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The symmetric “ doughnut” evolving by its mean curvature

Knut SMoczyk
(Received May 19, 1994)

1. Introduction

Let M, be a compact manifold without boundary given by a smooth
immersion Fo: My—R™" immersing M, as a hypersurface in R™"'. Then
we want to find a family of smooth immersions F(%,t) corresponding to
hypersurfaces M:=F(+,t) such that

W SFE = -HE D50
F(z,0) = Fy(%),

where (%, t) is the outer unit normal at £EM, and H(x, t) is the mean
curvature of M, at (%, ¢).

In the case of a convex hypersurface Mo in R™*' with m>2, Huisken
showed that (1) has a solution on a finite time interval and that the
M.s converge to a single point. In the case of convex plane curves Gage
and Hamilton proved that equation (1) shrinks M. to a point within
finite time.

In this paper we want to discuss the behaviour of M: when M, is the
embedding of a m-doughnut Fo: S'X Co—R™" such that M, is invariant
under all rotations in the (zi, zn+1)-plane. This means the following :

Let RZ%:={(z, ", zn, )ER™|z>0} and let Co be a compact manifold
without boundary smoothly immersed as a hypersurface into R%. Then
we define the “ doughnut” M, generated by C, to be the manifold

MO ::{(ZI.COS(¢)) K2y *°°y Rm, Zl.Sln(¢))|¢E[O) 271‘), (Zl, Tty Rm, O)ECO}'

The so defined “ doughnuts” are not convex, since the eigenvalue in
rotational direction assumes positive and negative values. Since equation
(1) is isotropic we know that the M.’s must be rotationally symmetric too
and we can define the “ generating manifolds” C. as the intersections of
M; with the half-space R%.

One can show that M. stays embedded as long as a smooth solution of
(1) exists, if this was true for Mo, so the manifold C: is an embedding of a
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hypersurface in R™ and since M, is generated by C: the behaviour of M, is
totally determined by the behaviour of C.. If (%, t) is the outer unit
normal on M, at a point (£, ¢#) of C: and (%, t) is the outer unit normal
on C: (as a submanifold of the half-space RZ%) at the same point, we
have v(%, t)=v(%, t) since M, is rotationally symmetric. This is not true
for the mean curvature of M:; and C: respectively. In fact we have
H(%, t)=H(%, t)+A(%, t), where H(x,t) is the mean curvature of C: and
A(%, t) is the eigenvalue of the second fundamental form on M, that
belongs to the rotational direction. If we introduce cylindrical coordi-
nates for R™*!, i.e.

(7, ¢, 22, *, 2m) With z1=7+c08(9), Zns1=7-sin(p),
r >0, p<[0, 27)

and erzcos(go)-ai&-ksin(qo)-%ﬂm, then it is easy to see that

A:(u, er)

r

’

where (-, +) denotes the inner product of R™*'. So we have H-o=(H+)-v.

This means that the generating manifolds C: are evolving by a some-
what different evolution equation, i.e. they are solutions of :

(@) DFG, )= —(H A+, £)v(x, 1)
F(x,0)=Fy(x), F(x, t)€RZ%

where F(-, t) is an embedding of C:. Any solution of (1) gives a solution
of (2) and the opposite is true as well. So the maximal time interval
[0, T) where a smooth solution of (1) exists is the same maximal time
interval for which a smooth solution of (2) exists. We remark that for

(21, '+, z2m, 0)ERZ, we have z=r, er=% and state our main theorem :
1
THEOREM 1.1. Let n:=m—1 and n=2, assume C, is a compact
manifold without boundary smoothly embedded into RIS and that all

cigenvalues of the second fundamental form A, i=1, -, n satisfy the
condition :

a
( a ) A > ”
with a positive constant a satisfying

4
3_ 4
(b) na’—a 373 >0
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then equation (2) has a smooth solution for a short time and the solutions
C: converge to a single point p in RIS in finite time and in the same time
the “ doughnut ”, generated by C,, converges to a Sy, r=|p| under the

mean curvature flow.
If we examine the normalizations C; in R"™ given by
F=¥(F-p)
where ¥(¢) is a factor such that the total area of C: is equal to C, for all

_ ¢
time, then with the new time variable ¢ := ﬁ V%(r)dr we have

THEOREM 1.2.  The mnormalized wmanifolds Cr exist for t€[0, o).
They are translated homothetic expansions of the C:'s and converge in the
C>-topology to a spherve of area |Co| as t —.

