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Finite time blowing-up for the Yang-Mills gradient flow
in higher dimensions
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1. Introduction.

Let #>5, and P be a non-trivial principal G-bundle over S with the
standard metric g, where G is a compact Lie group satisfying GCSO(N).
In this paper, we prove the solution of the evolution problem for Yang-
Mills connections may blow up in finite time. Yang-Mills connections
over P are critical points of the functional

E(D)= [ |IF(D)PaY,

where F(D) is the curvature form of connection D. If D is a Yang-Mills
connection, then it satisfies the Euler-Lagrange equation of £ :

5 F(D)=0,

where d¥ is the formal adjoint operator of the exterior derivative dp with
respect to the connection D.
In this paper, we consider the Yang-Mills gradient flow :

oD
(1.1) {a—t:_dDF(D), on M x[0, T)
D(O>:Do.

In the fundamental work of Donaldson [7], he showed the global existence
of the heat flow on a holomorphic vector bundle over a compact Kadhler
manifold. Recently, Kozono, Maeda and the author show the exis-
tence of a global weak solution for the heat flow, if dim M=4. It is a
well-known result that if the initial value D, is smooth, then there exists a
time-local smooth solution D(x, t) of (1.1) on M Xx[0, T) for any compact
Riemannian manifold M with arbitrary dimension. In higher dimensional
case (dim M =>5), Bourguignon, Lawson and Simons and Bourguignon
and Lawson showed isolation phenomena of Yang-Mills connections
over S”.

fPartially supported by the Ishida Foundation.



452 H. Naito

Fact 1.1. (c.f. [1,2]). Assume n=5. Let P be a principal bundle
over S". Then there exists no non-flat stable Yang-Mills connection on P.

FACT 1.2. (c.f. [1,2]). Assume n>5. Let P be a principal bundle
over S"™ and D be a Yang-Mills connection over P. Then there exists a
constant €0>0 such that if |F(D)|<eo then D is flat.

In higher dimensional case, the Yang-Mills functional is not confor-
mally invariant, however, it is conformally invariant in four dimensional
case.

In this paper, we prove the following result.

THEOREM 1.3. Let P be a non-trivial principal G-bundle over S’
n=5. There exists a constant €1>0, if Do satisfies |F(Do)||izsm<e1, then
the smooth solution of (1.1) with the initial value Do blows up in finite
time.

In the case of harmonic maps heat flow, many authors considered the
blow-up and existence of solutions. Chang, Ding and Ye construct
solutions over a surface which blow-up in finite time. In higher dimen-
sional case (dim M >3), first Coron and Ghidaglia E]I showed the finite
time blowing up phenomena for harmonic map heat flow. Later, Chen
and Ding gave more general arguments. The method of the proof of
the main theorem of this paper is due to the method of Chen and Ding.

2. Preliminaries.

In this section, we prove preliminary lemmas for the proof of main
theorem. First, we show the existence of a connection with arbitrary
small energy. In the followings, let P be a principal G-bundle over S,
n=5.

PROPOSITION 2.1. For any positive number >0, there exists a
G-connection D over P satisfying E(D)<e.

PrROOF.  Let (7, 8) be poler coordinates on S”, with »<[0, 7] the dis-
tance to the pole and #=S""'. On the second copy of S*, we denote these
coordinates by (7, ). Consider the map ¢.: S™—S” defined by

— 7
oulr, 0)_{ r(»)=2 arctan (c tan >,

D

b

for ¢>0, i.e., »(r, )= r.(r)=2 arctan (c-tan —g—), (r, 8)=24.
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Let D be any smooth connection on P. On the coordinate (7, §), we
denote D=d+A. Pulling back D by ¢., we have D :=¢*¥D=d+¢*A=
d+A. Notice that D is also a smooth connection on P, since ¢. is a
smooth diffeomorphism on M.

Expressing A on the coordinates

Alr, 0)=A:r, 0)dr +As(r, 8)db,
then we have
Alr, 0)=A:or, 8))dr+ Az er, 6)do

Elementary calculations in local coordinates show that

:%A ,/S"—l(sinr)lF(D)|2(7’ 0)61’7’0’0
. 4= B
:L (Sln e )IF(D)IZdV

2 sin*r

——Vol(S" 1)supIF(D)I f <sm - >sin"‘1m’r.

