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1. Introduction

In this paper we investigate whether the weak compactness property
of the bounded linear operators can be interpolated. In particular, it is
shown that the real interpolation functors generated by the K-functional
of Peetre and the reflexive Banach lattices on the set of integers Z are
stable for the weakly compact operators.

First of all, we recall some notations from interpolation theory. A
pair \overline{A}=(A_{0}, A_{1}) of Banach spaces is called a Banach couple if A_{0} and A_{1}

are continuously embedded in some Hausdorff topological vector space V
For a Banach couple \overline{A}=(A_{0}, A_{1}) we can form the intersection \Delta(A3=

A_{0}\cap A_{1} and the sum \Sigma(\overline{A})=A_{0}+A_{1} . They are both Banach spaces, in
the natural norms ||a|| \Delta(-=)\max\{||a||_{A_{0}}, ||a||_{A_{1}}\} and ||a||_{\Sigma(A7}=K(1, a ; A\circ

respectively (whenever possible we suppress the “unnecessary” A-, writing
\Delta and \sum ), where for t>0

K(t, a;A3= \inf\{||a_{0}||_{Ao}+t||a_{1}||_{A_{1}} : a=a_{0}+a_{1}, a_{0}\in A_{0}, a_{1}\in A_{1}\}

is the K-functional of Peetre.
A Banach space A is called an intermediate space between A_{0} and A_{1}

(or with respect to A3 if \Delta(A3\subset A\subset\sum(A3 with continuous inclusions.
Let \overline{A}=(A_{0}, A_{1}) and \overline{B}=(B_{0}, B_{1}) be two Banach couples. We denote

by \mathscr{L}(\overline{A},\overline{B}) the Banach space of all linear operators T:A_{0}+A_{1}arrow B_{0}+B_{1}

such that the restriction of T to the space A_{i} is a bounded operator from
A_{i} into B_{i} , i=0,1 , with the norm

||T||_{\mathscr{L}(\overline{A},\overline{B})}= \max\{||T||_{Aoarrow B_{0}}, ||T||_{A_{1}arrow B_{1}}\} .

We say that two intermediate spaces A and B are inte\uparrow polation spaces with
respect to \overline{A} and \overline{B} and we will write (A, B)\in Int(\overline{A},\overline{B}) if every opera-
tor from \mathscr{L}(\overline{A},\overline{B}) maps A into B.
If A coincides with B and A_{i}=B_{i} , i=0,1 , then A is called an interpolation
space between A_{0} and A_{1} (or with respect to A3 .
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We say that \mathscr{F} is an exact interpolation functor if \mathscr{F}(A\circ is an interme-
diate Banach space with respect to \overline{A} for any Banach couple \overline{A},
and (f(A\circ, \mathscr{F}(\overline{B}))\in Int(\overline{A},\overline{B}) with

||T||_{\mathscr{L}(A3arrow \mathscr{L}(\overline{B})} \leq\max\{||T||_{Aoarrow B_{0}}, ||T||_{A_{1}arrow B_{1}}\}

for each T\in \mathscr{L}(\overline{A},\overline{B}) .
The characteristic function \varphi=\varphi_{\mathcal{J}^{\frac{-}{}}} of an exact interpolation functor \mathscr{F} is
defined by \mathscr{F}(R, t^{-1}R)=\varphi(t)^{-1}R (see [7]), where for \alpha>0 , \alpha R is R with
the norm ||x||_{\alpha R}=\alpha|x| . It is easily seen that \varphi is a quasi-concave function,
i . e. , \varphi:R_{+}arrow R_{+} and \varphi(s)\leq\max\{1, s/t\}\varphi(t) for all s , t>0 . In the
sequel if a quasi-concave function \Psi is such that min \{1, 1/t\}\Psi(t)arrow 0 as
tarrow 0 , \infty , then we write \Psi\in \mathscr{P}0 .

2. The real interpolation spaces and weak compactness

In the theory of interpolation spaces the real interpolation spaces are
particulary important (see [3, 4, 5, 7, 9]). Let us recall the definition.