REMARK. We recently learned that Ahara and Ishimura [AI],
have studied the problem of “thin” doughnuts in the case m=2, i.e.
n=1. They used the techniques of Gage and Hamilton to show that
the doughnuts converge to a circle in finite time, if they assume initial
conditions very similiar to ours. Both results do not overlap but our
result can be seen as an extension to higher dimensions. Our result does
not work in case #=1 since we make use of the Codazzi-equations which
are worthless for n=1.

2. Notation and preliminary results

We will follow the notations in [Hul]. Vectors on C: will be denoted
by X={X?}, convectors by Y={Y:} and mixed tensors by T={T4}. The
induced metric will be denoted by g={g.;}, the second fundamental form
by A={h;}. The summation convention is understood from 1 to # and
we will use brackets <-, > for the inner product on C;, i.e.

KT#, SE> = gisgieg™ Ti ST
| T|? =<T#, T#.

The induced connection on C; is given by
kR __ 1 kl
I's = 29 (Giti + Givsi— Gis0),

where gz'j,l:"‘éi__gij. Then we have for the covariant derivative of a
l

vector {X?}
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0

Vle - an

X' +T5 X"

The interchange of two covariant derivatives is given by

V.V, X"=V,V.X" = Rl X* = (hihir— huhi) g™ X"
and
ViV Ye=VV:Ye = Risng"™ Yn = (hahsi— hithjr) g™ Y.

n+1

The inner product on RZi' will be simply denoted by (-, ). Then we
have the following relations :

H= gijl’lz’j
|A{2 = gYg" hah;
o <8F 8F>
v ox:’ 0x;
_( dv 8F>
hij N <8xz-’ an
r =(F, er)
i oF \ oF
er=g (er, 8x,->8xj +(y, er)v.

The Laplacian of a tensor is given by
ATE= g%VV.TL
Furtheron we have the Gauss-Weingarten equations

FF ., OF

(%Ciax]' o Fij GXk ——hiﬂ/
and

o _ ., woF

o 9 o

LEMMA 2. 1. (a) Ahz‘j = ViVjH+thmgmlh1i—|A|2hij
(b) |Vr]P=1—A4%7
(¢) Vit =g naVr—av.r)
(d) VA=V, Ver>— g™ hins + 2

—%g””’(hmvir + hniV ;7 )V ur +%/;Virv_i7/.

PrOOF. (a) Thisis 2.1 (i) of [Hul]

(b) We have V= g; =<%, er> and thus e,=V#»+(v, er)v this yields
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1=(er, e-)=|Vr*+(y, e;)?=|Vr|*+(Ar)?
(c) can be proved by a simple calculation whereas (d) is a consequence
of the Codazzi-equations, i.e. Vihjw=Vhri=V1rh.

As in we have
2 3 2
LEMMA 2.2. (a) |VAPf=> n+2|VH|

z_i 2 Z(W—l) 2
(b) |VA] anle P VAP

We define :
C := g"g* g™ hixhinhn;
z := HC—|A|*
Qzlz |Vz-hsz—V,-Hhkl|2.

The following Lemma is in
LEMMA 2.3. If H>0 and hi;=eHg:;; with some €>0, then we have :
(a) Z = nesz(lAlz—%Hz)
(b) @ =y eHIVHF.
3. The evolution equations

We will denote derivatives with respect to time ¢ with a point, e. g.

L0
gij — 81‘ gis-

Then we have

LEMMA 3.1.  gus=—2(H+A)hs.

PROOF.
:<6’_F 8F> -:<8F 8F> <8F 8F>
i ox’ 8xj ox;’ 6’xj 0x:’ axj
:_<8(H+/1);/ aF>_<aF 8(H+/1)v)
8xi ’ axj 8961" 8xj
:—2(H+/I)< g;, gf)z—z(HH)hﬁ.

LEMMA 3.2. v=V(H+A).

PROOF.
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; U(. aF>aF _ U( aF>aF

g\ 8xz~ an Yy axl- 8xj
. (HFANY\OF
-9 (V’ 8xz~ /axJ

4 0(H+A) OF _
=9 an VA,
LEMMA 3. 3.
by = Ahy +%<thij, Vir>—2(H + D himg™hu+ (| AP+ A2 by
“%g”'"(hmivjr%—hmsz-V)Vnr%-—iéz—Vz—err.
PROOF.
- [ *F . (H(H+A)y >_( ’F )
o= (axiaxj’ ”) _< s, Y) \awamy VHTA
_ M(H+2) ( v )_ W OF _
- 0% ;:0X; +(H+/1) 0x:0x;’ v (Fij 0Xr hasv, V(H_}_/i))
_ H(HH+A) m,( *F )_ %
 0x:0%; +(H+/1)hjmg dx:0%1, ,V Fiij(HwL/l)

= V.V, (H+A)—(H+ ) himg™ h
and the Lemma follows from (a) and (d).

