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The Cauchy problem in abstract Gevrey spaces
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\S 1. Introduction

We investigate here the existence of local solutions to the following
abstract Cauchy problem:

u’+A(t)u=f(t, u(t)) (1)
u(0)=u_{0} , u’(0)=u_{1} (2)

in a Hilbert space H, where A(t) is a nonnegative unbounded operator.
In case A(t) satisfies some strict coercivity assumptions, i . e . when (1)

is a strictly hyperbolic equation, the local solvability for Pb. (1), (2) is
well known, provided A(t) is Lipschitz continuous in time and f is
smooth enough. An extensive theory on this problem, embracing most of
the concrete results in Sobolev spaces with optimal regularity assumptions,
was given by Kato (see [Ka]: see also [LM]).

On the other hand, when A(t)\geq 0 is allowed to be degenerate, i.e.
when Eq. (1) is of weakly hyperbolic type, then we need much stronger
assumptions in order that (1), (2) be locally solvable. This is evident also
for linear equations such as

u_{tt}=a(t)_{\mathcal{U}xx} (3)

which may be not locally solvable in C^{\infty} for a suitable nonnegative a(t)\in
C^{\infty} (see [CS]).

It is possible to overcome this difficulty by requiring that the data and
the coefficients are more regular in space variables. Thus in [CJS], [N] it
was proved that the equations

u_{tt}= \sum_{i,j}a_{ij}(t, x)u_{x_{i}x_{j}}+\sum_{j}b_{j}(t, x)u_{x_{j}} , \Sigma a_{ij}\xi_{i}\xi_{j}\geq 0 (4)

are globally sovable in the spaces \gamma^{s}(R^{n}) of Gevrey functions of order s ,

defined as follows:
v(x)\in\gamma^{s}(R^{n})\Leftrightarrow\forall K\subset\subset R^{n}\exists C_{K} , \Lambda_{K}\geq 0:|D^{a}v(x)|\leq C_{K}\Lambda_{K}^{|a|}\cdot|\alpha|!^{s}

for x\in K (5)
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(see also [OT] for the case of hyperbolic equations of higher order).
More precisely, there is an interesting connection among the regularity in
space and time: namely, if the coefficients a_{ij} are H\"older continuous in
time with exponent \lambda , and Gevrey of order s in x , then (4) is uniquely
solvable in \gamma^{s}(R^{n}) provided

s<1+\lambda/2 (6)

and locally solvable if there is equality in (6). This holds up to \lambda=2 ,
where we mean, for 1<\lambda\leq 2 , that the coefficients are C^{1} with first deriva-
time H\"older continuous with exponent \lambda-1 . A similar relation, involving
the multiplicity of characteristics, holds in the case of higher order equa-
tions and systems. The above mentioned result for Eq. (4) was extended
to the abstract framework in [D].

These remarks inspire the natural conjecture that an equation like
u_{tt}=\Sigma a_{ij}(t, x)u_{x_{i}x_{j}}+f(u, u_{x}) (7)

may be locally solvable in Gevrey classes, provided the function f has
suitable smoothness properties. Indeed, as far as 1967, Leray and Ohya
[LO] (see also [Br], [S]) proved that the Cauchy problem for a general
semilinear system is well posed in Gevrey classes, provided the system is
(weakly) hyperbolic with smooth characteristic roots. This assumption of
smoothness was removed by Kajitani [K1], who further improved the
result by showing that it is sufficient to assume H\"older continuity in time
of the coefficients, provided (6) holds (see [K2]).

We should also mention that the case s=1 is trivial, since it can be
regarded as an application of the theorem of Cauchy and Kowalewski in
the nonlinear version (see [O], [Y]), and in this case the hyperbolicity
assumption is superfluous.

The aim of the present paper is to propose an extension of Kajitani’s
result to the abstract setting of Gevrey classes, at least for a second order
equation like (1) (including (7) as a concrete example). For such an
equation, the weak hyperbolicity can be easily expressed in abstract form,
and the method of energy is applicable.

In Section 2 we recall the definition of abstract Gevrey classes, and
state our main result (Theorem 1), which is proved in Section 3. The last
section is devoted to the applications: we prove in particular that the
equation

u_{tt}= \sum_{ij}a_{ij}(t, x)u_{x_{i}x_{j}}+f(t, x, u, \nabla u) (8)
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is locally solvable in \gamma^{s}(R^{n}) for s\leq 1+\lambda/2 , s<2 , provided the a_{ij} are
H\"older functions of exponent \lambda in t and Gevrey of order s in x : as to the
nonlinear term f(t, x, r, p) , we assume that it is L_{1oc}^{1} in t , \gamma^{s} in x , and is a
Gevrey function of (r, p) of some order s’<s . We remark that in [K2]
the coefficients are assumed to be real analytic functions of u .
\S 2. Notations and statement of the Theorem

We recall the main definitions and properties of scales of abstract
Gevrey spaces generated by an n-tuple of operators (see [C]: see also [B],
[DT] ) .

Let H be a Hilbert space with norm |\cdot| and product (\cdot ,\cdot ) , and let B=
(B_{1}, \cdots, B_{n}) an n-tuple of linear closed commuting operators on H. We
define

V_{j}\equiv\{v\in H:B^{a}v\in H\nabla 1\alpha|=j\} (9)

where we have used the notation B^{a}=B_{1}^{a_{1}}\circ\ldots\circ B_{n}^{a_{n}} : we shall also use the
notation

V_{\infty}= \bigcap_{j\geq 0}V_{j} .

Moreover, for v\in V_{j} , we can define

|v|_{j} \equiv(\sum_{|a|=j}|B^{a}v|^{2}).1/2 (10)

Thus in particular |\cdot|_{0}\equiv|\cdot| . If we endow V\equiv V_{1} with the norm ||v||_{V}=|v|

+|v|_{1} , and identify H with its dual space, we obtain the Hilbert triple V\subseteq

H\subseteq V’ in the sense of [LM]. Note that the spaces V_{j} have a natural
Hilbert structure, but we shall not use it in the following.

We shall make a further assumption on H, wich will allow us to
implement a FaedO-Galerkin approximating scheme for Pb. (1), (2):

H has a countable basis made of common eigenvectors of B_{1}\ldots , B_{n} ;
(11)

moreover, we shall assume that, for some integer k_{0}\geq 0 ,

the embedding V_{k_{0}}\subseteq H is compact. (12)

Then, the abstract Gevrey spaces of order s\geq 0 generated by B are the
Banach spaces

X_{r}^{s}=\{v\in V_{\infty} : ||v||_{r,s}<+\infty\}

with the norms
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||v||_{r,s} \equiv\sup_{j\geq 0}|v|_{j}\cdot j!^{-s}r^{j} .

