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Higher dimensional semilinear parabolic problems
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1. Introduction

There are two commonly used ways of approaching parabolic prob-
lems, i.e. “dynamic” semigroup technique (e.g. , [WA]) and “static”
a priori estimates method (e.g. [LA], DL]). In spite of the great power of
“dynamical” approach (which leads to the general results for the possibly
wide class of nonlinear problems), classical in the theory of partial
differential equations “static” a priori technique can very often give exact
in form and precise in assumptions existence-uniqueness theorems concern-
ing regular solutions in the space of Holder functions. Moreover dealing
with the problem of local solvability one is also able to estimate (from
below) the “life time” of the obtained solution in a way similar to the
well known Peano theorem in the theory of ordinary differential equations.

However both in the “dynamic” and “ static” studies of the classical
solvability, growth of the space dimension # causes a feedback in the
sense of increase (with respect to #) of the assumptions that should be put
on the data of the considered problem. Since referring to needed assump-
tions as “sufficiently regular” makes the final result hardly applicable, we
want in this note to deal with the case of higher space dimension coming
back to the idea of our recent paper [CH], in which higher dimensional
case was only mentioned in the Appendix.

We have presented in a classical approach to the 2m-th (m>1)
order initial-boundary value problem

ur=—Pu+£(t,x, d™u) in D'=(0, T)XG
(1 { Bou=..=Bn_1u=0 on 0G
u(0, x)=1wuo(x) in G
: ou ou Fu
_ _1\I8I e a m, _ ou .. ou ou
with P= 31 (=1)"D*a.s(x)D?), d"u <u R

%ﬁﬁ) and a bounded domain GCR" having smooth C*"** boundary 0G,

n

where #<(0,1) is fixed from now on.
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In this note we announce precise necessary assumptions and formulate
the estimate-existence-uniqueness result in, outlined previously in the
Appendix of , higher dimensional case #=2m (especially we give the
direct estimate of the “life time” of the solution). The exact stating of
this result for higher dimensioal case is possible thanks to the more subtle
use of the linear theory given in [LA, Chapt. VII, § 10 Th.10.1, Th. 10.4],
which plays an important role in the derivation of the estimate (4). In
particular throughout this note we use both the notation and the general

concept developed in [CH]J.

2 Assumptions.

Let for each pair of multi-indices o, SEN" with |al, |8|<m the
coefficient aas of P belongs to the space C*"*"¥'*#(¢iG), the coefficients of
the boundary operators B; (j=0,...m—1) are of the class (resp).
Cmm+#(3G) and nonlinear scalar function f=7(¢, x, p1, ..., pa) (d denotes
the length of d™u) is differentiable with respect to ¢ and has all partial
derivatives up to the order 2m with respect to x, pi, ..., pa. Moreover, let
both f and all its partial derivatives which were just mentioned satisfy
local Lipschitz condition with respect to ¢ and functional arguments
D1, ..., ba and Holder condition with respect to the space variable x (fur-
ther, for simplicity, L will denote the common Lipschitz constant for the
considered functions, relatively to a fixed compact subset of [0, T]X ¢/G X
R?%). We also assume the conditions E, F stated in (i.e. P is coer-
cive, satisfies Green’s Identity and the triple (P, {B;}, G) forms the regular
elliptic boundary value problem) and claim that the initial function uo
satisfies (necessary for the existence of Holder solution) first order com-
patibility conditions according to the monograph [LA]

Then in the case of higher space dimension #z>2m we have the follow-
ing result :

3 The main result.

THEOREM. For arbitrarily fixed K >0 theve exist positive constants
Ci, Cis, Cs, Ci, Cs such that for amy hypothetical, classical solution u of
the problem (1), as long as
(2) |a§m”Da(u_u°)(t’ Mewo <K

(considering t<[0, T], xE€G) the following a priori estimates hold :
(3) (e — wo) (2, 52< Crte™,
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m

n < Cot "% +||£(0, + , d™uo)— Putollo—n

m—1 m—1°

(4) leeeZ, )llo,

Moveover inequalities (3), (4) guarantee validity of our main a priovi esti-
mate

6)  Nu—wliomor<Clt)  (C0)="4 and Cu(t) /=),

which, in turn, implies that (2) holds until the time To given by
(6) To=min{ Ty, T}.