LEMMA 3. 4. H=AH+%<V,~H, vir>+H(|A|2+A2)—%<vi/1, V.

PROOF.
H: —gisgjtg'sthij+gijkij
- 2(H+A)|A|2+AH+%<viH, Vo> —2(H+ )| AP

AP+ AV H L, Vor Ve + 29
- AH—i——lr—(ViH, Vo> + HIAP+22)

—%«hw, VirVid—aveP)

and we can conclude with <ViA, V.»> = Ly((hij, VirVir>y—AVr|).

LEMMA 3.5.
(4P = A|A|2~2|VA|2+%<VAA|2, Vo> + 2l AR(AIR+ )

—4|v/1|2—ij—<v,-a, Vi),
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PROOF.
(A = —29™¢"™ Gamg* hinhii+29"g* hinh s
— 4(H+2g"g" " hamhichsi+20°0" his byt -V shs, Vor>
—2(H + A himg™ hn+ (AP + 22 by

—%g”’”(hmzvjr + hw;V 17 )V v +~27izvzrvjr)

_ A|A|2—2|VA|2+%<VI~|A|2, Vo> +2l AP AR+ 22)
—iza’tikvj?’, //ljkVi7’> 'I"i/l_(hij, Vi”vj7’>
/4 Ve
= AlAP—2IVAP+-CV AP, Vir> + 2l AP AP+ 2) — 4|V P
ARG A V.
.
LEMMA 3. 6.
(H?) = AHZ—ZIVH|2+%<VZ-H2, Vir>+2H (| AP+ 2)
—4—f~<vz~/1, Vo,

PrOOF. This is an easy consequence of (H?)'=2HH and the fact
that AH*=2HAH +2|VH|* and Lemma 3. 4.

and Lemma 3. 6 yield
LEMMmA 3.7.
(AP——H?) = A AP ——H)— 2V AP~V EP)
+ v Ar—LE2) v
/4 n
+2(| AP+ (AP —-LE)
—4|V/1|2—|—744;;(H— nAV A, Vir>.

LEMMA 3.8. 7 = —(H+A)Ar = Ar—A%r.
PROOF.  Since Ar=— Hy,, we get
= (F, e) =(F e)=—(H+N)v, er) = —(H+)Ar =Ar—1*r.

LEMMA 3.9. A= AA+A(|A|2+A2)+—3;<VM, V.
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PROOF.
i ::<(v,er)> C (D,er)__(u,fr)f
/4 /4 v
— <VZ(H+7//1), vi7’> +(H+/1)/12
From (d) we get
AL = gV VA = M—AIAIZ%—AZH—%WM, Vo,

This gives Lemma 3. 9.
LEMMA 3. 10, ﬁ:Aﬁ+ir<vf1, Vo> + H(AR+ ).

PRrROOF. This is a simple consequence of and Lemma 3. 9.

REMARK. One can show that for a rotationally symmetric function f
on M: we have the relation Auf=Acf|c +L7<ch|c, Ver>, where Ay, Ac are

the Laplace-Beltrami operators on M: and C: respectively. So
3.10 is an easy consequece of Corollary 3.5 (i) in [Hull.

We will need the evolution equation for the following function:

a1
fo:= —gro 2>0>0.
We have
LEMMA 3.11.
R — 2
fo= Afg‘f'——‘—*"‘z(l HG> KVifs, ViH>+i7<vifo‘, Vi7’>_2_HQ4—o‘
—e(1—0)lz Lo \VHP + af (| AP+ 20+ 22— 0} L2 (VA Vird
= C,|V/1|2 HZ ——=(H — nA)XVA, Vir.
PROOF.