Let \omega denote the F-space of all real-valued sequences (\alpha_{\mu})_{\nu\in Z} topolog-
ized by means of coordinatewise convergence. A Banach space E\subset\omega is
called Banach lattice on Z if the conditions |\alpha|=(|\alpha)\sqrt|)_{\nu\in Z}\leq|\beta|=(|\beta_{\mu}|)_{\nu\in Z}

(meaning that |\alpha.|\leq|\beta_{\mu}| for all 1\nearrow\in Z), \beta=(\beta_{\mu})\in E imply \alpha=(\alpha_{\nu})\in E and
||\alpha||_{E}\leq||\beta||_{E} .
A Banach lattice E is said to be regular if the norm is an order continu-
ous, i . e. , if (\alpha_{n})_{n=1}^{\infty}\subset E , \alpha_{n}\downarrow 0 implies \alpha_{n}arrow 0 in E .

The K\"o the dual of a Banach lattice E on Z is defined by

E’= \{\alpha’\in\omega:\sum_{\mu=-\infty}^{\infty}|\alpha_{1J}\alpha_{\acute{\mathcal{U}}}|\angle\infty for every \alpha=(\alpha_{U})\in E\} .

The space E’ is a Banach lattice on Z under the norm

|| \alpha’||_{E}=\sup\{\sum_{\nu=-\infty}^{\infty}|\alpha_{v}\alpha_{\mu}’| : \alpha=(\alpha_{\nu})\in E , ||\alpha||_{E}\leq 1\} .

By l_{p}(w)=l_{p}(w_{\mu}) , 1\leq p\leq\infty , where w=(w_{\mu}) is a positive sequence of \omega ,
we denote the Banach lattice on Z defined by

l_{p}(w)= \{\alpha\in\omega:||\alpha||_{lp(w)}=(\sum_{\mu=-\infty}^{\infty}|\alpha_{\nu}w_{\mathfrak{l}1}|^{p})^{1/p}<\infty\}

(with usual interpretation if p=\infty ).

Throughout the paper \Phi denote a Banach lattice on Z intermediate
with respect to (l_{\infty}, l_{\infty}(2^{-\mu})) . The real exact interpolation functor K_{\Phi} is
defined as follows; if \overline{A} is a Banach couple, then the space K_{\Phi}(A3 (called
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the real interpolation spaced to consist of all a \in\sum(\overline{A}) such that
( K(2_{7}^{\mu}a : A\circ)_{\nu\in Z}\in\Phi with the norm

||a||_{K_{\Phi}(A7}=||(K(2^{\mu}. a;A3)_{\nu\in Z}||_{\Phi} .

Observe that, in particular, if \Phi=l_{p}(2^{-\nu\theta}) , where 0<\theta<1,1\leq p\leq\infty the
space K_{\Phi}(A3 coincides with the spaces \overline{A}_{\theta,p} of Lions-Peetre (see [3] for
more details).

In [6] K. Hayakawa has shown that if \overline{A}=(A_{0}, A_{1}),\overline{B}=(B_{0}, B_{1}) are
Banach couples and T is an operator of \mathscr{L}(\overline{A},\overline{B}) such that (the restric-
tions) T:A_{0}arrow B_{0} and T:A_{1}arrow B_{1} are compact, then T:\overline{A}_{\theta p}arrow\overline{B}_{\theta p} is
compact for all 0<\theta<1 and 1\leq p<\infty .

In this section we give the similar result (excluding case p=1 ) for
weakly compact operators (recall that a bounded linear operator T:Xarrow

Y between two Banach spaces is said to be weakly compact whenever T
carries the closed unit ball B_{X} of X onto a relatively weakly compact
subset of Y). By the well-known Gantmacher theorem the operator T :
Xarrow Y is weakly compact if and only if T^{**}(X^{**})\subset Y ( Y is naturally
identified with the subspace of Y^{**} ).

THEOREM 1. Let \overline{A} and \overline{B} be two Banach couples and let T be an
operator of \mathscr{L}(\overline{A},\overline{B}) such that T : \Sigma(A3arrow\Sigma(\overline{B}) is weakly compact.
Then T is weakly compact from K_{\Phi}(A3 into K_{\Phi}(\overline{B}) , provided that \Phi is a

reflexive Banach lattice on Z.

