) Denote by \langle\Gamma_{0}\rangle the intersection of all the pseudogroups \Gamma\subset\Gamma_{q,+}^{s1m} which
contain \Gamma_{0} . (Cleary \langle\Gamma_{0}\rangle is a pseudogroup.) We call \langle\Gamma_{0}\rangle the pseudO-
group generated by \Gamma_{0} .

Hereafter let \Gamma_{0} be a symmetric subset of \Gamma_{q,+}^{s1m,*} . and \Gamma=\langle\Gamma_{0}\rangle .

DEFINITION 2. 5. (1) Denote by W(\Gamma_{0}) the set of words with \Gamma 0 as
the alphabet. In order to distinguish a word from a composition, we pre-
fer to write a word w\in W(\Gamma_{0}) in such a way as w=(h_{m},\cdots,h_{1}) rather
than w=h_{m}\cdots h_{1} . In this way, we identify W(\Gamma_{0}) with the disjoint union
II \infty n=o(\Gamma_{0})^{m} , where (\Gamma_{0})^{m} denotes the product of m-copies of \Gamma 0 and (\Gamma_{0})^{0} is
the singleton consisting of the empty word ( ) .
(2) For w=(h_{m}, \cdots,h_{1})\in(\Gamma_{0})^{m}(m\geqq 1) , let g_{w}=h_{m}\circ\cdots\circ h_{1} . For the empty
word ( ) , let g_{()}=id_{R^{q}} .

The following proposition gives a description of elements of the
pseudogroup \Gamma generated by the symmetric subset \Gamma_{0}\subset\Gamma_{q,+}^{s1m,*} .

PROPOSITION 2. 6. (1) For each w\in W(\Gamma_{0}) , g_{w}\in\Gamma=\langle\Gamma_{0}\rangle .
(2) The map \Phi:W(\Gamma_{0}) -arrow\Gamma defifined by

\Phi(w)=g_{w} for all w\in W(\Gamma_{0})

is surjective.

PROOF: (1) is clear. (2) follows from the assumption that \Gamma_{0} is
symmetric. \square

The terms in the qualitative theory are defined as follows.

DEFINITION 2. 7. For x\in R^{q} , we call

\Gamma(x)=\{g(x):g\in\Gamma, x\in D(g)\}

the \Gamma- orbit of x . (Note that x\in\Gamma(x) .)
(2) A subset E of R^{q} is called a \Gamma- orbit if there exists x\in R^{q} with E=
\Gamma(x) .
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DEFINITION 2. 8. A subset A\subset R^{q} is called \Gamma- invariant if, for any
x\in A , the \Gamma-orbit \Gamma(x) is contained in A.

DEFINITION 2. 9. A subset \mathscr{M}\subset R^{q} is called a \Gamma- minimal set if \mathscr{M} is a
minimal element of the set of closed, non-empty, \Gamma- invariant subsets of
R^{q} partially ordered by the inclusions.

The concept for a \Gamma-orbit corresponding to the limit set of a leaf of a
foliation is the derived set in the following.

DEFINITION 2. 10. For a subset A of R^{q} . denote by Der(A) the set of
the points y\in R^{q} such that there exists a sequence x_{1} , x_{2} , \cdots\in A-\{y\} with
y= \lim_{narrow\infty}x_{n} . We call Der(A) the derived set of A.

DEFINITION 2. 11. A \Gamma-orbit E is called infifinite if \# (E)=\infty , bounded
ed \dot{1}fE is bounded as a subset of P^{\rho}. , and proper if E\cap Der(E)=\emptyset .

We give the following propositions as typical examples of the proposi-
tions in the qualitative theory of similarity pseudogroups, and omit the
other natural propositions in it.

PROPOSITION 2. 12. If a subset A of R^{q} is \Gamma- invariant, then so are
the interior Int(A), the closure \overline{A} and the derived set Der(A).

PROOF: This follows from the standard arguments. \square

PROPOSITION 2. 13. If a \Gamma- orbit E is infifinite and bounded, then the
derived set Der(E) contains a compact \Gamma- minimal set.

PROOF: The assumption implies that the derived set Der(E) is non
-empty, compact and \Gamma- invariant. Hence the proposition follows from
Zorn’s lemma. \square

3. Statement of the main theorem

The purpose of this section is to describe briefly how we reach the concept
“

\Gamma-orbits with bubbles ” and to state our main result.
We are going to find an object corresponding to an exceptional

mimimal set \mathscr{M} of a codimension one foliation. Note that a boundary leaf
of such \mathscr{M} is non-compact, non-proper and semi-proper. We begin by des-
cribing a \Gamma-orbit which may be considered as an analogy of such a leaf.