Here T1>0 is given as the unique solution of the equation

_ _m=1
(7) v Cs Tll n +V1l|f(0, ., dleO)_PuOHO,%
1 G

m—1 _ 1
+ulGl ™ supllf(4, x, d"wo)— Pul}+ C., CE T g1 =K

with vi and C., specified in (vesp.) (24) (18). In comsequence, the preced-
ing week norms estimates (3)-(5) lead to the condition

(8) ot — o) comomiaaipy < Cs,
being sufficient to establish solvability of the problem (1) in the Holder

space Cz’”“‘v”ﬁ(chh). Furthermore, the C™"'72m(cID™) solution is

unique.

PROOF OF THE THEOREM. According to the notation of we put
v:=u—uo and g(¢, x, d™v) :=f(¢t, x, d"v+d™us)— Pus. Thus v satisfies:

9) Bov=...=Bn_1v=0 on 0G

{ ve=—Pv+g(t, x, d™) in DT
(0, x)=0 in G

At the beginning we shall prove that as long as (2) holds, for all v<(0, vo]
(vo given by [17)) the following (compare [DL], [CH]) “flexible” estimate

is valid :

m—1

(10) lo(t, lne<vvet, los+IGl ™
+Cv||?)(t, ‘)”0,2,

supilg(t, x, d"0)[})

where C, 7o as vN0. First we use Sobolev Embeddings and Nirenberg-
Gagliardo inequalities to find that (e fixed with |a|<m)



368 J. W. Cholewa

1
2

nt+i ”+A

(11) | D*v]lo.e < Ci|l D*v| n+—< C1C4||D“v|| 4 ||Dav||02

’m~1

We continue further with the Young’s inequality and interpolation inequal-

ity for the intermediate derivatives ([AD, Th. 4. 14] with Ez—g—éﬁ €0) until

we get
(12) |D?vllo. < 8] D JAD* v]o.2
JJn
<Ol olomgt; + Co Sl oloms+ o7 a(%) ollz),
21+1 Zznl
n n+ 7 2n+1
where 0< 0 < 60= il —|—1 ——CiCi&r 2n)™"", Ci= 2n+1(c 1Cy)

Applying evident inequality ||v]am,.<

n—-2m+2 n-2m+ !
d ™ |G| ? 1|v||2m <here d,= (?2”:;)—,2,)) and Calderon-Zygmund

estimate, we increase the right side of (12) coming to the condition

n—2m+2

(g

n—2m+2 m
(13) D= Ced(1+d 1G] A Pol, n ] Aol
C;\zla - . .
where Cs,.=C5;Ci" '“'( 5) . Now, similarly as it was done in [CH,

Lem. 1, conditions [(18)-{21)], we find required estimate of the L™ ! norm
of Pv:

(14) | Polly_»

L_m=1
ogl+ug<t,-, oor AL ol s

Since vl n <||vl| thus collecting the inequalities [(13),

m,oo?

m-1
and deﬁning constants Ce=|G| * sup T{Ig(t,x, d™0)|},

(t,x)eciD
C.=(d)| GI) We obtain that

_1 .
81+ CH vl
0 '11 + 66)"’ Cs,a"U”o,z.

(15) ID“V)om< Cs(Ld" ™ 7
+ Cs

Summing both sides of [(15) with respect to a with |a|<m, for Cs= 2 Cs.

lal<m

and any positive ¢ satisfying
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2n
aémin{ CLCeT(2n) T,

2n+1

1
2dC5(Ld & +1)1G| " (1+ C?)}

we get the estimate

(16) Hvllm,mgéuvnm,ﬁ dCs0(1+ Co)|velly_n_+ Co)+ Collvlh.