In order to prove this theorem we need some auxiliary results. Let
(X_{\mu})_{\nu\in Z} be a family of Banach spaces and let E be a Banach lattice on Z .
The vector space of sequences (x_{\mu})_{\nu=-\infty}^{\infty} , with x_{\mu}\in X_{fj} and with (||x_{\mu}||_{X}.)_{\mu=-\infty}^{\infty}

\in E , becomes a Banach space when equipped with the norm ||(x_{\mu})||=

||(||x_{\nu}||_{X\nu})||_{E} . This space shall be denoted (\Pi X_{\nu})_{E} . The following result
will be useful in the sequel (for the proof see [12], cf. also [9, p.282-284]).

PROPOSITION 2. Let (X_{\mu})_{\nu\in Z} be a sequence of Banach spaces, and
assume that a Banach lattice E on Z is regular. Then we have

( \prod X_{\mu})_{E}^{*}=(\prod X_{\mu}^{*})_{E} ,

where the duality holds subject to the duality \langle x, x^{*}\rangle=\sum_{\nu=-\infty}^{\infty}x_{\mu}^{*}(x_{\nu}) for x=

(x_{\nu})\in(\Pi X_{\mu})_{E}, x^{*}=(x_{\mu}^{*})\in(\Pi X_{\nu}^{*})_{E} .

PROPOSITION 3. Let E be a Banach lattice on Z and let T_{\mu} : Xfj arrow

Y_{1}, for \nu\in Z be bounded linear operators between Banach spaces such that
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\sup_{\mu}||T_{\nu}||=C<\infty . Define the operator \oplus T_{JJ} : (\Pi X_{\mu})_{E}arrow(\Pi Y_{\mu})_{E} by
\oplus T_{\mu}(x_{\mu})=(T_{\mu}xfj) . Then the following hold:

(i) \oplus T_{1J} is a bounded linear operator such that (\oplus T_{\mu})^{*}=\oplus T_{\mu}^{*} . prO-
vided that E is regular Banach lattice.

(ii) If E is reflexive, then \oplus T_{\nu} is a weakly compact operator if and
only if T. is a weakly compact operator for every \iota/\in Z.

PROOF. ( i) Let X=(\Pi X_{\nu})_{E} and Y=(\Pi Y_{\nu})_{E} , then obviously that
||\oplus T_{\mu}||_{Xarrow Y}\leq C . Now assume that E is a regular Banach lattice and take
any x=(x_{\mu})\in X and y^{*}\in Y^{*} . Then by Proposition 2, we have y^{*}=(y_{\mu}^{*})\in

(\Pi Y_{\mu}^{*})_{E} and

\langle x, (\oplus T_{\iota},)^{*}y^{*}\rangle=\langle(\oplus T_{\mu})(x_{\nu}), y^{*}\rangle=\langle(T_{\nu}x_{\nu}), (y_{\mu}^{*})\rangle

=\langle(x_{\mu}), (T_{\nu}^{**}y_{\mu})\rangle=\langle x, (\oplus T_{\mu}^{*})y^{*}\rangle .

Thus (\oplus T_{\mu}^{*})=\oplus T^{*}. .
(ii) Let E be reflexive space, then by Ogasawara’s theorem (see [1,

Theorem 14. 22]), it follows that E and E’ are regular Banach lattices on
Z and E’=E. Thus X^{**}=(\Pi X_{\nu}^{**})_{E} and (\oplus T_{\mu})^{**}=\oplus T_{\nu}^{**} . by Proposi-
tion 2 and (i). Hence, it follows that if x^{**}\in X^{**}- then x^{**}=(x_{\nu}^{**})\in

(\Pi X_{\mu}^{**})_{E} and

(\oplus T.)^{**}x^{**}=(\oplus T_{\mu}^{**})(x_{\mu}^{**})=(T_{\mu}^{**}x_{\mu}^{**}) .

This implies that (\oplus T_{\mu})^{**}(X^{**})\subset Y if and only if T_{\mu}^{**}(X_{\nu}^{**})\subset Y_{\mu} holds
for each 1/\in Z . Thus the proof of (ii) is finished, by the Gantmacher the-
orem.

PROOF OF THEOREM 1. Let X=(\Pi X_{\mu})_{\Phi} and Y=(\Pi Y_{\nu})_{\Phi} , where X_{\nu}=

A_{0}+A_{1} , Y_{fj}=B_{0}+B_{1} with the norms K(2^{\mu}. =;A\circ and K(2^{\mu}. \circ;\overline{B}) for \nu\in

Z, respectively. Denote by D(X) the diagonal subspace of X, i . e .