Hereafter let \Gamma be the pseudogroup generated by a fifinite symmetric sub-
set \Gamma_{0} of \Gamma_{q,+}^{s1m,*} and \chi_{0} a point in the bounded \Gamma- invariant open subset \Omega

:= \bigcup_{h\in\Gamma_{0}}D(h) of R^{q} such that the \Gamma- orbit \Gamma(x_{0}) is infifinite and non-proper.
Since \Gamma(x_{0})\subset\Omega , it follows that \Gamma(x_{0}) is bounded.
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An observation on the holonomy pseudogroup of an exceptional mini-
mal set of a codimension one foliation leads us to make the following
natural assumption, which can always be satisfied for such a holonomy
pseudogroup.

ASSUMPTION (S). There exists a constant \epsilon>0 such that the distance
dist(\Gamma(x_{1}), \Delta) is greater than \epsilon, where \Delta=\bigcup_{h\in\Gamma_{0}}\partial D(h_{0}) .

Note that \Delta is a compact subset of R^{q} . This assumption (S) implies
that the closure \overline{\Gamma(x_{0})} is compact and contained in the open subset \Omega-\Delta of
R^{q} .

In order to obtain a result analogous to Sacksteder’s theorem on
codimension one foliations, we must look for a point x in the closure
\overline{\Gamma(x_{0})} such that there exists a contracting element in the stabilizer \Gamma_{X} :=\{g

\in\Gamma:x\in D(g) , g(x)=x\} , which is the concept for the \Gamma-orbit \Gamma(x) corre-
sponding to the holonomy group of a leaf of a codimension one foliation.
Here we investigate the following two examples.

EXAMPLE 3. 1. Consider the case q=2 .
(1) Let U= ] -\epsilon , 1+\epsilon[\cross]-\epsilon , 1+\epsilon [ for some \epsilon\in ] 0 , 1/100 [. Take four
points

x_{0}=(0,0) , x_{1}=(1,0) , x_{2}=(1,1) , x_{3}=(0,1)\in R^{2}

and define similarity transformations \overline{h}_{0},\overline{h}_{1},\overline{h}_{2},\overline{h}_{3} : R^{2}arrow R^{2} by

\overline{h}_{i}(x)=\frac{1}{3}(x-x_{i})+x_{i} for all x\in R^{2} .

and let h_{i}=\overline{h}_{i}|u:Uarrow\overline{h}_{i}(U) . Denote by \Gamma the pseudogroup generated by
the finite symmetric subset

\Gamma 0:=\{h_{0^{ }},\cdots,h_{3}, h_{0}^{-1_{ }},\cdots,h_{3}^{-1}\}\subset\Gamma_{2,+}^{s1m,*} .

It is easy to see that \overline{\Gamma(x_{0})}=\overline{\Gamma(x_{1})}=\overline{\Gamma(x_{2})}=\overline{\Gamma(x_{3})}=C\cross C , where C is the
standard Cantor set. Note that the stabilizer \Gamma_{x_{0}} contains the contracting
element h_{0} .
(2) Let U=\{x\in R^{2} : ||x||<1+\epsilon\} for some \epsilon\in ] 0 , 1/100 [. Take an ir-
rational rotation \overline{h}:R^{2}arrow R^{2} fixing the origin 0\in R^{2} and let h=\overline{h}|_{U} : Uarrow

U. Denote by \Gamma the pseudogroup generated by \Gamma_{0} :=\{h, h^{-1}\} and put x_{0}=

(1, 0)\in R^{2}- Then we see that
\overline{\Gamma(x_{0})}=S^{1} :=\{x\in R^{2} : ||x||=1\} .

Clearly the stabilizer \Gamma_{x_{0}} contains no contracting element.
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The first example is affirmative for our problem but the second one is
not. By watching carefully these examples (and also boundary leaves of
exceptional minimal sets of codimension one foliations), we find the
difference: the first example admits “ bubbles ” defined below and the sec-
ond one does not.

DEFINITION 3. 2. A \Gamma-orbit E\subset R^{q} is called with bubbles if, for each
x\in E , there exists a non-empty, bounded, convex, open subset B_{x} (called
a bubble at x) of R^{q} satisfying the following conditions:

(a) x\in\partial B_{x} , where \partial B_{x} :=\overline{B_{x}}-B_{x} .
(b) B_{x}\cap B_{y}=\emptyset if x\neq y .
(c) If h\in\Gamma_{0} and x\in D(h)\cap E satisfy h(x)\neq x , then \overline{h}(Bx)=B_{h(\chi)} ,

where \overline{h} is the extension of h .