We shall call v\in X_{r}^{s} a Gevrey vector of order s .
For fixed s , it is easy to see that \{X_{r}^{s}\}_{r>0} forms a Banach scale, with

norms increasing with r . A special role will be played by the Fr\’echet

space

X_{0+}^{s}= \bigcup_{r>0}X_{r}^{s}=\lim_{rarrow 0}i_{+}ndX_{r}^{s}. (13)

We can now precise the assumptions on Eq. (1). In the following, we
shall tacitly assume that all the H-valued functions appearing are
H-measurable: moreover, we remark that a H-measurable function u(t)

whose X_{r}^{s} norm is in L_{1OC}^{1}(0, T) is also X_{r}^{s}-measurable (see e. g . [AS]).

The operator A(t) satisfies, for 0<\lambda\leq 2 , T>0 ,

A(t)\in C^{\lambda}([0, T] _{;} _{\mathscr{L}(V. V’))} (14)

which for 0<\lambda\leq 1 means H\"older continuity of exponent \lambda , and for 1<\lambda\leq 2

means H\"older continuity of exponent \lambda-1 of the first time derivative.
Moreover, we assume that (1) is weakly hyperbolic, i.e. for all v , w\in V

\langle Av,v\rangle\geq 0\langle Av,w\rangle=\overline{\langle Aw,v\rangle}

.
(16)(15)

The following assumption ensures that the operators A(t) have the
right order with respect to the scale X_{r}^{s}, that is, order 2: there exist con-
stants C_{0} , \Lambda\geq 0 such that, for all v\in X_{0+}^{s}t\in[0, T] ,

|A(t)v|_{j} \leq C_{0}(j+2)!^{s}\Lambda^{j+2}\sum_{h=0}^{j+2}\frac{|v|_{h}}{h!^{s}\Lambda^{h}}, j\geq 0 . (17)

In concrete cases, (17) is satisfied by second order linear operators with
coefficients Gevrey of order s in x (see Section 4).

The final assumption on A(t) is an estimate of the commutators
[A(t), B^{a}]\equiv A(t)B^{a}-B^{a}A(t) (see [AS], [D]): for all v\in X_{0+}^{s} , t\in[0, T] ,

j\geq 0

( \sum_{|a|=j}|[A(t), B^{a}]v|^{2})^{1/2}\leq C_{0}(j+2)(\sum_{|a|=j}\langle AB^{a}v, B^{a}v\rangle)^{1/2}

+ \Lambda^{j+2}(j+2)!^{s}\sum_{h=0}^{j}\frac{|v|_{h}\Lambda^{-h}}{h!^{s}(h+1)^{s-1}(h+2)^{s-1}} . (18)

As we shall see in Section 4, ass . (18) is satisfied by second order opera-
tors with Gevrey coefficients and nonnegative characteristic form.

It remains to precise the hypotheses on the nonlinear term. We shall
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assume that f:[0, T]\cross X_{0+}^{s}arrow V_{\infty} ; moreover, there exist a function \chi(t)\in

L^{1}(0, T) , an integer constant k\geq 0 and, for all bounded subset K of X_{r}^{s} for
some r>0 , a constant M_{K}\geq 0 such that, for all v\in K , j\geq 0 , we have

|f(t, v)|_{j} \leq\chi(t)j!\sum_{0\leq\nu\leq\mu\leq j}\Lambda^{j-\mu}M_{K}^{\nu}(j-\mu)!^{s-1}\nu!^{s’-1}

h_{1}+ \ldots+h_{\nu}=\mu\sum_{h_{\nu}\geq h_{l}\geq 1}i|v|_{h_{1}+k}\cdots|v|_{hy- 1}+k|v|_{k\nu+1}h_{1}!\ldots h_{\nu}! (19)

where the parameter s’ is strictly less than s , while \Lambda is the same as in
ass . (17), (18). To make formula (19) more clear, we notice that when
1\supset=0 or \mu=0 the inner sum is not present, i.e. the set \{h_{1_{ }},\ldots, h_{\nu}\} is empty.
Moreover, we shall assume that f(t, \cdot) has a Fr\’echet derivative as a map
from X_{0+}^{s} to H, with values in V_{\infty} , and that, for all bounded subset K of
X_{r}^{s} for some r>0 , there exists a constant M_{K} such that, for all w\in K , v\in

X_{0+}^{s}

|Df(t, w)v|_{j} \leq\chi(t)(j+1)!^{s}M_{K}^{j+1}\sum_{h=0}^{j}\frac{|v|_{h}}{h!^{s}M_{K}^{h}} , j\geq 0 . (20)

We can now state our result:

THEOREM 1. Assume that (11), (12) hold, and that A(t) , f(t, u) sat-
isfy (14)-(20). Then, for all u_{0} , u_{1}\in X_{0+}^{s} , there exists T_{0}>0 such that Pb.
(1), (2) has a unique solution in

C^{1}([0, T_{0}] ; X_{0+}^{s}) , (21)

provided

1 \leq s’<s\leq 1+\frac{\lambda}{2}, s<2 . (22)

Moreover u’\in L^{1}(0, T_{0} ; X_{r}) for some r>0 .

REMARK. By the same method, it is possible to handle a nonlinear
term of the form f(t, x, u, u’) , depending also on the first time derivative
of u , obtaining a similar result.

\S 3. Proof of Theorem 1

The proof is based on the method of infinite order energy, introduced
in [CDS] in the study of weakly hyperbolic equations in the class of ana-
lytic functions. The method was extended in [AS] to the abstract frame-
work, and in [D] and [S] to the setting of Gevrey functions.

In order to make the proof more clear, we shall perform it in the
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particular case when the n^{-}tuple B is made of one single operator B ; only
minor modifications are necessary in the general case (see Remark 2).
Moreover, we shall consider in detail only the case 0<\lambda\leq 1 , and list in
Remark 1 the changes for the case 1\leq\lambda\leq 2 .

We divide the proof into several steps.