D(X)= \{(x_{\nu})_{\nu\in Z}\in X : x_{IJ}=a, a\in\sum(A\circ\} .

Define the operator I:K_{\Phi}(A3arrow D(X) by J(a)=(\cdots, a, a, \cdots) . Clearly that
J is the onto linear isometry.

Now let T\in \mathscr{L}(\overline{A},\overline{B}) , then obviously that T_{\nu}=T:X_{\nu}arrow Y_{\nu} for each
1J and \sup_{\mu}||T_{\nu}||_{x_{\nu}arrow Y_{U}}\leq||T||_{\mathscr{L}(} -, \overline{B} ). This implies that the operator \oplus T_{\nu} : Xarrow

Y is weakly compact, whenever T: \sum(A\circarrow\sum(\overline{B}) is weakly compact, by
Proposition 3. Since K_{\Phi} is an exact interpolation functor, the restriction
of T to the space K_{\Phi}(A\circ is a bounded linear operator from K_{\Phi}(A3 into
K_{\Phi}(\overline{B}) . Thus the proof is finished, by T=J^{-1}\circ(\oplus T_{\nu})\circ J .
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COROLLARY 4. Let \overline{A} and \overline{B} be Banach couples and let T\in \mathscr{L}(\overline{A},
\overline{B}) be such that T:A_{i}arrow B_{i}(i=0,1) is weakly compact. Then T:\overline{A}_{\theta.p}arrow

\overline{B}_{\theta,p} is weakly compact for all 0<\theta<1 and 1<p<\infty .
PROOF. It is a routine matter to verify that T : \Sigma(A3arrow\Sigma(\overline{B}) is

weakly compact. Since \Phi=l_{p}(2^{-\nu\theta}) is reflexive Banach lattice on Z if 0<
\theta<1 and 1<p<\infty , Theorem 1 applies.

3. Interpolation functors and weakly compact operators

B. Beauzamy in [4] has shown that the interpolation spaces of Lions-
Peetre \overline{A}_{\theta,p} , where 0<\theta<1 and 1<p<\infty are reflexive if and only if the
inclusion map I:\Delta(A3arrow\Sigma(A3 is weakly compact. R. D. Neidinger [15]
using results of the theory of Tauberian operators has shown the similar
result for more general interpolation spaces (see [11, p.218]). In fact
these spaces are real interpolation spaces by the results of Yu. A. Brudny_{\check{1}}

and N. Ya. Krugljak [5].
In this section we investigate those exact interpolation functors which

interpolate weakly compact operators. In particular we show that TheO-
rem 1 can be improved if we suppose that \Phi satisfies some additional con-
dition. From these results we obtain results about reflexivity of these
spaces. First we give some definitions and auxiliary results.

Let X be a Banach space and let W, V be subsets of X. We say
that W almost absorbs V (in X) if for every \epsilon>0 , there exists t>0 such
that V\subset tW+\epsilon B_{X} (see [13]).

Let X, Y be Banach spaces. A bounded linear operator T:Xarrow Y
is said to be Tauberian [8] if ( T^{**})^{-1}(Y)\subset X , i . e. , T^{**}x^{**}\in Y implies
x^{**}\in X .
If Tauberian operator T is one-t0-0ne we say T is Tauberian injection.
There are interesting characterization of Tauberian operators (see [8, 14,
16]). We need the following (see [14, 16]).

THEOREM 5. Let X, Y be Banach spaces and let T:X - Y be an
injective bounded linear operator. The following are equivalent:

(a) T is Tauberian injection.
(b) For every bounded subset U of X such that TU is relatively weakly

ly compact, U is relatively weakly compact.
(c) T^{*}(Y^{*}) is norm-dense in X^{*} and TB_{X} is closed subset of Y.

PROPOSITION 6. Let V, W be subsets of a Banach space X. If W
almost absorbs V and W is relatively weakly compact, then V is relatively
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weakly compact.

For the proof see [13, 15] or [1, Theorem 10. 17].