One can easily find “ bubbles ” for the \Gamma- orbit \Gamma(x_{0}) in Example 3.1
(1) and cannot in the case of Example 3. 1 (2). Our main result is the
following theorem.

THEOREM 3. 3 (An Analogy of Sacksteder’s Theorem). Let \Gamma be the
pseudogroup generated by a fifinite symmetric subset \Gamma_{0} of \Gamma_{q,+}^{s1m,*} and x_{0} a
point in the union \Omega:=\bigcup_{h\in\Gamma_{0}}D(h) such that the \Gamma- orbit \Gamma(x_{0}) is infifinite
and non-proper. Suppose that the condition ( S) is satisfified and the \Gamma

-Orbit \Gamma(x_{0}) is with bubbles. Then there exists a point x in the closure
\overline{\Gamma(x_{0})} such that the stabilizer \Gamma_{x} contains a contracting element.

We consider this result as a starting point for the qualitative theory of
foliations of higher codimension. Now we have two immediate ways to
proceed. One is to prove this theorem in the more general situation. The
other is to prove an analogy of another theorem in the qualitative theory
of codimension one foliations. An attempt in this way is done by Mat-
suda [4].

4. The proof of Theorem 3. 3.

Let \Gamma be the pseudogroup generated by a finite symmetric subset \Gamma_{0} of
\Gamma_{q.+}^{s1m,*} and x_{0} a point in \Omega=\bigcup_{h\in\Gamma_{0}}D(h) such that the orbit \Gamma(x_{0}) is infinite
and non-proper. Suppose that the condition ( S) is satisfied and the \Gamma

-0rbit \Gamma(x_{0}) is with bubbles \{B_{x}\}_{x\in\Gamma(x_{0})} .
We begin by some definitions.

DEFINITION 4. 1. (1) For a word w\in W(\Gamma_{0}) , denote by |w| the word
length of w ; that is, |w|=m if w=(h_{m}, \cdots,h_{1}) , and |w|=0 if w is the
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empty word ( ) .
(2) For x , y\in R^{q} with y\in\Gamma(x) , put

d_{\Gamma_{0}}(x, y)= \min{ |w|:w\in W(\Gamma_{0}) , x\in D(g_{w}) and g_{w}(x)=y}.

(Distinguish d_{\Gamma_{0}}(x, y) from the Euclidean distance ||x-y|| .)

DEFINITION 4. 2. Let x , y\in R^{q} . A word w\in W(\Gamma_{0}) is called a
short-cut at x to y if x\in D(g_{w}) , g_{w}(x)=y and |w|=d_{\Gamma_{0}}(x, y) .

The bubbles \{B_{x}\}_{x\in\Gamma(x_{0})} are preserved by short-cuts as follows.

LEMMA 4. 3. Let x, y\in\Gamma(x_{0}) be distinct points and w=(h_{m}, \cdots,h_{1})a

short-cut at x to y. Then \overline{g}_{w}(B_{x})=B_{y}, where \overline{g}_{w} is the extension of g_{w}=

h_{m^{\circ\circ}}\cdots h_{1} .

PROOF : For i=1 , \cdots , m, let y_{i}=h_{i}\circ\cdots\circ h_{1}(x)\in\Gamma(x_{0}) and put y_{0}=x\in

\Gamma(x_{0}) . Since w is a short-cut at x , the points x=y_{0} , \cdots , y_{m}=y are pairwise
distinct. Clearly h_{i+1}\in\Gamma_{0} and y_{i}\in D(h_{i+1})\cap\Gamma(x_{0}) for i=0 , \cdots , m-1 .
Therefore

\overline{g}_{w}(B_{x})=\overline{h}_{m}\circ\cdots\circ\overline{h}_{2^{\circ}}\overline{h}_{1}(B_{\mathcal{Y}0})

=\overline{h}_{m^{\circ\circ}}\cdots\overline{h}_{2}(B_{\mathcal{Y}1})

=\ldots=\overline{h}_{m}(B_{\mathcal{Y}m-1})=B_{\mathcal{Y}m}=B_{y} .

This completes the proof of Lemma 4. 3. \square

The following is a key observation.