STEP 1: Apriori estmate

Let \phi(t) be a Friedrichs mollifier in C_{0}^{\infty}(R) , with \int\phi=1 , and let

\phi_{j}(t)=j^{-1}\phi(t/j) . (23)

Then, extending A(t) as A(T) for t\geq T . A(0) for t\leq 0 , we can define the
convolutions (in the norm of H)

A_{j}(t)=A*\phi_{j}(t) . (24)

It is easy to prove, using the \lambda -H\"older continuity of A(t) (see (14)), that

||A-A_{j}||_{L^{\infty}(0,T,\mathscr{L}(V,V))}\leq Lj^{-\lambda}||A_{j}’||_{L^{\infty}(0,T,\mathscr{L}(V,V’))}\leq 2Lj^{1-\lambda} (26)(25)

for a suitable constant L\geq 0 .
Consider now the following Cauchy problem

u’+A(t)u+M(t)u=f(t, u(t)) (27)
u(0)=u_{0} , u’(0)=u_{1} , u_{0} , u_{1}\in X_{0+}^{s} (28)

which differs from (1), (2) for the presence of a first order term M(t)u .
The reason for the introduction of M(t) will be clear when dealing with
the uniqueness (see Step 3). Besides the assumptions of Thm. 1, we shall
assume that

M\in L^{1} (0, T ; \mathscr{L} ( V. H)) (28)

and that, for some \mu(t)\in L^{1}(0, T) ,

|M(t)v|_{j} \leq C_{0}(j+1)!^{s}\Lambda_{1}^{j+1}\sum_{h=0}^{j+1}\frac{|v|_{h}}{h!^{s}\Lambda_{1}^{h}} , j\geq 0 (30)

for all v\in X_{0+}^{s} , and some constant \Lambda_{1}\geq 0 .
Now let u(t) be a solution to (27), (28). We define (formally) the

energy of order j of u(t) as follows:
E_{j}(t)=|u’|_{j-1}^{2}+\langle A_{j}B^{j-1}u, B^{j-1}u\rangle+j^{2}|u|_{j-1}^{2}+j^{-\lambda}|u|_{j}^{2} . (31)

Since by (27) we can write, applying B^{j-1} to both sides,
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B^{j-1}u\prime\prime+A_{j}B^{j-1}u=(A_{j}-A)B^{j-1}u+[A, B^{j-1}]u-B^{j-1}Mu+B^{j-1}f ,
(32)

we have, differentiating (31) and using (32),

E_{j}’(t)=\langle A_{j}’B^{j-1}u, B^{j-1}u\rangle+2{\rm Re}\langle j^{2}B^{j-1}+(Aj-A)B^{j-1}u+[A, B^{j-1}]u, B^{j-1}u’\rangle

+2 {\rm Re} j^{-\lambda}\langle B^{i}u, B^{j}u’\rangle+2Re \langle-B^{j-1}Mu+B^{j-1}f, B^{j-1}u’\rangle . (33)

We shall now use the inequalities (consequences of def. (31))

|u|_{j-1}\leq j^{-1}\sqrt{E_{j}} , |u|_{j}\leq j^{\lambda/2}\sqrt{E_{j}} ,
|u’|_{j-1}\leq\sqrt{E_{j}} , |u’|_{j}\leq\sqrt{E_{j+1}} ; (34)

by (33), using (34), (30), (25), (26) and dividing by 2\sqrt{E_{j}} , we obtain after
some passages

\sqrt{E_{j}}^{r}\leq c_{1}(L)[j^{-\lambda/2}\sqrt{E_{j+1}}+j\sqrt{E_{j}}+\mu(t)j!^{s}j^{\lambda/2}\sum_{h=1}^{j}\frac{\sqrt{E_{h}}\Lambda_{1}^{j-h}}{h!^{s}}]

+|[A, B^{j-1}]u|+|f|_{j-1} .

We recall now ass. (18), which implies

|[A, B^{j-1}]u|\leq c_{0}j[\langle(A-A_{j}+A_{j})B^{j-1}u, B^{j-1}u\rangle]^{1/2}

+c_{0} \Lambda^{j+1}(j+1)!^{s}\sum_{h=0}^{j-1}\frac{\sqrt{E_{h+1}}\Lambda^{-h}}{(h+1)!^{s}(h+2)^{\sigma}}

(\sigma=s-1) and, after some easy passages, using again (34), (25), we find

\sqrt{E_{j}}’\leq c_{2}[j^{-\lambda/2}\sqrt{E_{j+1}}+(\mu+1)(j+1)!^{s}\sum_{h=1}^{j}\frac{\sqrt{E_{h}}\Lambda_{2}^{j-h}}{h!^{s}(h+1)^{\sigma}}]+|f|_{j-1} (35)

where c_{2}=c_{2}(L, \Lambda, \Lambda_{1}, c_{0}) while (see (30))

\Lambda_{2}=\max\{\Lambda, \Lambda_{1}\} . (36)

We can now define (formally) the infinite order energy \mathscr{C}(t) associated
ed to u(t) :

\mathscr{C}(t)\equiv\sum_{j\geq 1}\frac{\rho^{j-k}}{j!^{s}}j^{kS}\sqrt{E_{j}} (37)

where \rho(t) is an absolutely continuous functions, which will be chosen in
the following: the essential property of \rho(t) will be

0<r_{0}/2\leq\rho(t)\leq r_{0}<1/\Lambda_{2} on [0, T^{*}] (38)

for some T^{*}\in[0, T] to be precised, where r_{0}>0 is such that u_{0} , u_{1}\in X_{ro+\epsilon}^{s}

for some \epsilon>0 ; of course r_{0} can be taken arbitrarily small. The integer k
appearing in the definition of \mathscr{C}(t) is the same as in ass. (19).
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Differentiating (37) termwise we have (formally)

\mathscr{C}’(t)=\sum_{j\geq 1}\sqrt{E_{j}}’+\sum_{j\geq 1}\frac{\rho^{j-k-1}}{j!^{s}}(j-k)j^{kS}\sqrt{E_{j}}\cdot\rho(t)’ . (39)

In order to estimate \mathscr{C}’(t) , we shall introduce (36) into (39). We obtain
several terms, of which only the following one deserves special attention:

\sum_{j\geq 1}\rho^{j-k}(j+1)^{s}j^{kS}\sum_{h=1}^{j}\frac{\sqrt{E_{h}}\Lambda_{2}^{j-h}}{h!^{s}(h+1)^{\sigma}}=\sum_{h\geq 1}\frac{\sqrt{E_{h}}\Lambda_{2}^{-h}}{h!^{s}(h+1)^{\sigma}}\rho^{-k}\sum_{j\geq h}(\rho\Lambda_{2})^{j}j^{kS}(j+1)^{s}

(40)

and since

\sum_{j\geq h}(\rho\Lambda_{2})^{j}(j+1)^{(k+1\rangle S}\leq c(r_{0}, \Lambda_{2}, k, s)(\rho\Lambda_{2})^{h}h^{(k+1)S} (41)

where we have used (38), we have

\sum_{j\geq 1}\rho^{j-k}(j+1)^{s}j^{kS}\sum_{h=1}^{j}\frac{\sqrt{E_{h}}\Lambda_{2}^{j-h}}{h!^{s}(h+1)^{\sigma}}\leq c(r_{0}, \Lambda_{2}, k, s)\sum_{j\geq 1}\frac{\rho^{j-k}}{j!^{s}}j^{kS}\cdot j\sqrt{E_{j}} . (42)

