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Abstract

L. Wen proved the C^{1} closing lemma for endomorphisms with finitely
many singularities. The arguments and the tools of Wen are available for
endomorphisms which have infinitely many singularities but at most
finitely many ones in the nonwandering sets. By refining the argument of
Wen we prove the C^{1} closing lemma for endomorphisms with finitely many
singularities in the nonwandering sets. By using this lemma we can
slightly improve characterization of C^{1} absolutely \Omega-stable endomor-
phisms. That is, for an endomorphism f with finitely many singularities
in the nonwandering set, f is C^{1} absolutely \Omega-stable if and only if f has a
neighborhood \mathscr{U} such that every g in \mathscr{U} satisfies weak Axiom A.

1 Introduction

Let M be a compact smooth Riemannian manifold without boundary,

and let End^{1}(M) be the space of C^{1} endomorphisms of M endowed with
the C^{1} topology. L. Wen proved the C^{1} closing lemma for nonsingular
endomorphisms [5] and generalized it from nonsingular endomorphisms to
endomorphisms with finitely many singularities [6].

THEOREM 1[6] . Let f be a C^{1} endomorphism of M with fifinitety
many singularities, and \omega be a nonwandering point of f . Then for any
C^{1} neighborhood \mathscr{U} of f in End^{1}(M) , there is a g\in \mathscr{U} such that \omega is a

periodic point of g .

Recall that a point x in M is a singularity of f if the tangent map T_{\chi}f

is not injective. Let S(f) be the set of singularities of f. A point x is
nonwandering of f if for any neighborhood U of x in M, f^{n}(U)\cap U\neq\phi

for some positive integer n , and periodic of f if f^{m}(x)=x for some posi-
tive integer m. Let P(f) be the set of periodic points of f. and \Omega(f) the
set of nonwandering points of f. Remark that in general f(\Omega(f))\subset\Omega(f) .
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In this paper we improve Theorem 1(the C^{1} closing lemma). By refining
the argument in the proof of Theorem 1, we prove the following:

THEOREM A. Let f be a C^{1} endomorphism of M with fifinitety many
singularities in the nonwandering set \Omega(f) , and \omega be a nonwandering point
of f . Then for any C^{1} neighborhood \mathscr{U} of f in End 1(M) , there is a
g\in \mathscr{U}_{\vee} such that \omega is a periodic point of g.

An endomorphism f with finitely many singularities in the nonwander-
ing set \Omega(f) means that f may have infinitely many singularities but has
at most finitely many singularities in \Omega(f) . The strategy for the improve-
ment is that instead of using the standard argument of Wen we use
Lemma 3.1(bel0w) whenever we can utilize it.

By using Theorem A we can slightly improve characterization of C^{1}

absolutely \Omega-stable endomorphisms [1, 2] . We obtain the following:

THEOREM B. Let f be a C^{1} endomorphism of M with fifinitety many
singularities in the nonwandering set \Omega(f) . Then f is C^{1} absolutely \Omega -sta-
bte if and only if f has a neighborhood \mathscr{U} in End^{1}(M) such that every g
in \mathscr{U} satisfifies weak Axiom A .

2 Preliminaries

In this section we give some definitions and theorems needed to prove
Theorem A. We start with the definition of tree introduced by Wen [5, 6] .

By a tree \mathscr{T}=(Q, f) we mean an infinite sequence of disjoint non-
empty finite sets Q_{0} , Q_{1} , \cdots Q_{n} , \cdots where Q_{0} consists of a single point q_{0} ,

together with a map f:Q-\{q_{0}\}arrow Q , where Q= \bigcup_{n=0}^{\infty}Q_{n} , such that f maps Q_{n}

into Q_{n-1} for each n=1,2 , \cdots An infinite sequence q_{0} , q_{1} , \cdots . q_{n} , \cdots . q_{n}\in

Q_{n} , is called an infifinite branch of \mathscr{T} if f(q_{n})=q_{n-1} for n=1,2 , \cdots A
finite sequence q_{0} , q_{1} , \cdots . q_{k} is called a fifinite branch of \mathscr{T} if f(q_{n})=q_{n-1} for
each n=1,2 , \cdots , k , and if f^{-1}\{q_{k}\} is empty. A tree \mathscr{T}=(Q, f) is called
complete if f is onto. It is obvious that \mathscr{T} is complete if and only if \mathscr{T}

has only infinite branches. For an infinite branch \sum=\{q_{0}, q_{1}, \cdots. q_{k}, \cdots\} of
\mathscr{T}=(Q, f) , a finite sequence \{q_{0}, q_{1}, \cdots , q_{k}\} is called a sub-branch of \Sigma

with length k . By a tree of isomorphisms we mean a collection of linear
isomorphisms parametrized by a tree \mathscr{T}. This means that we associate to
each q\in Q an m-dimensional inner product space V_{q} , and to each q\neq q_{0} a
linear isomorphism T_{q} : V_{q}arrow V_{q0} .

In the proof of Theorem A we need the following results of Wen [6].