LEMMA 4. 4. The union B:= \bigcup_{x\in\Gamma(x_{0})}B_{x} is bounded.

PROOF. Take a cone C_{x_{0}} with \chi_{0} as vertex such that Int(C_{x_{0}})\subset B_{x_{0}} .
For each x\in\Gamma(x_{0}) , choose a short-cut w\in W(\Gamma_{0}) at x_{0} to x, and put C_{x}=

\overline{g}_{w}(C_{x_{0}}) . Then C_{X} is a cone with x as vertex and Int(C_{x})\subset B_{x} . Note that
C_{\chi} is simirlar to C_{xo} and the similarity ratio of C_{x} to C_{xo} coincides with
that of B_{X} to B_{x_{0}} . We proceed by intuitive arguments. Take a very
large sphere S with xO as center. We may suppose that S is suffiiently
large in such a way that the union \Omega=\bigcup_{h\in\Gamma_{0}}D(h) can be almost identified
with x_{0} . There exists a large sphere S’ with x_{0} as center such that if a
bubble B_{\chi} intersects S , then the correspoding cone C_{\chi} intersects S’ . By
taking S’ of an appropriate size, we may suppose that, for all the points
x\in\Gamma(x_{0}) with B_{X}\cap S\neq\emptyset , the intersections C_{x}\cap S’ are almost congruent
and so their q-l dimensional volumes have almost the same positive value
v . The number of such x ’s is finite since it is almost overestimated by the
ratio of the volume of S’ to the value v . Hence the union B= \bigcup_{x\in\Gamma(x_{0})}B_{\chi}
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is contained in the union of the disk surrounded by S and a finite number
of bubbles, which implies that B is bounded. \square

As an application of Lemma 4. 4, we have the following.

LEMMA 4. 5. (1) \Sigma_{x\in\Gamma(x_{0})}vol(B_{x})<\infty .
(2) \Sigma_{x\in\Gamma(x_{0})}(diam(B_{x}))^{q}<\infty .
(3) There exists a sequence \{\mu_{n}\}_{n=1}^{\infty} of positive numbers such that

(a) \mu_{n}>\mu_{n+1} for all n\in N,
(b) \lim_{narrow\infty}\mu_{n}=0 ,
(c) if w\in W(\Gamma_{0}) is a short-cut at x_{0} , then diam(B_{gw(xo)})<\mu_{n},

when n=d_{\Gamma_{0}}(x_{0}, g_{w}(x_{0}))=|w| .

PROOF. (1) This follows directly from Lemma 4. 4.
(2) Since the bubbles \{B_{x}\}_{x\in\Gamma(x_{0})} are similar, the volumes \{vol(B_{x})\}_{x\in\Gamma(x_{0})}

are directly proportional to the numbers \{(diam(B_{x}))^{q}\}_{x\in\Gamma(x_{0})} . Hence (1)
implies (2).
(3) For n\in N , let

\delta_{n}=\sup\{diam(B_{x}) : x\in\Gamma(x_{0}), d_{\Gamma_{0}}(x, x_{0})\geqq n\} ,

which is not infinity because

( \delta_{n})^{q}\leqq\sum_{x\in\Gamma(x_{0})}(diam(B_{x}))^{q}<\infty .

Since the sequence \delta_{1} , \delta_{2} , \delta_{3} , \cdots is weakly decreasing and has a lower
bound 0, there exists the limit \delta_{\infty}:=\lim_{narrow\infty}\delta_{n}\geqq 0 . If \delta_{\infty}>0 , then there
exists an infinite number of x\in\Gamma(x_{0}) with diam(B_{x})\geqq\delta_{\infty}/2 , which contrast
dicts the inequality in (2). Hence \delta_{\infty}=0 . Now put \mu_{n}=\delta_{n}+1/n for each
n\in N . It is easy to see that the sequence \{\mu_{n}\}_{n=1}^{\infty} satisfies the conditions
(a), (b) and (c). \square

In contrast with the action of a group of diffeomorphisms on a mani-
fold, we must always worry about the domains of elements in the pseud0-
group \Gamma . which occupies an important part in our arguments. Here we
give a lemma which follows immediately from the assumption (S). For
x\in R^{q} and r>0 , put U(x:r)=\{y\in R^{q} : ||y-x||<r\} .