Hence by (39), (35) and (42) we obtain

\mathscr{C}’(t)\leq c_{3}\sum_{j\geq 1}\frac{\rho^{j-k}}{j!^{s}}j^{kS}\cdot j^{-\lambda/2}\sqrt{E_{j+1}}+c_{3}(\mu(t)+1)\sum_{j\geq 1}\frac{\rho^{j-k}}{j!^{s}}j^{kS}\cdot j\sqrt{E_{j}}

+ \sum_{j\geq 1}\frac{\rho^{j-k-1}}{j!^{s}}(j-k)j^{kS}\rho’\sqrt{E_{j}}+\mathscr{C}(f) (43)

where we have introduced the notation

\mathscr{C}(f)=\sum_{j\geq 1}\frac{\rho^{j-k}}{j!^{s}}j^{kS}|f|_{j} . (44)

Rearranging the terms in (43) we finally obtain

\mathscr{C}’(t)\leq\sum_{j\geq 1}\frac{\rho^{j-k-1}}{(j-1)!^{s}}j^{ks-\sigma}\sqrt{E_{j}}\{\frac{j-k}{j}\rho’+\mu_{1}(t)\rho+c_{4}j^{\sigma-\lambda/2}\}+\mathscr{C}(f) (45)

where c_{4}=c_{4}(L, \Lambda_{2}, s, k, c_{0}) and \mu_{1}(t)=c_{4}(\mu(t)+1) .

It remains now to estimate the nonlinear term \mathscr{C}(f) . Recalling (44)
and (19), we have

\mathscr{C}(f)\leq\chi(t)\sum_{j\geq 1}\frac{\rho^{j-k}}{j!^{s-1}}j^{ks}\sum_{0\leq\nu\leq\mu\leq j}\Lambda^{j-\mu}M_{K}^{\nu}(j-\mu)!^{s-1}\iota/!^{s’-1}

h_{1}+ \ldots+h_{\nu}=\mu\sum_{h_{\nu}\geq h,\geq 1}\frac{|u|_{h_{1}+k}\ldots|u|_{h_{y-1}+k}\cdot|u|_{h\nu\dagger 1}}{h_{1}!\ldots h_{\nu}!} (46)

where M_{K} is the constant in (19) associated to the bounded set K=\{u\}
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(consisting of one single function). Using the notation

\eta(j)=\frac{\rho^{j-k}}{j!^{s}}j^{kS}\sqrt{E_{j}} , (47)

so that \mathscr{C}=\Sigma_{j\geq 1}\eta(j) , we easily see that

\frac{|u|_{h_{i}+k}}{h_{i}!}\leq\eta(h_{i}+k)\frac{h_{i}!^{s-1}}{h_{i}+k}\rho^{-h_{i}} ,

\frac{|u|_{h\nu+1}}{h_{\nu}!}\leq\eta(h_{1J}+1)\frac{h_{\nu}!^{s-1}}{(h_{\nu}+1)^{(k-1)_{S}}}\rho^{-h\nu+k-1} . (48)

and hence, isolating the terms with \iota/=0 from the others in (46), we get

\mathscr{C}(f)\leq \mathscr{C}_{1}(f)+\mathscr{C}_{2}(f) (49)

where

\mathscr{C}_{1}(f)\equiv\chi(t)\sum_{j\geq 1}\frac{\rho^{j-k}}{j!^{s-1}}j^{kS}\sum_{0\leq\mu\leq j}\Lambda^{j-\mu}(j-\mu)!^{s-1} (50)

and

\mathscr{C}_{2}(f)\equiv\chi(t)\sum_{j\geq 1}\sum_{1\leq\nu\leq\mu\leq j}\frac{\rho^{j-k}}{j!^{s-1}}j^{ks}\Lambda^{j-\mu}M_{K}^{\nu}(j-\mu)!^{s-1}\nu!^{s^{r}-1}

h_{1}+ \ldots+h_{\nu}=\mu\sum_{h_{\nu}\geq h_{t}\geq 1}\eta(h_{1}+k)\ldots\eta(h_{\nu-1}+k)\eta(h_{\nu}+1)

\frac{h_{1}!^{s-1}\ldots h_{\nu}!^{s-1}}{(h_{1}+k)\ldots(h_{\nu-1}+k)(h_{\nu}+1)^{ks}}(h_{\nu}+1)^{s-1}\rho^{\mu-j+k-1} . (51)

We have easily (since (j-\mu)!/j!\leq 1/\mu! )

\mathscr{C}_{1}(f)\leq\chi(t)\sum_{j\geq 1}\rho-kj^{kS}j\sum_{0\leq\mu\leq j}\frac{\Lambda^{j-\mu}}{\mu!^{s-1}}=\chi(t)\rho^{-k}\sum_{\mu\geq 0}\frac{\Lambda^{j-\mu}}{\mu!^{s-1}}\sum_{j\geq\mu}(\rho\Lambda)^{j}j^{kS} (52)

and with the same argument as in (41), (42) (see (38))

\mathscr{C}_{1}(f)\leq\chi(t)\sum_{\mu\geq 0}\frac{\rho^{\mu-k}}{\mu!^{s-1}}\mu^{kS}\cdot c(r_{0}, \Lambda, k, s)\equiv\phi(t) . (53)

Note that the series in (53) converges no matter the value of \rho(t) , hence
the function \phi(t)\in L^{1}(0, T) is well defined, and will depend on our choice
of \rho(t) .

As to \mathscr{C}_{2}(f) , we shall need the easy inequality

\frac{(h_{1}+\ldots+h_{\nu})!}{h_{1}!\ldots h_{\nu}!}\geq_{1\nearrow}! if h_{1} , \ldots
h_{\nu}\geq 1 (54)

which implies
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( \frac{(j-\mu)!}{j!}h_{1}!\ldots h_{\nu}!)^{s-1}=(\begin{array}{l}jj-\mu\end{array})(\begin{array}{lll} \mu h_{1}, \ldots, h_{\nu}\end{array}) \leq(\begin{array}{l}jj-\mu\end{array})1\nearrow!^{s}\leq_{1\prime}!^{S} .