Substituting v :=2dCs8(1+ C;) in we come immediately to with

(17) Vo=min{2dC560(1+ Co), 1 }
(Ld" ” +1)|G| n
and
2m
e 1 /27’l+1 27+1 Zm-|a
1)  G=2% & "<2n+1\ o ) (GC) ) %

mn+|al dmn+|a|

X (2dCs(1+ Cy)) ntel " moial

Condition is thus proved. For the proof of a priori estimate (3) we
refer to [CH, Lem. 2]. We proceed now to justification of (4). First, let
us note that v: is a classical solution of

Boz= ... = Bn-12=0

2t :( — P+ IaEmQaDa)Z + g:
(19) {
2(0, x)=go(x)

were g:(t, x)= %(t, x, d™v(t, x)), g.(t, x)= T%%J (¢, x, d™v(t, x)) and

9(x)=9(0, x, d™0). Furthermore, as long as (2) holds, as a result of con-
tinuity we have

lg:(2, Mow<M,  lgat, NMow<M |a|<m.

Let us denote by Tmx (Tmx<(0, T]) hypothetical, maximal time until
which (2) holds. Then from the linear theory stated in [LA, Chapt. VI,
§10, Th.10.4 with ¢=2m,1=0, s=0] (using also notation of [LA]) we
obtain that

@) lodzom=c(MT TG +lg

’(G)>=: Cs.

Thus because of (20), as long as inequality (2) is valid, we obtain in par-
ticular :

Zm
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m—1

(21) ('/O‘tfclvu(r, x)!ﬁdx dr)Té Cs.

Applying next Newton Integral Formula, together with Holder and (gener-
alized) Minkowski’s inequalities we find the estimate

m—1
n

22) ot )= 000, o =( [lot, 2) 00, 2" )

m—1

t a5t N\
:<L|_£ ve(t, x)dﬂ”’_ldx) Sl(/(;lvtt(r, x)l’”‘la’x> dr
m-—1
_m-1y ot n =
<t 7 <£‘/(;|Utt(z-, )| ™ Tdx dr) ,

which because of leads directly to (4). Collecting now estimates [(10),
(3) and (4) we come to the condition

— j-m=1 — 11
23) ot Mne<ACat ™ +lgoll,_z_+ Co)+C.Ci t2e

G,
Wi

From [23), choosing v=v, given by
@) v i=minfu, 5 K(lg,_x + o'}

and using the same argumentation as in [CH, Lem. 4 formulas (33)-(34)]
we obtain immediately (5), verifying also (2) together with the “life time”
To (6) and the condition (7) determining auxiliary time value 7.

Having justified precisely that v belongs to L=(0, To; W™>(G)), we
refer to for the rest of the proof. Using the argumentation of [CH,
Appendix, conditions (65)-(66)] we get

(25) Dve C**(cID™)

and next, exactly as it was done in [CH, Lem. 4, formulas (41)-(42)], we

get the C¥™**'*zm(cID™) estimate claimed in (8). Existence of the solu-
tion for (1) can be derived now by standard “method of continuity” with
the use of the Leray-Schauder Principle; then also, as there has been
shown in [CH, Sec, 2. 1], the solution is unique.

Because C?*™'(cID™) somoothness of v: was used in the proof, we add
for the completeness verification of the assumed regularity (based on lin-

ear theory). Since ¢g& C™**"2m (cID™) then from [LA, Chapt. VII, §10,
Th. 10.1] we have that vE C3’”+“’”mz;t#(chT°). Next we find that g& C*"**

2m+p

2m(cID™) and hence ve C*™+***7w(cID™). Thus we conclude finally that
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solution « of the problem (1) belongs to the Holder space

C‘””“"Hﬁ(ch“).
Our considerations are completed.

THE FINAL REMARK. Let us note that given in stronger version
of proved previously in [CH, Lem. 1] inequality allows to estimate in
a flexible manner W™ norm of the solution, and finally establish (2) for
certain positive time 7o<7T. Moreover, thanks to “flexibility” of [10),
although the assumptions needed in higher dimensional case n=2m are
stronger than stated in[CH] (sufficient for 7<2m) conditions (A)-(F),
they do not growth any more for larger value of n. Whereas for the
existence of the classical solution in or the conditions imposed
on f must have been getting stronger and stronger, relatively to the
growth of the space dimension # and sometimes they also have not been
given explicitly (as in [FR, Th.19, Sec. 7, Chapt. 10]).

Acknowledgement. The author is very grateful to the Referee for
the remarks improving the manuscript of the paper.
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