Fa=HTAQAP—LH) 2V AP+ 2V H P+ (T (| AP —-H), Vo
F2|AP+ AP —LH) — 4192+ = nd)<T2, Vor>)
o= H *AH+CVH, Vir)

H(|A|2+/12)—%<vi/1, vir>}(|A|2——1n—H2).
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Now we have
Afe = H2A(AP— H2)+(|A|2——H2){(0 2)H*AH
+(0—=2)(6—=3)H |VH|*}+2(c—2) H V(| A]*— H2 ), V:H>.
This yields

fd = Afo—

+2(2—0)H XV, (1A|2——H2) V:H>
—2H°" 2IVAI2 H" JVH |+ H"'2<Vz-(|A|2——H2), Vir>

+2f(|AP+2)—4H VAP + H2 ——r=(H — nA)XVA, Vir)

—(o_ fo‘ ) ) (9 __ 2 2 _ fo‘ ) )
(2—o0) 7H<V1H,Vzr> 2—0)fs(|AP+ 2 +2(2—0) rHW"{’V’”'

Now taking the relations

(@ —|APFIVH + HCVIAP, V)
o-2
Lvise v =2

VAP =

(Ar—Lm, v —(e- O)LWZH, Vo)

;HZ)VH> (2— o) HVH

LHWJG, V.HY = HO5VA(| AP —
into account, we get

fd:Afd (2—0)3—0

—2H°" 4Qz+2 r|VH|?

+2(1—a)H“—3<vi(|A|2—iH2) viH>+—<Vifa, Vir>+ ofs(|AP+2%)
4

HZ 0‘(
:Afa+LHgl<Vz~fa, VH~[2-0)3-0)-2-201- )2~ )} L%

+2(2- o) fo T VA, V> —4H VAP + — AV A Vard

—2 H6-4Q2+i<vifd, Viry+afs(| AP+ ) +2(2—0) rf}; Vid, Vir

~4H" VAP + H2 ——r5(H — nA)XNVA, Vir).

This gives Lemma 3. 11l
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LEMMA 3.12.
(VAP =A(VAP -2V HP+V VAR, V.5
+ 2V Bhs, Vi =2V, VoY
+2(AP+B)IVH+2HVH, V(| A+ 42)>.
PROOF.
(VHP)
=29 hoiV IV H +29°V HVAAH +-CV.H, Vir + H( AP+ )
Now we need the following formula. For any smooth function on C. we
have:
ViAf = AV;f — "V f (Hhji— himg™ ).
With f=H we get

(IVHP)" = 2H<hy, V.HVHY +AVH? 2|V H?
- 2gijVnglekH(thz - hjmgmnhnl)

+2gifviﬁvj(lr<vkﬁ, vkr>)+2<vlﬁ, VAH(AP+22))
= 2K hy, V.HVHY + AV H P —2|V2H 242KV :EHh 0, VHh D

—£v A, VY + LoV Hg"V VeV

+%gffviﬁg“vkﬁvjvlr AR+ DIV H?

+2HVH, V| AR+ 22)).

The relation
ir<vi|vﬁ|2, Viry = %g"jviﬁg“vjvkﬁvlr
yields
(IVAP) = VAP -2V AP+ VAP, V.
+ 2 hij, VAHV H Y + 24V :Hhjo, V;Hhit)

——727<v1-ﬁ, vir>2+%<vivjr, V.HV,E
+2( AP+ )\ VH?+2HVH, V(AP 22)>
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and we can continue the proof with the Gauss-Weingarten relation
VVir = —hijyr = —Avhi.
LEMMA 3. 13.
[(AF Lm0 A] - = AlAP—L B A2V, V(AP — B

AN -2H(VAP-LIVHP)
+Lewigar-Lunm, v
+3(AR+ 2 AP--LH A

iHr—(H— AV Vi,

PrROOF. This is an easy consequence of and Lemma 3. 10.
Let M;; ::hﬁ—<€H+%)gzj.

LEMMA 3. 14.

My = AMo+-200Mo, Vard —2(H+ Dhong™ i+ (1AL + )
——1—g”’”(hle 7+ bV v \War +=7 /EV Vv
+2(H+2A)(eH +%)h,-j—eH(lA|2+/12)gij
+2E4V,A, Virdgut ( AL M )g,,

PrOOF. From [Lemma 3.1, 3.3, 3.4 and 3.8 we get
Wiy = Ahy T, Vary=2(H + Dhimg™ has (| AP+ 1) s
L g eVl )V + DV + o H + ) eH+% )h

—<5AH+7<ka, Vir>+eH( AP+ 1) —EECV.A, Vary

a_2a,g MZ) )
The lemma then follows from

L0t Vary = LThis, Var> —SCVH, Vir>got 51V gy
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AMy; = Ahij—gijA(eH +—‘;—)

and reorganizing terms.
4. First results

—1
-

Condition (a) in [Theorem 1.1 means_that H= H+A>n— |A|>24—L
>0, since condition (b) implies that a>%

LEMMA 4.1.  If H>H,>0 on Co then H=H, on C: for all t<[0, T),
where [0, T) is the maximal time interval on which a smooth solution of
(2) exists.