Sln 4

"For #>5, we have
E(D)S—VOI(S"‘I)SEnplF(E)I?"[zsin“ re(v)dr.

For any >0, let

2e _
Vol(S”“)SlslnplF(D)I2 ’

7=

and p:=7—7/2, then there exists K>0 such that 0<tan»/2<K on
0<7r<p. Therefore 7.(7)<2 arctan (c-K) on 0<»<p, and there exists
¢» >0 for which 0<c¢<c¢, implies

0<sin* 77(:(7’)<"2—77‘6', for »<op.

Hence we have
'/o'nsin“ fc(r)a’rzﬁpsin“ ?c(r)dr+fp”sin“ r(v)dr

< ["7 "dr <
_/ng—dr—i—fpa’r_v,

and
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E(D)SLVOI(S”'I)SlsJHpIF([_))|2£”sin“ re(¥)dr

2
1 2¢e ___ .
Vol(S”‘I)S};HI:)IF(D)I2 '

STVOI(S'Z_I)SE"D‘F(D)‘Z

Let D(¢t)=D(¢, x) be any smooth solution of (1.1), and let 7 be the
maximal existence time of D(¢), where 0< T'<+co. Set e(t)=e(t, x)=
[F(D)(x, 1), and &(¢)=sup e(t, x).

LEMMA 2.2. There exists a constant 6>0 such that for any hHE
[0, T), we have

1
(2. 1) t0+ 8W£T’
(2.2)  e(t)y<(e(t)™ M —=08(t—t))?,

1
0<t—th<—F——.
for ’ v é(t)

PrROOF. By Bochner-Weitzenbsck formula [11, Lemma 3. 1], we see
2.3)  Ze(t)<ne(t)+Ce(t)™

On the point (x, t)eM X(0, T) satisfying e(u)(t, x)=¢&(¢) we have
Ae(t)(t, x)<0. By (2.3), we have

2.4 2x, D= Calt)”
On the other hand, we set
D*e(t)=lim sup et +h2l_ e(t) ,

h—-+0

then, by (2.4), we have
Dre(t)<Ce(t)**

By a comparison theorem for an ordinary differential equation, for the
solution of

y'(1)=Cy(1)*?, with y(t)=e(t),

we have &(¢)<y(¢). Therefore there exists a constant § >0 such that &(¢)<

= -1/2 __ _ -2 1
(e(t) S(t—1))72 for to<t<to+ IR |
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Let o be a positive constant less than the injectivity radius of S”, and {x‘}
a normal coordinate on a geodesic ball B.($). There exists a positive
number C=C(p)>0 such that the metric tensor {g:;} of S™ satisfies that

gii(x)= 045+ qi(x), 9%(x)=06"+q"(x),
with [g:(x)| < Cr?, |9g4(x)|< Cr,

for r=|x|<p.
For a smooth solution D(¢) of (1.1), we set

V(R, D)=W(R)=%R4‘"fsan(D)|2(to—Rz, x)Gr(x) o(x)*Vg(x) dx,

where ¢, is a smooth real valued function satisfying ¢.(x)=1 for |x|<0/2,

2
vo(x)=0 for |x|=p, and 0< ¢,<1 for all x and GR(x)Zexp(— [119%2> Here-
after, we denote Ey=E(D(0)) for the time-local smooth solution D(¢) of

(1. 1) with the initial value Ds.

LEMMA 2.3. There exists a constant C>0 such that for 0< Ri< R:< Ro=
min{p, v}, we have

W(Ry) < e P FIP(Ry) + C(eF =™ —1) E,.

PROOF. For the sake of simplicity, we assume #=0. By the scaling
f(R)=f =R%, ¥(R)=%=Rx, we have

V(R)
—-R* [ g (D)) Fal T, DFl T, D)G(E) g0 9(F) dal =,

2
where G(x)= exp(—l—zll—) which is independent from R. Differentiating

V(R) by R, we have

i \If(R) 4R'W¥(R)

(2.5) J. i i
+7£nd—1e(g”(f Vg E)VFul T, B)Fu( T, )G(Z)p*(ZW 9(%) )l 1-1.