THEOREM 2. 1.( \epsilon- kernel avoiding transition theorem). Given a com-



An improvement of the C^{1} closing lemma for endomo \psihisms 429

plete tree of isomorphisms (\mathscr{T}, T_{q}) and \epsilon>0 . There is a number \rho>2

and an integer \mu\geq 1 such that:
For any fifinite ordered set P=\{p_{0}, p_{1}, \cdots, p_{t}\} in V_{q0} , there is a point y\in P

\cap B(p_{t}, \rho|p_{0}-p_{t}|) such that for any branch \Sigma=\{q_{0}, q_{1}, \cdots\neg q_{n}, \cdots\} of \mathscr{T},

there is a point w\in P\cap B(p_{t}, \rho|p_{0}-p_{t}.|) , where w is before y in the order

of P, together with (\mu+1)-points Co , c_{1} , \cdots . c_{\mu} in B(p_{t},\rho|p_{0}-p_{t}|) , not neces-
sarily distinct, satisfying the following two conditions (a) and (b).

(a) c_{0}=w, c_{\mu}=y, and
(b) |T_{qn}^{-1}(c_{n})-T_{qn}^{-1}(c_{n+1})|\leq\epsilon d(T_{qn}^{-1}(c_{n+1}), T_{qn}^{-1}(A))

for n=0,1 , \cdots , \mu-1 , where T_{q0} stands for the identity, A=P(w, y)\cup

\partial B(p_{t}, \rho|p_{0}-p_{t}|) , P(w, y)= {p\in P|p is after w and before y }, and d is the
distance on V_{q}, B(s,r) is the ball centered at s with radius r.

For simplicity we assume that M is a Riemannian manifold embedded
into some Euclidean space R^{d} . Then End^{1}(M) has a C^{1} metric d_{1} inherited
ed from C^{1}(M, R^{d}) compatible with its C^{1} topology. Fix \zeta>0 such that
\exp_{p} embeds \{u\in T_{p}M||u|\leq\zeta\} into M for each p\in M . The following

Lemma 2. 2 is essentially Theorem 6. 1 in [4].

LEMMA 2. 2.(the \epsilon-kernel lifts) For any \eta>0 , there is an \epsilon>0 such
that for any f\in End^{1}(M) , any p\in M, and any two points v_{1} , v_{2}\in T_{p}M with
B(v_{2},|v_{1}-v_{2}|/\epsilon)\subset\{u\in T_{p}M||u|\leq\zeta\} , there is a diffeomo\uparrow phismh=h_{p,\epsilon,v_{1},v_{2}} :
M - M, called an \epsilon- kernel lift, such that :

(1) h(\exp_{p}(v_{2}))=\exp_{p}(v_{1}),\cdot

(2) supp(h)\subset\exp_{p}(B(v_{2}, |v_{1}-v_{2}|/\epsilon)) , here the support means the closure
of the set where h differs from the identity;

(3) d_{1}(hf, f)<\eta .

Before stating Lemma 2. 3, we recall some facts and definitions in
[5, 6] . The negative orbit of p\in M under f is defined by \mathscr{O}^{-}(p)=\mathscr{O}_{f}^{-}(p)=

\bigcup_{n=0}^{\infty}f^{-n}\{p\} , where f^{-n}\{p\} denotes the preimage (f^{n})^{-1}\{p\} . Next we define a

\mu- dynamical neighborhood in somewhat different setting from the case of
Wen [5, 6] . We define \mu-dynamical neighborhood on complete subsets of

\mathscr{O}_{f}^{-}(p) without singularities while Wen defined it on \mathscr{O}_{f}^{-}(p) itself. Let Q

be a subset of \mathscr{O}_{f}^{-}(p) such that (Q, f) is a complete tree with Q_{0}=\{p\} and
Q contains no singularities. Then given an integer \mu\geq 1 , f is a local

diffeomorphism near each q \in\bigcup_{n=1}^{\mu}Q_{n} . In this case we may find a neighbor-

hood W of p in M, called a \mu- dynamical neighborhood of p, such that for



430 H. Ikeda

each q \in\bigcup_{n=1}^{\mu}Q_{n} there is a neighborhood W(q) satisfying

(a) f^{m}(W(q))=W whenever f^{m}(q)=p , m=1,2 , \cdots , \mu ;
(b) W(q)\cap W(q’)=\phi if q\neq q’

W(q)=W_{f}(q) is called the W-component at q .

LEMMA2.3. Let f\in End^{1}(M) , p\in M , (Q, f) a complete tree with Q_{0}

=\{p\} , and an integer \mu\geq 1 be given. Assume that \bigcup_{n=1}^{\mu+1}Q_{n} contains no singu-
larities of f. Then for any \eta>0 , there is a \lambda>0, and a map f_{1}\in

End^{1}(M) , called a local linearization of f, with the following properties (1)
-(5) .
Write W’=\{u\in T_{p}M||u|\leq A\} , V’=\{u\in T_{p}M||u|\leq \mathcal{A}/4\} , W=\exp p(W’) ,
V=\exp_{p}(V’) .