COROLLARY 7. Let \overline{X} and \overline{Y} be two Banach couples and let (X, Y)
\in Int(\overline{X},\overline{Y}) . If B_{\Delta(\overline{X})} almost absorbs B_{X} in \Sigma(\overline{X}) and the inclusion map
Y \subset\sum(\overline{Y}) is a Tauberian operator, then T : X -arrow Y is weakly compact
operator, provided T\in \mathscr{L}(\overline{X},\overline{Y}) and T : \Delta(\overline{X})arrow\Sigma(\overline{Y}) is weakly compact
operator.

PROOF. Let T\in \mathscr{L}(\overline{X},\overline{Y}) . Then T(B\Sigma(-))\subset CB\Sigma(\overline{Y}) , where C=
||T||_{\mathscr{L}^{(}}

-

\overline{Y} ). Moreover T:Xarrow Y is bounded by interpolation. Take \epsilon>0 ,
then by the assumption there exists t>0 such that B_{X}\subset tB_{\Delta(} -) +C^{-1}\epsilon B\Sigma(\overline{X}) .
In consequence

TB_{x}\subset tTB_{\Delta(\overline{X})}+\epsilon B\Sigma(\overline{Y}) .

Hence TB_{\Delta(\overline{X})} almost absorbs TB_{X} in \Sigma(\overline{Y}) . Now suppose that T:\Delta(\overline{X})

arrow\sum(\overline{Y}) is weakly compact. Then TB_{X} is relatively weakly compact
subset of Y by Proposition 6 and Theorem 5. Thus the proof is complete.

THEOREM 8. Let \overline{X}=(X_{0}, X_{1}) and \overline{Y}=(Y_{0}, Y_{1}) be two Banach cou-
ples and let \mathscr{F} be an exact interpolation functor with the fundamental func-
tion \varphi\in \mathscr{P}_{0} . If the inclusion map \mathscr{F}(\overline{Y})\subset\sum(\overline{Y}) is a Tauberian operator,
then for every T\in \mathscr{L}(\overline{X},\overline{Y}) , we have T:\swarrow(\overline{X})arrow \mathscr{F}(\overline{Y}) is weakly com-
pact operator if and only if T : \Delta(\overline{X})arrow\Sigma(\overline{Y}) is weakly compact.

PROOF. By Theorem 15 of [7], we have

(*) K(t, x;\overline{X})\leq\varphi(t)||x||_{X}

for every x\in X=\mathscr{F}(\overline{X}) and t>0 . Suppose that \varphi\in \mathscr{P}_{0} . First we show
that B_{\Delta(\overline{X})} almost absorbs B_{X} in \sum(\overline{X}) . Let \epsilon>0 . Since \varphi\in \mathscr{P}_{0}^{1} , there
exist i , j\in N such that \varphi(2^{-i})<\epsilon/4 and \varphi(2^{j})/2^{j}<\epsilon/4 . If x\in B_{X} , then by
(*) we obtain.

K(2^{-i}, x : \overline{X})\leq\varphi(2^{-i}) , K(2^{j}. x;\overline{X})\leq\varphi(2^{j}) .

Hence we can find the decompositions x=x_{0}+x_{1}=x_{\acute{0}}+x_{1}’ such that x_{0} , x_{\acute{0}}\in

X_{0} , x_{1} , x_{1}’\in X_{1} and

||x_{0}||_{Xo}+2^{-i}||x_{1}||_{x_{1}}<\varphi(2^{-i})+\epsilon/4<\epsilon/2 ,
||x_{\acute{0}}||_{Xo}+2^{j}||x_{1}’||_{X_{1}}<\varphi(2^{j})+\epsilon/4<2^{j}\epsilon/2 .