First, we have

(1)
R4 . d?e (g™(£)g (R)Fs( F, D)Ful T, £)G(2)g (W g(%))drle=-1

.—.R%xmwgmw»gﬂ(ﬂ Fo 7, )l T, £)Go N o) -
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+B [ g" (D) (DLl Fo F, £)Ful T, 2) G (N o(2)
(2.6) +2R3[ (27 )(%(F,(t DVl T, 2) G () g(%) dl e

R [ g™(D)g"(5) Fol T, 2)Ful T, 2) G52l ) o) ) dile

R Lg (D DFA T, DFul T, DG () lo(7) /%dx|t=-1

=:(1I) + (1) +(IV) + (V) +(VI).

Now, we remark that

4-n T =)2 = 2
R [ JF(E, D)Fave= [ |F(t, nFaVs,

where dV:=vg(x) d% and dVi=vg(x)dx.
For the integral (II), since

ajm g9(%)-x" = — CR|x|’¢”(%),

we have
(II)
CR“/g t Jz f f \/ |9C| dX|t -1
CR“/g BFA T, £)6(2) A EW 9(F) ditfeonr
2.7) —CR“/g E)Fulf, R)Eu( £, %)X (%W g |x|“exp( x |)dx|¢ =
_C‘I’ CR/Q ,z f v dX‘t -1
>~ O R—CL|Ft,x|de|t=_1
>—C¥(R)-CE,.

For the integral (V), using the estimate

;g‘f,, %)< CRo™"

we have

- 2
(V)< CR* [[JF(7, 2)flxlexp( — 25 avad.

(2.8)
<C [[IF(t, 0)FdVileer < CE.
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For the integral (VI), we have

(VD)
< CR* [ g0 () Ful T, )Ful F, £) G2l (2) (%) =

By a similar calculation to the estimate for (II), we have
(2.9) |(VD)|< C¥(R)+ CE.

Using (2.6), (2.7), (2.8) and (2.9), we obtain
(2.10) (I)=>—C¥(R)— CE,+(II))+(IV).

For the integral (IIl), first, we have

OFm;

ox =V iFnj+TinFp;+T% Fop,

-_—65”+I‘fix R
(F, [F, w]>=0 for any g-valued function w,

(2.11)

where V denotes the covariant differentiation with respect to a fixed con-
nection. Let V be the covariant differentiation with respect to the connec-
tion A(¢), t=—1. Using the Bianch identity 6mFij:6iij"‘§iji, %G=

—%—G and (2.11), we may calculate that

(110)
=R*/ fk(az)g“(f)x'"%Fij(f, DFul T, 2)G(2) (%)W g(%) di|e=1
+R3/ 0™(2) g () x"To(x) Fos T, £)Ful T, %) G(Z) e EW 9(%) dix| -1

+R [ g0 (DT Fil T, D)l x)(;(f)qozmm -
S f g*(%) '5c')F,-j(f,f)sz(f,f)G(aE)ﬁ(f)%det:_l

(.12 2R [g*D (f)x’”Fm,-(f,JEWIFH(?,f)G(a’c’)cpz(f)mdxlt?l
~2R° [ M) (D)5 Fu F, DDFul F, DV:G(E) (2N o) il o
2R [ gH (DD Ful T, )sz(f,f)G(f)Viqoz(f)/;(?)dxlt:_l
= —4R™(R)—2R* [ < F(T, 2), dSF(T, D)) G(2) (D) 9(%) dil
+R [ o F(T, 2, xUF(T, DD GU(EW g(7) decs
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—4R3/<x F(f, %), VoL F(t, 2)>G(x)p(z) 9(%) dx]=-1.
Here we set

(% F){(%)=x"Fni%),
(xLF)(x)=x'g "“(x)sz(x)

(VoL F)z(f)=—(¢(x)) *( %) Fr %),

which are well-defined only on supp e¢.
For the integral (IV), using the equation (1. 1), we have

(IV)

= 2R [ 1) () dodE F)o T, £)Ful F, £)G(2) (0 g(7) il
(2.13) —ZRfld F( f x)|2 (%) g dx|t -1

B[ <asF(F, 2), xLF(E, )G RN o(F) dile-s

HAR® [ (dBF(F, £), VoL F(T, £ GR)e( DN gD dieli—r.
Combining (2.12) and (2.13), we have
(D) +(1V)