PROOF.  This follows from the parabolic maximum principle and

Lemma 3. 10.

LEMMA 4.2. If H>0and r>r>0 on Co, them this is true on C,
[0, T).

PROOF.  Otherwise there would be a first time f and a point p< C,
such that 7(p, t)=70and 7 (p, t)<0, V#(p, t)=0. This yields, since v is
the outer unit normal, that v=—e¢, and from and 4.1 we
would get that #(p, t)=—H (v, e,)=H >0 which is a contradiction.

means in particular that
r(p, t) = 7o 1=min 7(, 0).

REMARK . If M;dx'® dx’ is a tensor then we will write Mi;>0, if
M;v'v’ =0 for all vE TC.

From our main condition (a) of [Theorem 1. 1 we obtain that

a
hij—7gij >0

on Co and so we can find an € >0, with e<min(L, %( na —a——)> such
that " 33

(C) hz’j—<EH+%>gij =0

on Co. We want to show that (c¢) remains true as long as a smooth
solution of (2) exists. For that purpose we need the following maximum
principle, which was proved in [H]:
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Let u. be a convector field and let gi;, M;; and Ni; be symmetric tensors on
C which may all depend smoothly on time #. Assume that N,; satisfies a
null-eigenvector condition, i.e. for any null-eigenvector {v'} of My; we
have N;v'v’=0. Then we have

THEOREM 4.1. (HAMILTON):  Suppose that on [0, T) holds
Mij - AM,-j-i-(uk, VkMij>+Nz'j

where Ny satisfies the null-eigenvector condition above. If M;=0 at t=0
then this is true for all t<[0, T).

From this we get

LEMMA 4.3. If condition (c) is true on Co then it remains true as
long as a smooth solution of (2) exists.

PrOOF. This is a consequence of Theorem 4.1 with s =—17—Vk7 and

Nij = _2(H+/1)h,mQMthz+(‘A|2+A2)hu

g Vi 4 sV W + ViV 2(HA ) eH 4
2
—eH(|AP+ ) gy +2—:<sz1, Vir>gi+ <%|Vrlz —%)gﬁ.

We must only proof that N;; satisfies the null-eigenvector condition. Let
f, be the first time where at some point pE€C:, a zero eigenvector {v'} of
M, occurs. Choose an orthonormal basis (er, =+, ea) for T»C:, such that
hi; and thus M, becomes diagonal. We assume that v=e and that A, -,
An are the eigenvalues of % at p. Then it follows that at p

A= eH+%
»

and we obtain
Nijvil)j = N11
— —AH+ DR+ (AP+ 2 =22k (Va7 )

+—274(V1r)2+2(1{+/1)/1%—eH(|A|2+/12)

2
L2809, Virs +- %V -4
/4 v v

= 4 ap L+ 2R @, 2w, V.
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From (c) we get
LEV Vary = 22 (= AL)(Var

where 1;:=1, 7=1,--, n. Since H=Ai1i2n<sH+£>>neH and ne<1 we

have H>0 and thus A;>0, =1, -, #n. Furtheron we have Ml—)(y er)

1

— Then we obtain together with (b)

*(VM Vk7’> = —‘T

2
Since H >0 we get IA!ZZA?1i>n%+2neH% and thus

Niv'v’ > +2neH 2+——|Vr|2+2</1 eH — >(V;7) ié;

. 3 4 . . 2 .
Since na’—a 373 >0, a>0implies that na*—1>0, we obtain
Nov's' = nls—yy - 28rlig,p_ 2e

and with (b) finally

Niv'v’ > ~:—3(na3— a——g—{lﬁ—Zs)

and we can continue the proof since 2e<na®—qg— 3\;1? by assumption.

COROLLARY 4.1.  There are positive constants d\, dz, ds independent
of time such that
di<H<dH<d:H.
PROOF.  This is immediate from Lemma 4.1, 4.2 and Lemma 4.3
since H=H+A and IAIS%.

As in we have

COROLLARY 4.2. T <o,




The symmetric “ doughnut ” evolving by its mean curvature 537

5. A bound for fs

As in we want to show that the eigenvalues of the second fun-
damental form asymptotically approach each other at those points, where
the mean curvature tends to infinity. The idea is to bound the function

AL
fa———HTn—— for a positive constant 0. We do this since |A|2—LH 2=

—2(/1, A;)? measures how far the eigenvalues of {k;} diverge from each

ni<j

other.