(55)

By (51), (55), we have

\mathscr{C}2(f)\leq\chi(t)\sum_{j\geq 1}\sum_{1\leq\nu\leq\mu\leq j}j^{kS}\rho^{j-\mu-1}\Lambda^{j-\mu}M_{K}^{\nu}1\nearrow!^{s^{r}-S}(h_{\nu}+1)^{s-1}

h_{1}+..+h \nu=\mu\sum_{h_{\nu}\geq h_{\iota}\geq 1}(\frac{j}{h_{\nu}+1})^{kS}\eta(h_{1}+k)\ldots\eta(h_{\nu-1}+k)\eta(h_{\nu}+1) . (56)

The inequalities h_{\nu}\geq h_{i}\geq 1,1/\geq 1 imply

\mu=\Sigma h_{i}\leq\iota/h_{\nu}\Rightarrow(\frac{j}{h_{\nu}+1})^{kS}\leq(\frac{j}{\mu+1})^{ks_{1\sqrt}}kS .

and since (\begin{array}{l}jj-\mu\end{array})1-S\leq 1 , we obtain, after a suitable rearrangment of the

terms in (56),

\mathscr{C}_{2}(f)\leq\chi(t)\sum_{\nu\geq 1}f^{kS}\nearrow\iota/!^{s^{r}-s}M_{K}^{\nu}\sum_{h_{\nu}\geq 1}\eta(h_{\nu}+1)(h_{\nu}+1)^{s-1}

\sum_{\mu\geq\nu,h\mu}\sum_{j\geq\mu}\rho^{j-\mu-1}\Lambda^{j-\mu(\frac{j}{\mu+1})\sum_{h_{y}\geq h,\geq 1}}h_{1}+\ldots+h_{\nu}=\mu\eta(h_{1}+k)\ldots\eta(h_{\nu-1}+k) . (57)

Now we observe that, for fixed f/ , h_{\nu}\geq 1(jarrow j+\mu)

\sum_{\mu\geq\nu,h_{\nu}}\sum_{j\geq\mu}\rho\Lambda^{j-\mu}j-\mu-1(\frac{j}{\mu+1})h_{1}+\ldots+h_{\mu}=\mu\sum_{h_{\nu}\geq h_{t}\geq 1}\eta(h_{1}+k)\ldots\eta(h_{\nu-1}+k)\leq

\sum_{j\geq 0}\sum_{\mu\geq\nu,h_{\nu}}\rho^{j-1}\Lambda^{j}(\frac{j+\mu}{\mu+1})^{kS}h_{1}+\ldots+h_{\nu}=\mu\sum_{h_{\nu}\geq h_{t}\geq 1}\eta(h_{1}+k)\ldots\eta(h_{\nu-1}+k) (58)

and, dividing the terms of the last sum in two groups, we have, when \mu\leq

[j/2] ,

\sum_{j\geq 0}\sum_{[j/2]\geq\mu\geq\nu,h_{\mu}}\rho^{j-1}\Lambda^{j}(\frac{j+\mu}{\mu+1})^{kS}h_{1}+\ldots+h_{\nu}=\mu\sum_{h_{y}\geq h_{l}\geq 1}\eta(h_{1}+k)\ldots\eta(h_{\nu-1}+k)\leq

\leq 3^{kS}\sum_{j\geq 0}\rho^{j-1}\Lambda^{j}j^{ks}\mathscr{C}^{\nu-1}\leq(1-r_{0}\Lambda)^{-[ks]-1}\rho^{-1}\mathscr{C}(t)^{\nu-1} (59)

(recall (38)), while, for the terms with \mu>[j/2] ,

\sum_{j\geq 0}\sum_{\mu\geq\nu,h_{\nu},[j/2]}\rho^{j-1}\Lambda^{j}(\frac{j+\mu}{\mu+1})^{kS}h_{1}+\ldots+h_{\nu}=\mu\sum_{h_{\nu}\geq h_{\iota}\geq 1}\eta(h_{1}+k)\ldots\eta(h_{\nu-1}+k)\leq

\leq 4\sum_{j\geq 0}\rho^{j-1}\Lambda^{j}\mathscr{C}^{\nu-1}\leq(1-r_{0}\Lambda)^{-1}\rho^{-1}\mathscr{C}(t)^{1/-1} . (60)
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Hence, by (57)-(60)

\mathscr{C}_{2}(f)\leq c_{5}(r_{0}, \Lambda, k, s)\chi(t)\sum_{\nu\geq 1}\nu^{ks}\nu!^{S’-s}M_{K}^{\nu}\mathscr{C}^{\nu-1}\sum_{h_{\nu}\geq 1}\eta(h_{\nu}+1)(h_{\nu}+1)^{s-1}\rho^{-1} .

(61)

We now define the function

\Psi_{K}(r)=\sum_{\nu\geq 1}\nu^{kS}\nu!^{s^{r}-S}M_{K}^{\nu}r^{\nu-1} (62)

where the series converges for all values of r , since s’<s ; then we can
write

\mathscr{C}_{2}(f)\leq\chi_{1}(t)\Psi_{K}(\mathscr{C}(t))\sum_{j\geq 1}j^{s-1}\eta(j)\rho^{-1} (63)

where

\chi_{1}(t)=c_{5}(r_{0}, \Lambda, k, s)\chi(t) . (64)

Finally, from (49), (53), (63), we conclude that

\mathscr{C}(f)\leq\phi(t)+\chi_{1}(t)\Psi_{K}(\mathscr{C}(t))\sum_{j\geq 1}j^{s-1}\eta(j)\rho^{-1} . (65)

We can now come back to estimate (45). We have, using (65),

\mathscr{C}’(t)\leq\sum_{j\geq 1}\frac{\rho^{j-k-1}}{(j-1)!^{s}}j^{ks-\sigma}\sqrt{E_{j}}\{\frac{j-k}{j}\rho’+\mu_{1}(t)\rho+c_{4}j^{\sigma-\lambda/2}

+\chi_{1}(t)\Psi_{K}(\mathscr{C}(t))j^{s-2}\}+\phi(t) (66)

where we have used the identity

j^{s-1} \eta(j)\rho^{-1}\equiv\frac{\rho^{j-k-1}}{(j-1)!^{s}}j^{ks-\sigma}\sqrt{E_{j}}\cdot j^{s-2} . (67)

We shall now use the formal estimate (66) in order to obtain an
effective a priori estimate for solutions of Pb. (27), (28). First of all, we
can choose the function \rho(t) : it will be defined as the solution to the ODE

\frac{1}{2}\rho’(t)+\mu_{1}(t)\rho+2c_{4}+\chi_{1}(t)=0 (68)
\rho(0)=r_{0} ; (69)

recall that \mu_{1}(t)=c_{4}(\mu+1) , \chi_{1}(t) is defined in (64) and r_{0}<1/\Lambda_{2} is such
that u_{0} , u_{1}\in X_{r_{0}+\epsilon}^{s} for some \epsilon>0 . Thus \rho(t) depends only on the
coefficients and the data of the problem. The function \rho(t) is absolutely
continuous, nonincreasing, and satisfies an inequality of the form
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0< \frac{r_{0}}{2}\leq\rho(t)\leq r_{0} for t\in[0, T^{*}] (70)

for some T^{*}>0 , so that (38) is fulfilled on [0, T^{*}] . It is clear that also
T^{*} depends only on the coefficients and the data of the problem.