(1) W is (\mu+1)-dynamical for both f and f_{1} , and the W-component for
f and f_{1} are the same, i. e. W_{f}(q)=W_{f_{1}}(q) for each q \in\bigcup_{n=1}^{\mu+1}Q_{n} :

(2) f_{1}=\exp_{f(q)}(T_{q}f)\exp_{q}^{-1} on V_{f_{1}}(q) if q \in\bigcup_{n=1}^{\mu}Q_{n} ;
(3) f_{1}^{\mu+1}=f^{\mu+1} on W(q) if q\in Q_{\mu+1} . In particular, if q\in Q_{\mu+1} then f_{1}=

\exp_{f(q)}(T_{f(q\rangle}f^{\mu})^{-1}\exp_{\overline{p}^{1}}f^{\mu+1} on V(q) . Note that V_{f}(q)=V_{f_{1}}(q) here
and we have written both of them as V(q) ;

(4) f_{1}=f on M- \cup\{W(q)|q\in\bigcup_{n=1}^{\mu+1}Q_{n}\} ;
(5) d_{1}(f_{1}, f)<\eta .

3 Proof of Theorem A

In this section we prove the C^{1} closing lemma for endomorphisms with
finitely many singularities in the nonwandering sets. We do this by
refining the argument of Wen [5, 6] .

PROOF of THEOREM A. To prove Theorem A, as pointed out in [3,
p967] , it suffices to prove that given any C^{1} neighborhood \mathscr{U} of f in
End^{1}(M) and any neighborhood U of \omega in M, there is a g\in \mathscr{U} such that g
has a periodic point in U. Because another perturbation allows us to
push this periodic point onto \omega .

Let \mathscr{U} be any C^{1} neighborhood of f in End^{1}(M) , and U be any neigh-
borhood of \omega in M. We assume that \omega is not periodic of f. Since \omega is
nonwandering, \mathscr{O}^{-}(\omega) is infinite.

In a certain good situation, we can construct a periodic point by a
(C^{\infty}) small perturbation (cf. [6]).
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LEMMA 3. 1. If there exist \sigma\in \mathscr{O}^{-}(\omega)\cap\Omega(f) , q\in f^{-1}(\sigma) , a sequence
\{x_{i}\} and an increasing sequence of positive integers \{n_{i}\} such that q\not\in\Omega(f) ,
\{x_{i}\} converges to \sigma and \{f^{n_{i}}(x_{i})\} converges to q , then for any C^{1} neighbor-
hood \mathscr{U} of f and any neighborhood U of \omega , there is a g\in \mathscr{U} such that g

has a periodic point in U.

PROOF of LEMMA 3. 1. Let n\geq 0 be an integer with f^{n}(\sigma)=\omega . Since
q\not\in\Omega(f) , there is a ball B around q such that f^{m}(B)\cap B=\phi for all m\geq 1 .

Take a neighborhood V_{j} of f^{j}(q) for each j=0,1 , \cdots n+1 , such that:

(a) V_{j}\cap B=\phi for j=1 , \cdots n+1 , ;
(b) V_{0}\subset B and V_{n+1}\subset U ;
(c) V_{k}\cap V_{l}=\phi for all 0\leq k<l\leq n+1 :
(d) f(V_{j})\subset V_{j+1} for j=0,1 , \cdots n .

Arbitrarily near \sigma and q , there are two points x_{i} and f^{n_{i}}(x_{i}) for large i .
Hence there is a C^{1} small perturbation g of f taking f^{n_{i}}(x_{i}) onto x_{i} .
More precisely, we can take diffeomorphisms g_{i} , h_{i} of M such that

(i) g_{i}=identity outside V_{0} ;
(ii) h_{i}=identity outside V_{1} ;
(iii) g_{i}(f^{n_{i}}(x_{i}))=q :
(iv) h_{i}(f(q))=h_{i}(\sigma)=x_{i} .

Since V_{0} and V_{1} are fixed we can choose g_{i} , h_{i}arrow id in the C^{\infty}-sence as
iarrow\infty . Then g=h_{i}\circ f\circ g_{i}C^{1}-approximates f. Then the g-0rbit from x_{i} to
g^{n_{i}-1}(x_{i}) is the same as the /-0rbit from x_{i} to f^{n_{i}-1}(x_{i}) since B is wander-
ing and g is equal to f outside B. Hence x_{i} is periodic of g . Since f=g
on \cup\{V_{j}|1\leq j\leq n\} , g^{n}(x_{i})=f^{n}(x_{i})\in V_{n+1}\subset U . Therefore g has a periodic
point g^{n}(x_{i}) in U. \square

We divide the proof into two cases.

Case 1. There is \sigma\in \mathscr{O}-(\omega)\cap\Omega(f) such that f^{-1}\{\sigma\}\cap\Omega(f)=\phi .
It is easy to see that this case is proved by Lemma 3. 1.

Case 2. No such \sigma exists.
In this case there exists an infinite sequence (\omega_{j}) such that

(i) \omega_{j}\in\Omega(f) for all j\geq 0 ;
(ii) \omega_{0}=\omega ;
(iii) f(\omega_{j+1})=\omega_{j} for all j\geq 0 .