THEOREM 5.1. There are constants do, 6>0 depending only on the
initial surface Co such that

fo < do
for all t<[0, T).

To prove Theorem 5.1 we want to show that high L?-norms of fs are
bounded and therefore we will need the following Lemma which is

5.3 in [Hull.

LEMMA 5.1. Let p=2. Then for any >0 and any O<0<—%— we
have the estimate

ne? f P du < (27p+5) ffé’H"‘leled/Hr (p—1) ff§_2|Vfa|2d;z.

PROOF of 5.1. From we get that h;—eHg; =0 for all
telo, T), with 6<—1n—. Then we can use to prove
exactly as in [Hul}.

LEMMA 5.2. Let 0<0<1. Then we have

fo- < Afo--l-z—(%Q(Vifo; ViH>+_1—<Vifo‘, Vir>

_ SHVHRH?+20fH?+ 160”H .

PROOF.  Since 0<1 we get from Lemma 3. 11 and Lemma 2.3 (b)
fd < Afd +—2(i[—{—0‘)_<Vifo‘, viH>+L<Vifo‘, Vﬂ’) - SZ‘VleHG_z

+of6(|A|2+A2)+ H" 2(H—nA)VA, Vv

+9(2—0) I’;‘; VA Ver.
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We have &2%2@!&‘ and thus IAISn—}{Z. This gives

Vid, Vird| = Ha—ALI(Var ) < Lja—anfu, < Ao+ 1)
Therefore and since fo<H’ 6<2 we get

4 _ ) ) _ fo ) )

p_— H(H—=nA)<ViA, Vir>+2(2—0) o VA, Vird

Ho‘l

KVA, Vs >|< +i+1>

o o
4H <1+1><1 1 +1)<16nH2
7’ n na /4))

1
because » =7, a >;, n>2.

2
Now taking into account that 1*°< nH |AP<H? 1+ 212<2 we get
Lemma 5.2 If we multiply this inequality with p/2 and integrate, we

get .
(i) (Jftdu) = [ '~ HAdu= — p(r—1) /fg—zlwdpdﬂ
B 1! f

+2(1 o)pf Vifo, ViHYdp+p

Jo, Vir>du

p-1
~ ' [[FfealVH dut 20 [ 12 ds +E§—p Jremedn.

REMARK. Let us denote by d any positive constant that only depends
on Co.

LEMMA 5.3.  There is a positive constant d=d(Ho, 7, n, €) such that
Jor all 0<0<1

1022 ffé’-lH“d/_z< ”‘F B (1ot dpf [fdut dp
PROOF. We have fé’"lHUSZLfé’Hzﬁ—lf(?‘sz“‘z and since x?72<

x”+1 for all x=0 and H>Hy>0, 0<1 we get with 7: 13,?;/—

FEUHo< 25r?sfFf 64f YD mzo-2(pp+1)

< z;gfﬁ f"H2+d1>(fa+1)
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with a positive constant d depending only on #, ¢, 7y, H, but not on p, ¢
or o.

LEMMA 5.4. Let p>2. Then we have

p—1 _ 2
» f f S (Vifs, Virdp < 1’—(1’—4#) ffé’“zlwdlzczwf—g f 2.

PROOF. First we take into account that for all 7>0
AV | V[
0y T2l

p—l
I o, V> < LV AN <
and since ¥ =7y, ——1—<p, IV7[?<1 we can continue the poof with

p—1

LEMMA 5.5. If 0<2 then

p—1
2(1—0)p / fo (V. fs ViHYdu
=) [ fpdura Ly [foe iV H d

PrROOF. This is immediate from fo<H° and

| < o fg IV H +L A VH,

if we take 7 :—*—?E—l.

We are now going to prove the following theorem:

THEOREM 5.2. There is a constant d=d(Co, n, €) such that for all

25 > : ( ne’ )
> L <
p_max(ez,Z , o<min|{1, 3905

<ffé’d;z>lp <d.