We are now ready to prove the

LEMMA 1. (a priori estimate). Let u\in C^{1}([0, T];X_{1/\Lambda z}^{s}) be a solution
to Pb.(27) , (28). Then we can find a time \overline{T}>0 and a constant \overline{C}>0 ,

depending only on the coefficients of Eq. (27) and on r_{0} , such that

\mathscr{C}(t)\leq\overline{C} for t\in[0,\overline{T}] . (71)

PROOF. Since 0<\rho<1/\Lambda_{2} on [0, T^{*}] , the energy \xi(t) and all the
series used in the computations leading to (66) converge for the solution
u(t) under consideration, hence (66) holds.

Assume now that
\mathscr{C}(t)\leq C on [0, T^{*}] (72)

for some constant C. We remark that an inequality like (72) can be used
to define a bounded subset of X_{r}^{s} as follows. For any vector v\in X_{0+}^{s} , we
can consider an energy as in (32) with u(t)\equiv v (and of course u’\equiv 0), and
define accordingly the infinite order energy \xi_{v}(t) as in (37). Then, the
set K_{C} of the elements of X_{0+}^{s} such that (72) holds will be a bounded sub-
set of X_{ro/2}^{s} , since \rho\geq r_{0}/2 , and will be increasing as C increases. Let
M(C)=M_{Kc} be the constant given by ass . (19) in correspondence with the
set K_{C} , clearly an increasing function of C, and let \Psi(C, r)\equiv\Psi_{Kc}(r) the
corresponding function defined in (62); as it is evident from (62) and the
preceding arguments, \Psi(C, r) is increasing in each variable.

Consider now estimate (66). The quantity between braces can be esti-
mated by the following one, using (72) and ass . (22):

\frac{j-k}{j}\rho’+\mu_{1}(t)\rho+c_{4}+\chi_{1}(t)\Psi(C, C)j^{s-2} . (73)

Since s<2 , the last term in (73) converges to 0. Recalling (68), we see
that the expression (73) is negative as soon as

j\geq j_{0}(C)\geq 2k (74)

where j_{0}(C) is a suitable function, also increasing in C. Hence we can
drop the terms for j\geq j_{0} in (66). As to the remaining terms, we can esti-
mate them as follows:
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\sum_{j=1}^{j_{0}(C)}\frac{\rho^{j-k-1}}{(j-1)!^{s}}j^{ks-\sigma}\sqrt{E_{j}}\{\frac{j-k}{j}\rho’+\mu_{1}(t)\rho+c_{4}j^{\sigma-\lambda/2}+\chi_{1}(t)\Psi(C, C)j^{s-2\}}

\leq c_{6}(C)\mathscr{C}(t) (75)

where c_{6} depends on r_{0} , the coefficients of Eq. (28), and of course can be
assumed to be increasing in C.

In conclusion we have
\mathscr{C}’(t)\leq\phi(t)+c_{6}(C)\mathscr{C}(t) (76)

which implies

\mathscr{C}(t)\leq e^{C_{6(c)t(\mathscr{C}(0)+\int_{0}^{t}\emptyset(s)ds)}} . (77)

Note that this estimate holds for all sufficiently large constant C, provided
(72) holds.

We can now define the constants \overline{C},\overline{T} Let

\overline{C}=2(\mathscr{C}(0)+\int_{0}^{\tau*}\phi(s)ds) (78)

and let \overline{T} be so small that

e^{c_{0}(\overline{C})\overline{T}} \leq\frac{3}{2} . (79)

Then we claim that (71) holds. Indeed, \mathscr{C}(0)\leq\overline{C}/2 by (78), and by conti-
nuity this implies \mathscr{C}(t)\leq\overline{C} on some interval [0, \epsilon] . We define then

T_{1}= \sup{ t : \mathscr{C}(\tau)\leq\overline{C} on [0, t] }. (80)

It is easy to prove that T_{1}\geq\overline{T} Assume by contradiction that T_{1}<\overline{T} ;
since

\mathscr{C}(t)\leq\overline{C} on [0, T_{1}] (81)

we can apply estimate (77) with C=\overline{C} on that interval, and by (79) we
have

\mathscr{C}(T_{1})\leq\frac{3}{2}(\mathscr{C}(0)+\int_{0}^{T_{1}}\phi(s)ds)<\overline{C} (82)

and this contradicts the maximality of T_{1} .
The proof of Lemma 1 is complete.

\square

REMARK 1. In the case \lambda\in[1,2] , it is not necessary to regularize the
coefficient A(t) in time; we define the energy of order j as follows
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E_{j}(t)=|u’|_{j-1}^{2}+\langle AB^{j-1}u, B^{j-1}u\rangle+j^{2}|u|_{j-1}^{2}+j^{-\lambda}|u|_{j}^{2} .

In the course of the computation, the only difference is the estimate of the
term \langle A’B^{j-1}u, B^{j-1}u\rangle which is obtained by applying to the function \phi(t)

=\langle A(t)v, v\rangle the following property (a proof of which can be found in
[CJS], [J] ) :

Let \phi\in C^{\lambda}([0, T]) be a non-negative function, 1\leq\lambda\leq 2 . Then
||\phi^{1/\lambda}||_{Lip}\leq c(\lambda)||\phi||_{C^{\lambda}}^{1/\lambda} .

REMARK 2. In the general case when B consists of an n-tuple of
operators, n>1 , we define the energy E_{j} as follows

E_{j}(t)=|u’|_{j-1}^{2}+ \sum_{|a|=j}\langle A_{j}B^{a}u, B^{a}u\rangle+j^{2}|u|_{j-1}^{2}+j^{-\lambda}|u|_{j}^{2}

and the proof follows exactly the same lines as above.

STEP 2: Local existence
With the a priori estimate (71), it is not difficult to prove that a local

solution to Pb. (1), (2) exists. Ass. (11) implies the existence of a
sequence of orthogonal projections P_{N} , with finite dimensional images H_{N} ,
commuting with B and strongly converging to the identity. Defining
A_{N}(t)=P_{N}A(t) , f_{N}(t, u)=P_{N}f(t, u) , it is clear that ass. (14)-(20) hold also
for A_{N} , f_{N} without any modification. Moreover, the image H_{N} of P_{N} is
contained in X_{r}^{s} for all r>0 ; indeed, B|_{H_{N}}\equiv P_{N}BP_{N} : H_{N}arrow H_{N} is a found
ed operator (owing to finite dimension), hence for v\in H_{N}

|v|_{j}=|B^{j}v|\leq||B||_{\mathscr{L}(H_{N},H_{N})}^{j}|v|_{H_{N}} . (83)

Thus, choosing M(t)\equiv 0 (and hence \Lambda_{2}=\Lambda , see (36)), the assumptions of
Lemma 1 are uniformly satisfied by the Cauchy problems

v’+A_{N}(t)u=f_{N}(t, v(t)) (84)
v(0)=P_{N}u_{0} , v’(0)=P_{N}u_{1} , (85)

hence the conclusion of Lemma 1 holds true and the constants \overline{C},\overline{T} do not
depend on N.