Then there is an integer n_{0}\geq 0 such that \omega_{j} is not a singularity of f for all
j\geq n_{0} . Suppose not. Since the cardinality of S(f)\cap\Omega(f) is finite, there
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exist a singularity p of f and two integers 1\leq j_{1}<j_{2} such that \omega_{j_{1}}=\omega_{j_{2}}=p .
Then

f^{j_{2}-j_{1}}(\omega)=f^{j_{2}-j_{1}}(f^{j_{1}}(\omega_{j_{1}}))=f^{j_{2}}(\omega_{j_{2}})=\omega ,

contradicting that \omega is not periodic of f.
By the similar argument as above, there is an integer n_{1}\geq n_{0} such that

(\mathscr{O}-(\omega_{n_{1}})\cap\Omega(f))\cap S(f)=\phi .

We claim that f^{-j}\{\omega_{n_{1}}\}\cap\Omega(f) is a finite set for every j\geq 0 . We prove the
claim by induction on j . For j=0 , it is trivial. Suppose that the claim
holds for j-1 and not for j . Then there exist a point q\in f^{-j+1}\{\omega_{n_{1}}\} and
a sequence of distinct points \{x_{i}\}\subset f^{-j}\{\omega_{n_{1}}\}\cap\Omega(f) such that f(x_{i})=q for all
i . Let p be a limit point of \{x_{i}\} . Since \Omega(f) is closed, p\in\Omega(f)\cap f^{-j}\{\omega_{n_{1}}\} .
Hence p\not\in S(f) and f is a local diffeomorphism near p. But for any small
neighborhood V of p, f|V is not injective. This is a contradiction.

Since f(\Omega(f))\subset\Omega(f) , there does not exist a sequence (\alpha_{j}) starting from
\omega_{n_{1}} such that :

(i) \alpha_{0}=\omega_{n_{1}} , f(\alpha_{j+1})=\alpha_{j} for all j\geq 0 ;
(ii) \alpha_{j}\in\Omega(f) for all 0\leq j<k and k+1 , \alpha_{k}\not\in\Omega(f) , where k is some positive

integer.

Suppose that there exists a finite sequence contained in \Omega(f) , \alpha_{0}=\omega_{n_{1}} , \alpha_{1} ,
\ldots

\alpha_{k} such that f(\alpha_{j+1})=\alpha_{j} for all 0\leq j<k . Since \alpha_{k} is nonwandering,
there exists a preimage of \alpha_{k} . If f^{-1}\{\alpha_{k}\}\cap\Omega(f)=\phi then that contradicts
the assumption of Case 2. By above observations, we assume that
\mathscr{O}^{-}(\omega_{n_{1}})\cap\Omega(f) consists of infinite sequences starting from \omega_{n_{1}} . Therefore
we assume that (\mathscr{O}^{-}(\omega_{n_{1}})\cap\Omega(f), f) is a complete tree. Let Q_{j}=f^{-j}\{\omega_{n_{1}}\}\cap

\Omega(f) for all j\geq 0 , and Q= \bigcup_{j=0}Q_{j} . Then \mathscr{T}=(Q, f) is a complete tree.
Remember that f^{n_{1}}(\omega_{n_{1}})=\omega . Let N be a neighborhood of \omega_{n_{1}} such that
f^{n_{1}}(N)\subset U and N\subset\exp_{\omega_{n}}1\{u\in T_{\omega_{n}}M|1|u|\leq\zeta\} . Take any \eta>0 such that the
\eta-ball of f in End^{1}(M) is contained in \mathscr{U} . By Lemma 2. 2, there is a \epsilon>0

such that d_{1}(hf, f)<\eta/2 for any f\in End^{1}(M) , where h is any \epsilon-kernel lift.
Denote by (\mathscr{T}, T_{q}) the tree of isomorphisms, where q\in Q-\{\omega_{n_{1}}\} , and
T_{q}=T_{q}f^{m} if f^{m}(q)=\omega_{n_{1}} .

Let \rho>2 , \mu\geq 1 be the two numbers obtained by Theorem 2. 1 respect-
ing \{\mathscr{T}. T_{q}\} and \epsilon>0 above. For the f_{r}\omega_{n_{1}} , \mu , there is by Lemma 2. 3 a
\mathcal{A}>0 and a local linearization f_{1} with the following properties (1)-(5) .
Write W’=\{u\in T_{a}M||u|\leq A\} , V’=\{u\in T_{a}M||u|\leq \mathcal{A}/4 \} , W=\exp a(W’) ,
V=\exp_{a}(V’) , where \alpha=\omega_{n_{1}} .
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(1) W is (\mu+1)-dynamical for both f and f_{1} , and W_{f}(q)=W_{f_{1}}(q) for each

q \in\bigcup_{m=1}^{\mu+1}Q_{m} ;

(2) f_{1}=\exp_{f(q)}(T_{q}f)\exp-q1 on V_{f_{1}}(q) if q \in\bigcup_{m=1}^{\mu}Q_{m} , where V_{f_{1}}(q)=\exp_{q}\circ

(T_{q}f^{m})^{-1}\circ\exp_{\overline{a}}^{1}(V) , \alpha=\omega_{n_{1}}=f^{m}(q) ;

(3) f_{1}^{\mu+1}=f^{\mu+1} on W(q) if q\in Q_{\mu+1} . In particular, if q\in Q_{\mu+1} , then f_{1}=

\exp_{f(q)}(T_{f(q)}f^{\mu})^{-1}\exp_{\overline{a}^{1}}f^{\mu+1} on V(q) :
(4) f_{1}=f on M- \cup\{W(q)|q\in\bigcup_{m=1}^{\mu+1}Q_{m}\} :
(5) d_{1}(f_{1}, f)<\eta/2 .