Thus ||x_{0}||_{X_{0}}<\epsilon/2 , ||x_{1}||_{x_{1}}<2^{i}\epsilon/2 and ||x_{\acute{0}}||_{x_{0}}<2^{j}\epsilon/2 , ||x_{1}’||_{x_{1}}<\epsilon/2 . Let y=x-
x_{0}-x_{1}’ , then y=x_{\acute{0}}-x_{0}\in X_{0} and ||y||_{Xo}\leq||x_{0}||_{X_{0}}+||x_{\acute{0}}||_{Xo}<2^{j}\epsilon . Further y=x_{1}-
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x_{1}’\in X_{1} and ||y||_{x_{1}}\leq||x_{1}||_{x_{1}}+||x_{1}’||_{x_{1}}<2^{i}\epsilon . Hence y\in\Delta and ||y||_{\Delta} \leq\max(2^{i}2^{j})\epsilon .
Since x-y=x_{0}+x_{1}’ and ||x-y||_{\Sigma}\leq||x_{0}||_{X_{0}}+||x_{1}’||_{x_{1}}<\epsilon , x\in tB_{\Delta}+\epsilon B\Sigma , where t=
max (2^{i}. 2^{j})\epsilon . Finally B_{X}\subset tB_{\Delta(\overline{X})}+\epsilon B_{\Sigma(\overline{X})} . Now, if the inclusion map
\mathscr{P}^{-}(\overline{Y})\subset\Sigma(\overline{Y}) is a Tauberian operator and T\in \mathscr{L}(\overline{X},\overline{Y}) is such that T :
\Delta(\overline{X})arrow\Sigma(\overline{Y}) is weakly compact, then T:\mathscr{F}(\overline{X})arrow \mathscr{F}(\overline{Y}) is weakly com-
pact operator by Corollary 7. The converse is obvious.

COROLLARY 9. Let \overline{X} be a Banach couple and let \mathscr{F} be an exact
interpolation functor with the fundamental function \varphi\in \mathscr{P}_{0} . Then the fol-

lowing are equivalent :
(i) The interpolation space \mathscr{F}(\overline{X}) is reflexive.
(ii) The inclusion map I: \Deltaarrow\sum is weakly compact and the inclusion

map J:\mathscr{F}(\overline{X})arrow\Sigma(\overline{X}) is Tauberian injection.

REMARK. If \overline{X} is a couple of Banach lattices such that \Delta(\overline{X})^{*} has
order continuous norm and \overline{Y} is a Banach couple for which \sum(\overline{Y}) con-
tains no subspace isomorphic to Co , then every bounded linear operator T :
\Delta(\overline{X})arrow\sum(\overline{Y}) is weakly compact by Grothendieck-Ghoussoub-Johnson
theorem (see [1, Theorem 17. 6]).

4. Applications

In this section we shall give applications of the results of section 2.
First we give sufficient conditions which imply that the inclusion map
J:K_{\Phi}(\overline{X}) -arrow\sum(\overline{X}) is a Tauberian injection. Note that the fundamental
function \varphi of the functor K_{\Phi} (called in the sequel also the fundamental
function of the space \Phi ) satisfy \varphi(t)^{-1}=||(\min\{1,2^{\mu}/t\})_{\nu}||_{\Phi} .

PROPOSITION 10. Let \overline{X} be a Banach couple. Then the following
hold :

(i) If B_{\Phi} is a closed subset of \omega, then the closed unit ball of the
space K_{\Phi}(\overline{X}) is closed subset of \sum .

(ii) If \Phi contains no subspace isomorphic to l^{1} then J^{*}( \sum(\overline{X})^{*}) is
norm-dense in K_{\Phi}(\overline{X})^{*} .

PROOF. (i) Let (x_{n})_{n=1}^{\infty}\subset B_{X} , where X=K_{\Phi}(\overline{X}) and let x_{n} arrow x in \Sigma .
Then \alpha_{n\mu}=K(2^{\mu}, x_{n} ; \overline{X})arrow K(2^{\nu}, x;\overline{X})=\alpha_{U} as narrow\infty , for every \nu\in Z ,

whence \beta_{n}=(\alpha_{n\nu})_{\nu\in Z} -arrow\alpha=(\alpha_{\nu})_{\nu\in Z} in \omega . Since (\beta_{n})_{n=1}^{\infty}\subset B_{\Phi} and B_{\Phi} is closed
subset of \omega , \alpha=(\alpha_{\mu})_{\nu\in Z}\in B_{\Phi} and thus x\in B_{X} . For the proof of (ii) see
[12].