We remark now that Pb. (84), (85) is locally solvable, since it is finite
dimensional; the solution u_{N}(t) belongs to

u_{N}\in C^{1}([0, T_{N}];X_{r}^{s}) (86)

for some T_{N}>0 , and for all r>0 (since u_{N}(t)\in H_{N} ). But it is easy to see
that, thanks to estimate (71), u_{N}(t) can in fact be prolonged beyond \overline{T}

Indeed, let [0, T] be the maximal interval of definition for u_{N} , then (71)
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and Eq. (85) itself imply that

u_{N} , u_{N}^{r}\in L^{\infty}(0, T^{*} : X_{r}^{s}) , u_{N}’\in L^{1}(0, T^{*} ; X_{r}^{s}) (87)

for some r>0 small enough (e.g. r=r_{0}/2 ), hence T^{*}\geq\overline{T} by a standard
continuation argument. Hence, by the above mentioned property of the
spaces H_{N}(see(83)) it follows that

u_{N}(t)\in C^{1}([0,\overline{T}] ; X_{r}^{s}) (88)

for all r>0 , and estimate (71) holds.
A consequence of (71) is that, for each j\geq 0 , the sequences B^{j}u_{N} ,

B^{j}u_{N}’ are bounded in L^{\infty}(0,\overline{T},\cdot H) and hence in L^{2}(0,\overline{T}:H) . Thus, by
extracting subsequences through a diagonal procedure, we can assume
that, for each j, B^{j}u_{N}-u^{(j)} , B^{j}u_{N^{-}}’v^{(j)} in the weak topology of
L^{2}(0,\overline{T};H) . It is clear that v^{(j)} \equiv\frac{d}{dt}u^{(j)} : moreover, by ass. (12) and the

continuous embedding W^{1,2}\subseteq C^{0} . by possibly extracting further subse-
quences we have that B^{j}u_{N} converges uniformly in C^{0}([0,\overline{T}];H) , hence
by the closedness of B we conclude that u^{(j)}=B^{j}u where u \equiv u^{(0)}\equiv\lim u_{N} .
Now, recalling ass. (19), (20), by the uniform convergence B^{j}u_{N}arrow B^{J}u we
deduce

f_{N}(\cdot, u_{N}(\cdot)) – f(\cdot, u(\cdot)) strongly in L^{1}(0,\overline{T} ; H) . (89)

By standard arguments, it is easy to conclude that the limit u(t) is a solu-
tion to Pb. (1), (2) such that

u(t)\in C^{1}([0,\overline{T}]; X_{0+}^{s})

and satisfies estimate (71).

STEP 3 : Uniqueness
Let u , v be two solutions to Pb. (1), (2) such that

u , v\in C^{1}([0, \overline{T}] ; X_{0+}^{s}) ;

hence in particular

u , v\in C^{1}([0, \overline{T}] : X_{r_{1}}^{s}) (90)

for some r_{1}>0 . Consider now the identity

f(t, u(t))-f(t, v(t))= \int_{0}^{1}Df(t, \tau u(t)+(1-\tau)v(t))d\tau\cdot(u(t)-v(t))

(91)
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where Df is the Fr\’echet derivative of f(t, u) with respect to u . If we
define

M(t)= \int_{0}^{1}Df(t, \tau u(t)+(1-\tau)v(t))d\tau , (92)

we see that the function w=u-v satisfies the equation

w’+A(t)w+M(t)w=0 (93)

with vanishing data. Moreover, since the segment K=[u, v] is a bounded
subset of X_{r_{1}}^{s} , we can apply ass . (20) to (92) and we obtain

|M(t)w|_{j} \leq\chi_{2}(t)(j+1)!^{s}M_{K}^{j+1}\sum_{h=0}^{j+1}\frac{|w|_{h}}{h!^{s}M_{K}^{h}}, (94)

for some \chi_{2}(t)\in L^{1}(0, T) . Hence we can regard (93) as an equation of the
form (27), satisfying the assumptions of Lemma 1 with \Lambda_{1}=M_{K}(see(30)) .
Then, possibly choosing a smaller value of r_{1} , we can apply estimate (71)

to (93), and we obtain that u\equiv v in a neighbourhood of t=0. A standard
continuation argument shows that u\equiv v on [0, T] .

This concludes the proof of Thm. 1.
\square

\S 4. Applications

As a first application of Thm. 1, we prove a local existence result for
the Cauchy problem

u_{tt}= \sum_{i,j=1}^{n}a_{ij}(t, x)u_{x_{i}x_{j}}+f(t, x, u, \nabla u) (95)

u(0, x)=u_{0}(x) , u_{t}(0, x)=u_{1}(x) (96)

in the space \gamma\lfloor_{2}^{s)}=\gamma\lfloor_{2}^{s)}(R^{n}) defined as
v(x)\in\gamma f^{s)}2\Leftrightarrow\exists C_{0} , \Lambda\geq 0:||D^{a}v||_{L^{2}(R^{n})}\leq C_{0}\Lambda^{|a|}|\alpha|!^{s} .

The following Prop. 1 is essentially a particular case of the result in [K2]:
only the assumptions on f are weaker, since we assume f(t, x, r, p) to be
a Gevrey function of r , p of order s’<s , instead of real analytic as in
[K2].