By shrinking W if necessary, we assume that W\subset N . Put a metric d’ on
W by defining

d’(p, q)=|u-v| ,

where p, q\in N , u=\exp_{\overline{a}^{1}}(p) , v=\exp_{\overline{a}^{1}}(q) , \alpha=\omega_{n_{1}} .

Since \omega_{n_{1}} is nonwandering, there exist a sequence \{x_{i}\} in M and a
sequence \{m_{i}\} of positive integers such that \{x_{i}\} and \{f^{m_{i}}(x_{i})\} both con-
verge to \omega_{n_{1}} . Then there exists a positive integer K such that

B(f^{m_{i}}(x_{i}), \rho d’(x_{i}, f^{m_{i}}(x_{i})))\subset V for all i\geq K .

Let P_{i}=\{x_{i}, f(x_{i}), \cdots, f^{m_{i}}(x_{i})\}\cap V for all i\geq K . Say P_{i}=\{p_{0}^{i}, p_{1}^{i_{ }},\cdots, p_{t}^{i}\} ,

where t is a positive integer depending on i . Note that p_{0}^{i}=x_{i} , p_{t}^{i}=f^{m_{i}}(x_{i}) .

Hence B(p_{t}^{i}, \rho d’(p_{0}^{i}, p_{t}^{i}))\subset V for all i\geq K . Let P_{i}’=\exp_{\overline{a}}^{1}(P_{i}),\overline{p}_{j}^{i}=\exp_{\overline{a}}^{1}(p_{j}^{i}) ,

\alpha=\omega_{n_{1}} . Then P_{i}’=\{\overline{p}_{0}^{i},\overline{p}_{1}^{i_{ }},\cdots.\overline{p}_{t}^{i}\} .
By Theorem 2. 1, for each i\geq K , there is apoint y-i\in P_{i}’\cap B(\overline{p}_{t}^{i}, \rho|\overline{p}_{0}^{i}-\overline{p}_{t}^{i}|) ,

such that for any branch \Sigma=\{q_{0}, q_{1}, \cdots q_{n}, \cdots\} \underline{of}\mathscr{T}, there is a point
\overline{\omega}_{i}(\Sigma)\in B(\overline{p}_{t}^{i}, \rho|\overline{p}_{0}^{i}-\overline{p}_{t}^{i}|) , where \omega-i(\Sigma) is before y_{i} in P_{i}’ , together with

(\mu+1)-point \overline{c}_{0}^{i}(\Sigma),\overline{c}_{1}^{i}(\Sigma) , \cdots \overline{c}_{\mu}^{i}(\Sigma) in B(\overline{p}_{t}^{i}, \rho|\overline{p}_{0}^{i}-\overline{p}_{t}^{i}|) , not necessarily

distinct, satisfying the following two conditions (a) and (b).

(a) c-o^{i}(\Sigma)=\overline{\omega}_{i}(\Sigma),\overline{c}_{\mu}^{i}(\Sigma)=y_{i} ; and
(b) |(T_{qn}f^{n})^{-1}(\overline{c}_{n}^{i}(\Sigma))-(T_{q}f^{n})^{-1}(\overline{c}_{n+1}^{i}(\Sigma))|

\leq\epsilon d((T_{q_{n}}f^{n})^{-1}(\overline{c}_{n+1}^{i}(\Sigma)), (T_{qn}f^{n})^{-1}(A))

for n=0,1 , \cdots , \mu-1 , where A=P’(\overline{\omega}_{i}(\Sigma),\overline{y}_{i})\cup\partial B(\overline{p}_{t}^{i}, \rho|\overline{p}_{0}^{i}-\overline{p}_{t}^{i}|) , and
P’(\overline{\omega}_{i}(\Sigma),\overline{y}_{i})= {p\in P_{i}’|p is before \overline{y}_{i} and after \overline{\omega}_{i}(\Sigma) }.

Let \omega_{i}(\Sigma)=\exp_{a}(\overline{\omega}_{i}(\sum)) , y_{i}=\exp_{a}(\overline{y}_{i}) . Then \omega_{i}(\sum) and y_{i} are both in P_{i} .

Hence for each i\geq K , there exists an integer \phi_{i}(\sum)\geq 1 such

that f^{\phi_{i}(\Sigma)}(\omega_{i}(\Sigma))=y_{i} . Remark that \lim_{iarrow\infty}p_{t}^{i}=\lim iarrow\infty f^{m_{i}}(x_{i})=\omega_{n1}=\alpha ,

\lim_{iarrow\infty}d(x_{i}, f^{m_{i}}(x_{i}))=0 , Hence \lim_{iarrow\infty}y_{i}=\alpha and \lim_{iarrow\infty}\omega_{i}(\Sigma)=\alpha .