= 4R W(R) 4R [ VLLF(T, %), diF(T, %)
—x-F(f, 2)>G(2) oA %)W g(%) do|s=-
+2R/|d F(f,2)—x-F(f, 2)PG(x)pX (%)Y g(%) dx|e=-1
(2.14) +2R/<d F(t,2)—xF(f,%), x_F(f, %)

—xF(t, £)>G(x)p(%)v g(%) dr|e=—1
>—4R'"V(R)

—4R3/ VoL F(T, £)P GGV g(Z) dilems
—RS/IxI_Ft £)—x-F(f, £)PGE) (%) g(%) dr|e=—1
=: —4R"W(R)+ (VID)+ (VI).
For the integral (VIl), we have
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V)| =R [ |VoL F(T, D) G(2)¢* (W o(F) drl=-s
<R [ IVHIF(F, )PG(D)e* (W o(7) dixles

Since R<Ri<p, we have |[Vo(%)|<CRp'<C. Therefore, by (2.15), we
have

(2.15)

(2.16) (VDI <CR* [ |F(7, D)V o(%) drl=s< CEn,

Finally we consider the integral (V). Since

xLF(F, %) =2 F(F, )|<|g%(%)~ 0|l F(7, 8)]
<[Pl F(F, D)= RAFF(T, 7)),

we may obtain the estimate
)| =R* [ v U F(7, )= 2 F(T, DG (W 9(F) dle-
<R [[|F(T, DFIPR G2 @D o) dixl=s
=R [ IF(F, DFxPG) ¢ () o(F) dlems
(2.17) FR [ IFCE, Dl G (00 g() ditlems
SR“LSR_JF( £, f)|2|x|3exp< —B;>¢z(f)/ﬁdxlt=-l
+R [ R(T, DFRslexp( —EL) )V o
<CEA+R [ F(T, PR zlexp( —EL ) ()aV o

On the other hand, we have

Ed
4R?

Therefore, by (2.18), we have

(2.18) |55|6R-3exp(— )sc‘for all R>0, |£]>0.

R [ F(T, PR 2lexp 2l )20V e

(2.19)
< [[JF(t, x)dVi< CE.
Combining (2. 14), (2.16), (2.17) and (2.19), we have

(2.20) (I)+IV)=—4R'"¥(R)— CE..
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Finally combining (2.10) and (2.20), we have
(I1)>—4R"W(R)— C¥(R)— CE,.
Therefore, using (2.5), we have

4 Y(R)>4R""W(R)— Cr¥(R)— C:Es— 4R W(R)

(2.21) dR
- Cl\I’(R) - Con.
By (2.21), we have

(2.22) d—cje(ecmqr(ze» > e *E,

Integrating (2.22), we complete the proof. [

REMARK. Recently, Chen and Shen [5] also prove a monotonicity
formula for Yang-Mills heat flow.

3. Proof of Theorem.

Before the proof of the main theorem, we prepare a lemma for a prop-
erty of é.

LEMMA 3.1. Let D(t) be a smooth solution on (1.1) and let T be
the maximal existence time of D(t). Then we have

sup{e(t): t€(0, T)}=+oo.
PROOF. First we assume that
(3.1) sup{e(t):t<(0, T)}< +oo.

Assume T<+oo. If &(t)<C for all +(0, T), then the solution D
smoothly extends beyond the maximal existence time 7. Therefore we
have 7T =+oo.

Assuming T =+, by the energy equality, we obtain

f v / |d5F(D)2dV dt <E,.
0 NG

Thus there exists a sequence {t:}, t,—0 satisfying |dZF(D)(¢;)|3zsn—0.
By the assumption sup |F(¢)|<C, using a maximum principle for (2.3),
0<t<oo

we have

/SJF(”'%'VSC for p<o, and tE[0, o).
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By a Uhlenbeck’s result [12, Theorem 3.6], there exist (global) gauge
transformations s;€ W?*? such that

siloD(t:)os: — Dw in W*? (weakly).