PROOF. In a first step we obtain from (i), Lemma 5.3, 5.4 and 5.5
that

([ftde) < —pp—1) ffé"ZWfalzdﬂ 201 (a9 fof e

e A R
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— % / Lo VHPdu+20p ffé’sz;z
”‘/— be /fé’HZdu+dp /fé’dﬂ+dp

g? ) ) n»/;ea

< o we obtain with 2¢p<

2
p—1
(ffedny <~ 222V [y ey, <0 L [ Hta
+%/f§[{2du+dp2/‘fé’dﬂ+ dp’.
Then we get with
([rpauy <~ 2LV [y a0 (L2 91,

” 2 oap+5) [V HE

and since

+£‘5§f7’%” J#EA foldt i [ppat ap

for all >0. We choose 7:= ij and get, since 5<evp

( ffé’du)‘ < dp* ffc‘?dﬂ"i‘ dp?
and therefore

/fé’a’/a < (ﬁ/é’dﬂ-%l)ﬂ"”-l

and the theorem follows from Corollary 4. 2.

64m>2 ) ) < en )
> <
haveCOROLLARY 5.1. For all p_rnax<< 3, ) 2), co<min|1, 6470 we

( f H™fbdu)s<d.
PROOF.  This is immediate from I'heorem 5. 2 since

[t sedu= [f2dy

. i m_
with o a+p_326.
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Now we can proceed exactly as in section 5 to show that fs is
bounded for suffciently small 6. This ends the proof of [Theorem 5. 1.

6. The bound for |[VH|?

As in we want to show :
THEOREM 6. 1.

For any n>0 theve is a constant d(n, Co, n) such that
\VH|? < gH*+d (5, Co, n).

PROOF.  First we get from Lemma 3.12 and Schwartz’ inequality that

O (VAP < ANAF-2AVAP+@IvaL, Vo
+4(lAP+ )| VHP+2HV.H, V| AP+ 22)>.

If we set A% ::hij_ngij, we get
n

2<V:H, VAP — H2)>| < 2KV.H, V(| Al*— H2)>|

+ 2KV, Vz-(IAlz——Hz))I

- 4|<V Hhkz, z>|+4|<v ﬂhkz, ih%z>|
< 4|VH||H zHVA|+4|V/1||h |IVA]
< AVH|IIVA|+ 4BV AP+ 4% IV AP
and since |A%/|* = ’AIZ———H2<a’H2 ° |VH|<#n|VA|, we obtain
2|<V; H V:(|AP— H2)>| < 4nd2H1‘7|VA|2+4H|V/1|2 d—IVAIZ.

Now we use Corollary 4.1 to derive

2KV :H, V| AP — H2)>| < dH'-HVAP+4H|VA]

< i’g;—nﬁlvmumlmu dIVAP.
Finally taking into account that

A (H—nA)VA, Viry < dH?
nr

and
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var-Livap > 2w ap
we get from Lemma 3. 13 that

@ AF-LEnA) <alAr-LE) )+ L@ (A - HO D), V>

_2An—1)

= ﬁ|VA|2+3<|A12+A2>(|A|2—inH2)ﬁ+dﬁH2+d|VA|2.

Now we want to find a constant N>0 such that for 7>0 the following
function is bounded for all t€[0, T')

£ J——+N(|A|Z H2>H+Nd|Alz— ek

with the same d as in (2). As in [Hul] we get the inequality

ryi2 17|12 2
(3) ('—Véi)sﬁvg‘ +Lew, 'Vg‘ Vo>

2 ~
+3(|A|2+/12)'lﬁfi+ WV, V| AP+ 22)>.

Then (1), (2) and (3) yield

() f = VFHvs v 30 AR+ R ‘VH i

+(V:H, VA AP+ 22>
9N ”3;1 ﬁ|\7A|2+3N(|A12+A2)(1A|Z—inHZ)H
+ NdHH?+ Nd|\VA|?—2Nd|V Al —4Nd |V A|?

+2NdlA|2(|A|2+/12)—4Na’ir<Vi/1, Vo> +67H|V HE— 39 AP+ ).

Now we have
0<|V:Hhn—VihuH? = \VHP|AP+IVAPH?— HCVI AP, V.H>

and using [Corollary 4.1, (0), (a) and the fact that
IVH|? < 2|lVH|*+2|VAP, |AP<H?,

we get

2V VA AR+ ) < 2“4' YA+ 2B VAP +4/A
< dH3+ dH|V AP

<|VH|2 |V2/1|2>
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Using this we can proceed exactly as in to find a constant
N(7, Co, n) such that

j< Af+ir<vif, Vard+d

which implies that f<d. From this we obtain together with [Theorem 5. 1
that

\VH]? < 7H*+dH < 27H*+d

and since 7 is arbitrary and |[VHP?=|VH—VA’<2|[VH]?+2|VA]? we get
with the help of (b) and (c) and [Corollary 4. 1 that

\VH? < gH*+d
which proves [[heorem 6. 1l
7. Proof of Theorem 1.1

THEOREM 7. 1.

limmax |A|* = co.
t-T Ct

PrROOF.  Since A2£% is bounded by [Lemma 4.7, this can be easily
derived from Theorem 8.1 in [Hul].