For any branch \sum there exists an integer N>0 such that for any i\geq N
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there is a q\in Q_{1} satisfying f^{\phi_{i}(\Sigma)-1}(\omega_{i}(\Sigma))\in W(q) . Suppose that the above
property does not hold. Then for some branch \sum there is a convergent
subsequence \{f^{\phi_{i’}(\Sigma)-1}(\omega_{i’}(\Sigma))\} such that

f^{\phi_{i’}(\Sigma)-1}(\omega_{i’}(\Sigma))\not\in\cup\{W(q)|q\in Q_{1}\} for all i’

Let x= \lim_{i’arrow\infty}f^{\phi_{i’}(\Sigma)-1}(\omega_{i’}(\Sigma)) . Since f(x)= \lim_{i’arrow\infty}f^{\phi_{l}^{J}(\Sigma)}(\omega_{i’}(\Sigma))=\lim_{i^{r_{arrow\infty}}}y_{i’}

=\alpha=\omega_{n_{1}} , x\in f^{-1}\{\omega_{n_{1}}\} . Moreover \{\phi_{i’}(\Sigma)\} is unbounded. Suppose that
\{\phi_{i’}(\Sigma)\} is bounded. Let \{i’\} be a subsequence such that \phi_{i^{rr}}(\Sigma)=k=con -

stant. Then
\omega_{n_{1}}=f(x)=\lim_{i’arrow\infty}f^{\phi_{i}^{rr}(\Sigma)}(\omega_{i}\prime\prime(\sum))=\lim_{i^{rr}arrow\infty}f^{k}(\omega_{i’}(\sum))=f^{k}(\omega_{n1}) .

This contradicts that \omega_{n_{1}} is not periodic of f.
Now we have the sequence \{\omega_{i’}(\sum)\} converging to \omega_{n_{1}} and the

increasing sequence of p ositive i ntegers \{\phi_{i’}(\sum)-1\} such that
f^{\phi_{i’}(\Sigma)-1}( \omega_{i’}(\sum)) converges to x . Hence, by Lemma 3. 1, we can construct
a periodic point in any neighborhood U of \omega_{n_{1}} by a sufficiently small C^{1}

perturbation. By the similar argument as above we can assume that; for
any branch \sum , there exists an N>0 such that for any i\geq N , there is a q\in

Q_{\mu+1} satisfying f^{\phi_{i}(\Sigma)-\mu-1}(\omega_{i}(\Sigma))\in W(q) . Let z_{i}(\Sigma)=f^{\phi_{i}(\Sigma)-\mu-1}(\omega_{i}(\Sigma)) .
Remark that z_{i}( \sum) actually does not depend on \sum , since \omega_{i}(\sum) and y_{i} are
both in P_{i} , and f^{\phi_{i}(\Sigma)}(\omega_{i}(\Sigma))=y_{i} , and since \mu and y_{i} do not depend on \Sigma .
Thus we simply write

z_{i}=f^{\phi_{i}(\Sigma)-\mu-1}(\omega_{i}(\Sigma)) for any branch \Sigma of \mathscr{T}

By taking a subsequence of i if necessary we can assume that

(P) z_{i}\in W(\sigma_{\mu+1}) for all i\geq 1 , where \sigma_{\mu+1} is some point in Q_{\mu+1} .

Now fix a branch \sum of \mathscr{T} that contains \sigma_{\mu+1} above. The
property (P) above means that for any i and any branch \Gamma of \mathscr{T}. the
orbit \{f^{\phi,(\Gamma)-\mu-1}(\omega_{i}(\Gamma)), \cdots, f^{\phi,(\Gamma)}(\omega_{i}(\Gamma))\} returns to W along the sub-branch
\{\sigma_{\mu+1}, f(\sigma_{\mu+1}), \cdots , f^{\mu+1}(\sigma_{\mu+1})=\omega_{n_{1}}\} of \Sigma with length \mu+1 . We can assume
that the following claim holds, because if it is not the case, we can con-
struct a periodic point near \omega_{n_{1}} by an arbitrary small perturbation and
therefore Theorem A holds.

CLAIM. Let \Sigma be the above fixed branch of \mathscr{T}. Shrinking W if nec-
essary, for any sufficiently large i , if the orbit { \omega_{i}(\Sigma) , f(\omega_{i}(\Sigma)) , \cdots

f^{\phi_{i}(\Sigma)}(\omega_{i}(\Sigma))\} meets a W-component W(f^{k}(\tilde{q})),\tilde{q}\in Q\mu+1,1\leq k\leq\mu+1 , at
f^{j}(\omega_{i}(\Sigma)) , then j\geq k and

f^{j-l}(\omega_{i}(\Sigma))\in W(f^{k-l}(\tilde{q})) for all 0\leq l\leq k .