COROLLARY 11 (cf. [5, Theorem 4. 6. 8]). Let \overline{X} and \overline{Y} be two
Banach couples and let \Phi be a reflexive Banach lattice on Z with the funda-
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mental function in \mathscr{P}_{0} . Then the following hold:
(i) If T\in \mathscr{L}(\overline{X},\overline{Y}) , then T : K_{\Phi}(\overline{X}) -arrow K_{\Phi}(\overline{Y}) is weakly compact

operator if and only if T: \Delta(\overline{X})arrow\sum(\overline{Y}) is weakly compact.
(ii) The real interpolation space K_{\Phi}(\overline{X}) is reflexive if and only if the

inclusion map I : \Deltaarrow\sum is weakly compact operator.

PROOF. Since \Phi\subset\omega with the continuous inclusion, so reflexivity of \Phi

imply that B_{\Phi} is closed subset of \omega . Of course \Phi contains no subspace
isomorphic to l^{1} . Thus by Proposition 10 and Theorem 5 the inclusion
map J : K_{\Phi}(\overline{X})arrow\Sigma(\overline{X}) is a Tauberian injection. Thus (i) (and (ii)) fol-
lows by Theorem 8 (Corollary 9).

The result obtained by taking \Phi=l_{p}(2^{-\nu\theta}) , 0<\theta<1,1<p<\infty in Corol-
lary 11 (ii) is an extension of the Beauzamy result [4] (see also Neidinger
[15] ) for the Lions-Peetre space \overline{X}_{\theta,p} .

REMARK. The assumption that \Phi is reflexive space is essential in
Corollary 11. Namely, by the result of M. Levy [10], if \Phi=l_{1}(2^{-\nu\theta}) , 0<
\theta<1 , then K_{\Phi}(\overline{X})=\overline{X}_{\theta}1 is not reflexive since it contains a subspace
isomorphic to l^{1} for any Banach couple \overline{X} such that \Delta(\overline{X}) is not closed
subspace of \sum(\overline{X}) .

In [2] Aronszajn and Gagliardo showed that to any Banach couple \overline{A}

and a coresponding intermediate space A there exists a maximal exact
interpolation functor \mathscr{F} with the property \mathscr{F}(A3\subset A . This functor is
called the coorbit functor and is denoted by Corb_{\overline{A}}(\mapsto A) . The space
Corb_{\overline{A}}(\overline{X}, A) consit of all x\in\Sigma(\overline{X}) such that Tx\in A for any T\in \mathscr{L}(\overline{X} ,
A\circ . We put

||x||_{corb}= \sup\{||Tx||_{A} : ||T||_{\mathscr{L}_{\backslash }’\overline{X},A\gamma}\leq 1\} .

In the theory of interpolation spaces many important exact interpola-
tion functors are the coorbit functors. Let us consider the special coorbit
functor H_{1\rho} generated by (A_{0}, A_{1})=(l_{1}, l_{1}(2^{\mu})) and A=l_{1}(1/\rho(2^{-\nu})) , where \rho

is a quasi-concave function. This functor was extensively studied lately
(see for example [7] and [17]).

PROPOSITION 12. Let \overline{X}=(X_{0}, X_{1}) be a Banach couple such that \Delta is
a dense subspace of X_{0} , X_{1} and H_{1\rho}(\overline{X}) . Then the inclusion map J :
H_{1\rho}( \overline{X})arrow\sum(\overline{X}) is Tauberian injection, provided that neither X_{0} nor X_{1}

contain subspaces isomorphic to Co and \rho, \rho_{*}\in_{rightarrow}\varphi_{0} , where \rho_{*}(t)--t/\rho(t) for
t>0 .

PROOF. First we observe that B\mathcal{J}(x\gamma is a closed subset of \sum(\overline{X}) for
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every Banach couple \overline{X} , where \mathscr{F}(\overline{X})=Corb_{\overline{A}}(\overline{X}, A) , whenever B_{A} is
closed in \Sigma(A\circ . Thus the unit ball of H_{1\rho}(\overline{X}) is closed subset in \Sigma(\overline{X})

for every Banach couple \overline{X} .
Now if \rho , \rho_{*}\in \mathscr{P}_{0} and \overline{X} satisfies the assumptions of Proposition 12,

then by Corollary 1 and Theorem 12 of [7] (see also [17, Lemma 8. 3. 2 and
Theorem 8. 8. 2]), it follows that J^{*}(\Sigma(\overline{X})^{*}) is norm-dense in H_{1\rho}(\overline{X})^{*} .
Thus the proof is finished by Theorem 5.