Because W%“?<, C° is a compact embedding for p>un, we conclude

D-=C°. Since |d¥F(D)(#:)|.=—0, the connection D» on P is (weakly)
Yang-Mills, hence strong.
On the other hand, we have

(.20 [IFDFaV <lim inf JIF(D)t)EdV <Eo<er
sn i—00 sn
Therefore, by Fact 1.2, there exists no Yang-Mills connection satisfying

(3.2), since the bundle P is non-trivial. Therefore the claim follows.

PROOF OF THEOREM 1.3. First choosing a sequence {t;} with t:.—T
satisfying

e(t;)—+oo, and e(¢)<e(t:) for t<[0, t:).

1
For such sequence, we set Ai=———.
v e(ti)

Let p:©S” be a point satisfying e(t;, p.)=é&(¢:). In the followings, we
argue on a local coordinates neighbourhood centerd at p:.
By [Cemma 2.2, choosing d=(the constant in Lemma 2.2), we have

ti+A20< T,
e(t)<2e(t) for t<t<t:+A%0.

Here set to.=#+A42%5, and for tE[—A%t, 0], xEBour set Di(t, x)=
D(t:+ A%, Ax), then we have

F(D:)(¢t, x)=2F(D)(t:+ 2, Ax).
Moreover D; satisfies the equation

9D: _ _ 1w p(p,
= —d§iF (D)

on [—A7%t:, 81X B, where the formal adjoint operator is defined by the
L?-inner product with respect to the metric tensor gis(x)=gas(Ax). It is
easy to see that

|F(D)IX0, 0)=2AF(D)(t:, p)=Ate(t:)=1.
Moreover on (¢, x)E[—A7%t;, 81X Beir1=: @;, it holds that
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(3.3)  |F(D)X(¢t, x)<4|F(D:)X0, 0)<4.
Set et, x) :=|F(D;)(t, x), then it satisfies

0e; . _(:_z 3/2
5 ~Qiet 5 €i -

In view of (3.3), we see that

%eti <Aie;+ Cie;

on any open set O;C Q.. Equivalently, %; :=exp(— Cit)e; satisfies

oh:
FT <Ah,.

By using a Moser’s result [10, Theorem 3], for O; :Z(—min{i, 0 }, —6—>><Bl,
. 2’ C; 2
there exists a constant C >0 such that

1:0,0)< C{ <2 [ 12avViat) "
1<hi(0,0)=< (6V01(Bl)./(;i " ”‘) :

for sufficient large .

Now since e;<4 and 0</%;<e;exp(d), there exists a constant C,=
Ci(P) such that

1<C [ IF(D)FdVit.

By Lemma 2.3, ¥ satisfies
V(R)< e R~y (Ry)+ C(e®o=B —1)E,
on 0< R<Ry=min{p, vt,:}. Thus we have

‘I’(R) < QCRO‘I’(RQ) + Ce CROEo
< e W(Ry)+ Cee™,

\P(RO)S%RE}‘” j \F(D)(to.:— R, ) 2dV

SRS‘”EOSRé'"e.

(3.4)

By (3.4), we obtain
V(R)<ee®(R"+ C) for 0< R<R..

On the other hand, for R*=A7%S, where 4/2 éSs\/8+min{76, g}, we

have
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4-n 2 2 Q2 _ £4—n ) o
3 [ 1P+ 26— 50av =) [ IFO)n~ R, 2V
< G677 emW(R) < Co(8)(RE™+ C)e™e < CRI e,

(3.5)

By scaling back, we have
}|2 = )4-n 2(¢. ;
(3.6) ﬁ 1|F(Dz)| dV;=A fB MIF(D)I (t:+At)dV

0
}<t<7,

5 8
2

for —min{%, gi}<t=6—52<—g—. Hence for —min{ '

(3.5) and (3.6) imply
[IF(D)Favi<CiRs™e.

Therefore we may lead
1< CeR e,
however, by Ro=min{p, vf.:}, if o<+, then we have
ex>Cilp"™
This is a contradiction for sufficient small €>0. Therefore we have Ro=

4-—n
Jt.:. Hence we have 1£C4<¢ to,z-> ¢, we have

n—4

to'iz < C55.

Since L‘O,i=ti+/’tf8—+T as 1—0, we conclude

2
T< C6€4_n.
Therefore, the smooth solution D(#) of (1.1) with the initial value D
have to blows up in finite-time. [ |
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