An improvement of the C^{1} closing lemma for endomorphisms 435

This Claim means that if the orbit \{\omega_{i}(\Sigma), f(\omega_{i}(\Sigma)), \cdots, f^{\phi_{i}(\Sigma)}(\omega_{i}(\Sigma))\}

returns to W intermediately, the orbit must return along a sub-branch of
some branch \Gamma with length \mu+1 . If the Claim does not hold, then for any

small neighborhood W and any positive integer N, there exist an i\geq N

such that f^{l_{i}}(\omega_{i}(\Sigma))\in W(\tilde{q}) and f^{l_{i}-1}( \omega_{i}(\Sigma))\not\in\cup\{W_{i}(q)|q\in\bigcup_{n=1}^{\mu+1}Q_{n}\} for some
1\leq l_{i}<\phi_{i}(\Sigma)-\mu-1 , and q\sim\in Q_{k} for some 0\leq k\leq\mu . Therefore, taking a
subsequence if necessary, we can assume that f^{l_{i}}( \omega_{i’}(\sum)) converges to

some q\in Q_{k} as i’arrow\infty .

Case A. \{l_{i’}\} is bounded.
We take a subsequence \{l_{i^{rr}}\} such that l_{i^{rr}}=m=constant . Then

\omega_{n_{1}}=f^{k}(q)=f^{k}(\lim_{i^{rr_{arrow\infty}}}f^{m}(\omega_{i^{rr}}(\sum)))

= \lim_{i^{rr}arrow\infty}f^{k+m}(\omega_{i’}(\sum))=f^{k+m}(\omega_{n_{1}})

contradicting that \omega_{n_{1}} is not periodic of f.

Case B. \{l_{i’}\} is unbounded.
We take a subsequence \{f^{l_{i}-1}(\omega_{i^{rr}}(\sum))\} which converges to some point p.

By assumption, p\not\in\Omega(f) . Since q\in Q_{k} , there exists a sequence \{z_{i}\prime\prime\} such
that f^{k}(z_{i’})=\omega_{i^{rr}}(\Sigma) for all i’ Since \omega_{i’}(\Sigma)arrow\omega_{n_{1}} as i^{rr}arrow\infty , we get z_{i^{rr}}arrow

q as i’arrow\infty . Now we have that z_{i’}arrow q , f^{k+l_{i}-1}(z_{i’})arrow p , k+l_{i’}-1arrow\infty as
i’arrow\infty . Also we have p\in f^{-1}(q) , p\not\in\Omega(f) . Therefore we can apply

Lemma 3. 1 and Theorem A holds in this case.
By the above Claim, finally we have only to consider the following

case. There exist a (\mu+1)-dynamical neighborhood W of \omega_{n_{1}} and a posi-

tive integer N such that for any i\geq N , the orbit \{f^{j}(\omega_{i}(\Sigma))|0\leq j\leq\phi_{i}(\Sigma)\}

has the following properties;

(c) f^{\phi_{i}(\Sigma)-\mu-1}( \omega_{i}(\sum))\in W(\sigma_{\mu+1}) for \sigma_{\mu+1}\in Q_{\mu+1} , where \sigma_{\mu+1} is as in (P) :
(d) if f^{j}( \omega_{i}(\sum))\in W(q’) , q’=f^{k}(\tilde{q}) , 1\leq k\leq\mu+1 , where \tilde{q} is some point in

Q_{\mu+1} , then j\geq k and f^{j-l}( \omega_{i}(\sum))\in W(f^{k-}{}^{t}(\tilde{q})) for all 0\leq l\leq k ;

(e) f^{j}(W) does not intersect \cup\{W(p)|p\in\bigcup_{n=1}^{\mu+1}Q_{n}\} for j=1,2 , \cdots . n_{1} , here n_{1}

is the integer with f^{n_{1}}(\omega_{n_{1}})=\omega .

Now fix i such that properties (c), (d), and (e) above hold and

\exp_{a}B(\overline{p}_{t}^{i}, \rho|\overline{p}_{0}^{i}-\overline{p}_{t}^{i}|)\subset V . where \alpha=\omega_{n_{1}} .

For simplicity we omit this i , i . e . \omega(\Sigma)=\omega_{i}(\Sigma) , y=y_{i} , and \phi(\Sigma)=

\phi_{i}(\Sigma) . Let \omega’=\overline{\omega_{i}}(\Sigma) , together with c_{\acute{0}}=\overline{c}_{0}^{i}(\Sigma) , c_{1}’=\overline{c}_{1}^{i}(\Sigma) , \cdots c_{\acute{\mu}}=

\overline{c}_{\mu}^{i}(\sum) , be guaranteed by Theorem 2. 1 respecting \sum and the finite ordered
set \exp_{\overline{a}^{1}}(\{f^{j}(\omega(\Sigma))|0\leq i\leq\phi\}\cap V) , where \alpha=\omega_{n_{1}} , \phi=\phi(\Sigma) is the integer



436 H. Ikeda

such that f^{\phi}(\omega(\Sigma))=y . Let \{\sigma_{0}=\omega_{n_{1}}, \sigma_{1^{ }},\cdots \sigma_{\mu+1}\} be the sub-branch of \Sigma

with length \mu+1 . For each \sigma_{n} , n=0,1 , \cdots , \mu-1 , let h_{\sigma_{n}} be the \epsilon-kernel
lift obtained by treating in Lemma 2. 2 p=\sigma_{n} , v_{1}=(T_{\sigma_{n}}f^{n})^{-1}(c_{n}’) , and v_{2}=

(T_{\sigma_{n}}f^{n})^{-1}(c_{n+1}’) . Define a map g by

g=\{
h_{\sigma_{n}}\circ f_{1} on W(\sigma_{n+1}) , n=0,1 , \cdots , \mu-1 ,

f_{1} on the rest of M.