REMARK. It is easily see that the fundamental function \varphi of the fun-
ctor H_{1\rho} satisfies

\varphi(t)^{-1}=\sup\{||\xi||_{l_{1}(1/\rho(2^{-\nu})\rangle} : \xi\in l_{1}\cap l_{1}(2^{\mu}) ,
||\xi||_{t_{1}}\leq 1 , ||\xi||_{l_{1}(2^{\nu})}\leq t^{-1}\}

for t>0 . Hence, we obtain \varphi\approx\rho . Thus \varphi\in \mathscr{P}_{0} if and only if \rho\in \mathscr{P}0 . In
consequence applying Proposition 12 and Theorem 8, we obtain the inter-
polation theorem concerning weak compactness of the operators from
\mathscr{L}(\overline{X},\overline{Y}) acting between H_{1\rho}(\overline{X}) and H_{1\rho}(\overline{Y}) .

References

[1 ] C. D. ALIPRANTIS and O. BURKINSHAW, Positive Operators, Academic Press, New
York 1985.

[2] N. ARONSZAJN and E. GAGLIARDO, Interpolation spaces and interpolation methods,
Ann. Mat. Pura Appl. 68 (1965), 51-118.

[3] J. BERGH and J. LOFSTROM, Interpolation Spaces. An introduction, Springer-Verlag,
Berlin-Heidelberg-New York, 1976.

[4] B. BEAUZAMY, Espaces d’Interpolation R\vec{e}els : Topologie et G\’eometrie, Lecture Notes
in Math. 666, Springer-Verlag, Berlin-Heidelberg-New York 1978.

[5] Yu. A. BRUDNY\check{I} and N. Ya. KRUGLJAK, Interpolation Functors and Interpolation
Spaces I, North-Holland, Amsterdam 1991.

[6] K. HAYAKAWA, Interpolation by the real method preserves compactness of operators,
J. Math. Soc. Japn. 21 (1969), 189-199.

[7] S. JANSON, Minimal and maximal methods of interpolation, J. Funct. Anal. 44 (1981),
50-73.

[8 ] N. J. KALTON and A. WILANSKY, Tauberian operators on Banach spaces, Proc. Amer.
Math. Soc. 57 (1976), 251-255.

[9] S. G. KREIN, Ju. I. PETUNIN and E. M. SEMENOV, Interpolation of linear operators,
Nauka, Moscow 1978 (Russian); English translation AMS, Providence, 1982.

[10] M. LEVY, L’espace d’interpolation r\’eel (A_{0}, A_{1})_{\theta.p} contient t^{p} , C. R. Acad. Sci. Paris
289 (1979), 675-677.

[11] J. LINDENSTRAUSS and L. TZAFRIRII, Classical Banach Spaces II, Function spaces,
Springer-Verlag, Berlin-Heidelberg-New York 1979.

[12] M. MASTYLO, Interpolation spaces not containing t^{1} . J. Math. Pures Appl. 68 (1989),
153-162.

[13] R. D. NEIDINGER, Factoring operators through hereditarily- t^{p} spaces, Lecture Notes in
Math. 1166 (1985), 116-128.



114 M. Masty \chi 0

[14] R. D. NEIDINGER, Properties of Tauberian operators on Banach spaces, Ph. D. Disser-
tation, University of Texas at Austin, 1984.

[15] R. D. NEIDINGER, Concepts in the real interpolation of Banach spaces, Longhorn Notes
The Univ. of Texas at Austin, Functional Analysis Seminar 1986-87, 1-15.

[16] R. D. NEIDINGER and H. P. ROSENTHAL, Norm-attainment of linear functionals on
subspaces and characterizations of Tauberian operators, Pacific J. Math. 118
(1985), 215-228.

[17] V. I. OVCHINNIKOV, The method of orbits in interpolation theory, Math. Reports 1,
part 2, Harwood Academic Publishers (1984), 349-515.

Institute of Mathematics,
A. Mickiewicz University,
Matejki 48/49

60-769 Poznafi, Poland


	1. Introduction
	2. The real interpolation ...
	THEOREM 1. ...

	3. Interpolation functors ...
	THEOREM 5. ...
	THEOREM 8. ...

	4. Applications
	References