LEMMA 4. 6. If h\in\Gamma_{0} and x\in\Gamma(x_{0})\cap D(h) , then U(x ; \epsilon)\subset D(h) .
PROOF : Suppose that U(x;\epsilon)\not\subset D(h) and take a point y\in

U(x;\epsilon)-D(h) . Since U(x;\epsilon) is a convex subset of R^{q} containing the
points x and y, the line segment L connecting x and y1\dot{1}es in U(x ; \epsilon) .
Since x\in D(h) and y\not\in D(h) , the line segment L must intersect \partial D(h) .
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Hence U(x:\epsilon)\cap\partial D(h)\neq\emptyset . This contradicts the inequality dist(\Gamma(x_{0}), \Delta)>

\epsilon in the condition (S). \square

The following lemma is an analogy of a useful lemma in Sacksteder
[7]. Let \delta=\sup\{diam(B_{x}) : x\in\Gamma(x_{0})\} .

LEMMA 4. 7. (The Short-cut Theorem). If w\in W(\Gamma_{0}) is a short-cut
at \chi_{0} , then

U(x_{0} ; \epsilon\cdot[mathring]_{\frac{diam(B_{x})}{\delta}})\subset D(g_{w}) .

PROOF: We proceed by an induction on m=|w| .
(I) If m=1 , then h:=g_{w} is an element of the generating set \Gamma_{0} . Since
diam(B_{xo})/\delta\leqq 1 and x_{0}\in\Gamma(x_{0})\cap D(h) , Lemma 4. 6 implies that

U(x_{0} ; \epsilon\cdot[mathring]_{\frac{diam(B_{x})}{\delta}})\subset U(x_{0} ; \epsilon)\subset D(h)=D(g_{w}) .

(II) Suppose that Lemma 4. 7 is satisfied for short-cuts of word length less
than m. For a short-cut w=(h_{m}, \cdots,h_{1})\in W(\Gamma_{0}) at x_{0} , let w’=(h_{m-1}, \cdots, h_{1})

and g’=g_{w^{r}} . Note that w’ is also a short-cut at x_{0} and that g^{r}(x_{0})\in\Gamma(x_{0})\cap

D(h_{m}) . By the induction hypothesis, it follows that U(x_{0} ; \epsilon\cdot diam(B_{x_{0}})/\delta)

\subset D(g’) and the following computation has the meaning:

g’( U(x_{0} : \epsilon\cdot\frac{d_{\overline{1}}am(B_{x_{0}})}{\delta}))=U(g’(x_{0}) ; \epsilon\cdot[mathring]_{\frac{diam(B_{x})}{\delta}}\cdot\frac{diam(B_{g’(\chi_{0})})}{diam(B_{xo})})

\subset U(g^{r}(x_{0});\epsilon)

\subset D(h_{m}) .

This implies that

U(x_{0} ; \epsilon\cdot[mathring]_{\frac{diam(B_{x})}{\delta}})\subset D(h_{m}\circ g’)=D(g_{w}) . \square

Now we are in the final stage of the proof of Theorem 3. 3. Let
\epsilon_{0}=\epsilon\cdot diam(B_{xo})/\delta and take n\in N with \mu_{n}<diam(B_{xo})/3 . Since the \Gamma-

orbit \Gamma(x_{0}) is non-proper, there exists a point x\in(\Gamma(x_{0})-\{x_{0}\})\cap U(x_{0} ; \epsilon_{0}/3)

at a short-cut w=(h_{m}, \cdots ,h_{1})\in W(\Gamma_{0}) at x_{0} such that g_{w}(x_{0})=x and m\geqq n .
Then

diam(B_{x})=diam(B_{gw(x_{0})})<\mu_{m}\leqq\mu_{n}<\frac{diam(B_{x_{0}})}{3} .

By Lemma 4. 7, the domain D(g_{w}) contains U(x_{0} ; \epsilon_{0}) . It follows that
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g_{w}(U(x_{0} ; \epsilon_{0}))=U(g_{w}(x_{0});\epsilon_{0}(\frac{diam(B_{gw(x_{0})})}{diam(B_{xo})})

\subset U(x;\frac{\epsilon_{0}}{3})

\subset U(_{X_{0}} ; \frac{2}{3}\cdot\epsilon_{0}) .

Hence, according to the Brouwer fixed point theorem, there exists a point
z\in U(x_{0} ; 2\epsilon_{0}/3) fixed by g_{w} . Furthermore we see that the similitude ratio
of g_{w} is smaller than one. Therefore g_{w} is a contracting element of \Gamma and

z= \lim_{karrow\infty}(g_{w})^{k}(x_{0})\in\overline{\Gamma(x_{0})} .

This completes the proof of Theorem 3. 3.
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