Then d_{1}(g, f_{1})<\eta/2 . Hence d_{1}(g, f)<\eta . We now verify that \tilde{\omega}=\omega(\Sigma)

=\exp_{a}(\omega’) is periodic of g . It suffices to show that g^{\phi-\mu-1}(\tilde{\omega})=z and
g^{\mu+1}(z)=\tilde{\omega} . Remember that z=f^{\phi(\Sigma)-\mu-1}(\omega(\Sigma)) . By the condition (b)
above, the g-0rbit from \tilde{\omega} to z never touches the supports of these lifts.
Hence g^{\phi-\mu-1}(\tilde{\omega})=f_{1}^{\phi-\mu-1}(\tilde{\omega}) . Moreover f_{1}^{\phi-\mu-1}(\tilde{\omega})=f^{\phi-\mu-1}(\tilde{\omega}) by the condi-
tions (3) and (d) above. Therefore g^{\phi-\mu-1}(\tilde{\omega})=f^{\phi-\mu-1}(\tilde{w})=z . It remains
to verify that g^{\mu+1}(z)=\tilde{\omega} . By the condition (3) above, g(z)=f_{1}(z)=
\exp_{\sigma_{\mu}}(T_{\sigma_{\mu}}f^{\mu})^{-1}\exp_{\overline{\sigma}_{0}^{1}}f^{\mu+1} ( z) because z\in V(\sigma_{\mu+1}) . H ence g(z)=
\exp_{\sigma_{\mu}}(T_{\sigma_{\mu}}f^{\mu})^{-1}(c_{\mu}’) because f^{\mu+1}(z)=y and c_{\acute{\mu}}=y’=\exp_{\overline{\sigma}_{0}^{1}}y . Thus these lifts
h_{\sigma_{\mu- 1}} , \cdots h_{\sigma_{0}} give g^{\mu}(g(z))=\tilde{\omega} by the condition (2) above. Therefore \tilde{\omega} is
periodic of g. By the condition (e) g^{n_{1}}(\tilde{\omega})=f^{n_{1}}(\tilde{\omega}) is a periodic point of g
in U. This completes the proof of Theorem A for Case 2. \square

4 Application

Recently we have obtained a characterization of absolutely \Omega-stable
endomorphisms [1, 2] . To be precise we make the following definitions.
We say that f\in End^{1}(M) is absolutely \Omega- stable if there exist a neighbor-
hood \mathscr{U} of f in End^{1}(M) and a function \varphi:\mathscr{U}arrow C^{0}(\Omega(f), M) and a con-
stant K>0 such that

(a) \varphi(g) is a homeomorphism for each g\in \mathscr{U} . and \varphi(f)=i:\Omega(f)- M ;
(b) g\circ\varphi(g)=\varphi(g)\circ f :
(c) d(\varphi(g), i)\leq Kd_{0}(f, g) ,

where i is the inclusion map, d is the metric on C^{0}(\Omega(f), M) defined by
d(j, k)= \sup\{\rho(j(x), k(x))|x\in\Omega(f)\} , \rho is a metric on M and d_{0} is the metric
on End^{1}(M) defined by

d_{0}(f, g)= \sup\{\rho(f(x), g(x))|x\in M\} .

f\in End^{1}(M) satisfies weak Axiom A if there exist a continuous splitting
TM|\Omega(f)=E^{s}\oplus E^{u} . and a Riemannian norm | | on TM, and constants
C>0,0<\lambda<1 such that
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(a) ( Tf)E^{s}\subset E^{s} , ( Tf)E^{u}=E^{u} ;
(b) |(Tf)^{n}v|\leq C\lambda^{n}|v| for x\in\Omega(f) , v\in E_{x}^{s}, n>0 ,

|(Tf)^{n}v|\geq C\lambda^{-n}|v| for x\in\Omega(f) , v\in E_{X}^{u} , n>0 ;
(c) if x_{1} , x_{2}\in\Omega(f) , x_{1}\neq x_{2} and f(x_{1})=f(x_{2})=y , then E_{y}^{s}=\{0\} :
(d) the periodic points of f are dense in \Omega(f) .

For a C^{1} endomorphism f of M with at most finitely many singular-
ities, absolute \Omega-stability of f is characterized by the following property:

(^{*})f has a neighborhood \mathscr{U} in End^{1}(M) such that every g\in \mathscr{U} satisfies
weak Axiom A.

By using Theorem A instead of Theorem 1 we can improve this char-
acterization from endomorphisms with finitely many singularities to en-
domorphisms with finitely many singularities in the nonwandering sets.

REMARK. The requirement that f has finitely many singularities in
the nonwandering set \Omega(f) is necessary for “ absolute \Omega-stabi1ity\Rightarrow(^{*})

”

[2]. “ (^{*})\Rightarrow abso1ute\Omega-stability ” holds for arbitrary C^{1} endomorphism
f[1] .
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