If we use (Corollary 4. 1 we can calculate exactly as in to show :

THEOREM 7. 2.

: Hmax _
131} Ho 1.

THEOREM 7. 3.
T
/0- Hr%ax(f)df = O,

THEOREM 7.4. If h:zM, then

fCtdﬂ
T
ﬁ h(r)dr = oo,

COROLLARY 7. 1.

AP _ 1

lim =
t-T Hz n



544 K. Smoczyk

These theorems together with [[Theorem 6.1 then prove [Iheorem 1.1
in the same way as in [Hul].

8. The normalized equation
We have just seen that the solution of the unnormalized equation
F=—(H+A)-v

shrinks down to a single point p&€ R%§' after finite time. As in we
want to rescale the solutions by a constant factor ¥ depending on ¢ such
that the total area |C.| of the rescaled surfaces are equal to |Co| for all t€
[0, 7). So if we set F:=¥ F and introduce the new time variable

- t _
t(t) :=j(; W%(r)dr we get proceeding as in [Hul]:

oF _ _ oo lr
57 (H+2) v+=-h-F
— fctH(H‘l‘/l)d#

where here A(t): Then we can prove the next Lemma

Ctdﬂ
in the same way as this was done for Lemma 9. 2 in

LEMMA 8.1. (a) ks> efgy

(b) %{—*1 as t—T
AP 1 -7
(c) |ﬁ|2 -, s t—T.

LEMMA 8.2.  There are constants c1 and ¢ such that for 0< f < T.
0< 1< Hmin< Hypax < c2< 0.

PROOF.  Suppose that the unnormalized equation shrinks down to the
point p€RZ{!. Then we define :

F:=W(F—-p) = F—¥p.

Then we get from (a) that (F, F)<c with a constant ¢ in-
dependent of time and we have hi;=h; V=7 and so on. If V' denotes
the enclosed volume then the same calculations as in [HU1] show that

7 {7 - 1 7 = NI — N 71 __n g5
Vt—V12 Hmax (,_“(F, V)Hd = n+1Hmax|CO| — n+1Hmax|C0|

and
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which gives the upper bound in view of Lemm 8.1 (b). The upper bound
together with (b) implies that

ljm(gmax - ﬁmin) = (.

t—T
From the isoperimetric inequality we get
V? < C'n‘(joln—'il

and the first variation formula yields
1 am o\
Cil =+ [ H(F, vz

< L Buer [ (F, 9+ (Hoin— Hne) (F, 9)da).

Cin{(F, »)<0}
This gives the lower bound since by the divergence theorem
7r= [(F, 9)dz
and V=V, H=H,|F|<c, im(Hnax— Hnin)=0 and |Ci|=|Ci|=|Cyl.
t—T
Since 7 < const Hiax<const we get again as in

COROLLARY 8.1. T =co.

9. Proof of Theorem 1. 2
THEOREM 9.1.  There is a constant ¢ >0 such that for all t €[0, )
V(t)=e .

Proor. We have

oY
o 1
\If_nh

therefore we obtain

o
ot _g2l, _1p
N7 =V nh nh

and since [Corollary 4.1 takes over unchanged to the normalized case we
get from that
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¥

aTt26>0

for all ¢ €[0, ) and the theorem follows since ¥(0)=1.

THEOREM 9.2.  There are constasts ¢, 6 >0 such that
Iﬁlz—%ﬁz < ce 7,

PrROOF. By Theorem 5.1 we have
AP-LH? < dH*°
with positive constants do and 0. Now we multiply this by ¥% and get

|/I|2—%ﬁ2 < doHrou-°

and the theorem follows from [Lemma 8. 2 and [Theorem 9. 1.
Then we can proceed exactly as in section 17 to conclude

THEOREM 9.3.  There are constants 6 >0 and ¢c<o such that

( 1 ) ﬁmax_ min < Ce“”
(i) R ——hgsl < ce™?
(iii) max|V"A| < cne ¥,

C

and since C stays in a bounded region and %=/, §i;= §:; the same argu-
ments as in [Hul] section 10 show that C: converges to a sphere in the

C*=-topology as f —co. This completes the proof of [Theorem 1. 2.
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