More precisely, we shall assume that, for all (t, x, \xi)\in[0, T]\cross R^{n}\cross

R^{n} . \alpha\in N^{n} . \lambda\in ]0,2 ],

\Sigma a_{ij}(t, x)\xi_{i}\xi_{j}\geq 0 , a_{ij}=\overline{a_{ji}}

|D^{a}a_{ij}(t, x)|\leq c_{0}\Lambda^{|a||\alpha|!^{s}}-

(97)
(98)
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a_{ij}(t, x) is \lambda -H\"older continuous in t , uniformly in x (99)

for some constants Co, \Lambda\geq 0 , where (99) has the usual meaning for \lambda\geq 1 .
As to the nonlinear term, we shall assume that f(t, x, r, p):[0, T]\cross R^{n}\cross

R\cross R^{n}arrow C satisfies the following estimate: for any R\geq 0 we can find a
constant M_{R}\geq such that, whenever |r|+|p|\leq R , (t, x)\in[0, T]\cross R^{n}\grave{.}

|D_{x}^{a}D_{r}^{\nu}D_{p}^{\beta}f(t, x, r, p)|\leq\chi(t)\Lambda^{|a|}M_{R}^{\nu+|\beta|}|\alpha|!^{s}(\nu+|\beta|)!^{S’} (100)

for a given \chi(t)\in L^{1}(0, T) .
We have then :

PROPOSITION 1. Assume (97)-(100) hold, and let u_{0} , u_{1}\in\gamma\lfloor_{2}^{s)} such
that

||D^{a}u_{j}||_{L^{2}(R^{n})}\leq C_{0}\Lambda_{0}^{|a|}|\alpha|!^{s} (101)

\backslash with\Lambda_{0}>\Lambda . Then there exists T>0 such that Pb. (95), (96) has a unique
solution

u(t, x)\in C^{1}([0, T]:\gamma\lfloor_{2}^{s)}) , (102)

provided

1 \leq s’<s\leq 1+\frac{\lambda}{2}, s<2 . (103)

PROOF. In the following proof we shall use the property of finite
speed of propagation, which is well known for strictly hyperbolic equa-
tions, and holds also for the weakly hyperbolic ones, in the Gevrey classes
(for a proof, see the Appendix of [D]).

We divide the proof in two steps.
1) Compactly supported initial data. From the finite speed of propa-

gation it easily follows that, if the initial data are compactly supported
functions, then we can arbitrarily modify the coefficients a_{ij} of Eq. (95)
outside the influence domain emanating from the support of the data, with-
out affecting the solution. Analogously, we can multiply the nonlinear
term f by a C^{\infty} function \phi(t, x) , vanishing for x outside the same influence
domain, without changing the value of the solution. Hence it is clear
that, for fixed compactly supported data, we can reduce (95), (96) to an
equivalent problem with periodic boundary condition in space variables.

We choose then H=L^{2}(T^{n}) , V=H^{1}(T^{n}) , V’=H^{-1}(T^{n}) , B=\nabla . Then it
is not difficult to verify that X_{r}^{s} is the space

X_{r}^{s}=\{v\in C^{\infty}(T^{n}):\exists C, ||D^{a}v||_{2}\leq Cr^{-|a|}|\alpha|!^{s}\}
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and hence, by (101), X_{0+}^{s}=\gamma f^{s)}2(T^{n}) (see [C] for details).
Assumption (11) is evidently satisfied by the functions e^{in\cdot x} , and (12)

is just the Sobolev embedding (k_{0}=[n/2]+1) .
Assumptions (14)-(16) are trivial consequences of (97)-(99). As to

(17), (18), we recall the following Lemmas from [D]:

LEMMA 2. Assume (97), (98) hold, and denote by A(t) the operator

- \sum_{h,k}^{1,n}\partial_{x_{h}}(a_{hk}(x, t)\partial_{x_{k}}) .

Then, fixed an arbitrary \Lambda_{1}>\Lambda , there exists a constant C=C(n, M, \Lambda_{1}, \Lambda)

such that for every v\in H^{\infty}(R^{n})

( \sum_{|a|=j}||[A(t), \partial^{a}]v||^{2})^{1/2}\leq C(j+2)(\sum_{|a|=j}(A(t)\partial^{a}v, \partial^{a}v))^{1/2}+

+C(j+2)!^{s} \sum_{h=0}^{j}(\sum_{|\beta|=h}||\partial^{\beta}v||^{2})^{1/2}\frac{\Lambda_{1}^{j+2-h}}{h!^{s}(h+1)^{\sigma}(h+2)^{\sigma}}

where \sigma=s-1 , and ||\cdot || , ( ) denote the norm and the scalar product in
L^{2}(\Omega) .

LEMMA 3. With the same notations as in Lemma 2, let

P= \sum_{|\gamma|\leq m}a_{\gamma}(x, t)\partial^{\gamma}

be a partial differential operator on R^{n} . with measurable coefficients,
infinitely differentia te in the \chi- variable, and such that, for some \mu(t)\in

L^{1}(0, T) and some \Lambda>0

|\partial^{a}a_{\gamma}|\leq\mu(t)\Lambda^{|a|}(|\alpha|!)^{s} .

Then, for any \Lambda_{1}>\Lambda , there exists a constant C=C(n, \Lambda_{1}, \Lambda) such that for
any v in H^{\infty}(R^{n})

( \sum_{|a|=j}||\partial^{a}Pv||^{2})^{1/2}\leq C\mu(t)(j+m)!^{s}\sum_{h=0}^{j+m}\frac{\Lambda_{1}^{j+m-h}}{h^{f^{s}}}.(\sum_{/\beta|=h}||\partial^{\beta}v||^{2})^{1/2}

Assumptions (17) and (18) are easy consequences of these lemmas.
Finally, we must verify (19) and (20). To avoid cumbersome compu-

tations, we shall consider in detail only the particular case f=f(x, u_{x}) ,

with space dimension equal to 1; the general case is completely analogous.
Moreover, for sake of simplicity we shall assume that \chi(t)\equiv 1 in ass.(100) .

We have then

D^{j}(f(x, u_{x}))= \sum_{\mu=0}^{j} (\begin{array}{l}j\mu\end{array})

\mu!\sum_{\nu=1}^{\mu}\frac{D_{p}^{\nu}D_{x}^{j-\mu}f}{\nu!}\sum_{h_{1}+..,+h_{\nu}=\mu\dot{h}_{2},\geq 1}\frac{D^{h_{1}+1}u\cdots D^{h\nu+1}u}{h_{1}!\cdots h_{\nu}!} . (104)
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The last sum is symmetric in h_{1} , \ldots
rh\nu , thus

h_{1}+. \sum_{\dot{h}_{t}\geq 1}\leq\nu.\sum_{h_{\nu}\geq h_{t}\geq 1}+h_{\nu}=\mu h_{1}+\ldots+h_{\nu}=\mu

(105)

and we can further estimate 1_{J} with 2^{\nu} . Now, if K is a bounded subset of
X_{r}^{s} for some r>0 , then in particular ||v_{x}||_{\infty} is bounded for v\in K , say |v_{x}|\leq

R, and hence we can apply (100) and we find

||D^{j}(f(x, u_{x}))||_{2}\leq

\sum_{0\leq\nu\leq\mu\leq j}j!(j-\mu)!^{s-1}\nu!^{s^{r}-1}\Lambda^{j-\mu}(2M_{R})^{\nu}\sum_{h_{\mu}\geq h_{\iota}\geq 1}\frac{||D^{h_{1}+1}u||_{\infty}\cdots||D^{h+1}y-1u||_{\infty}\cdot||D^{h\nu+1}u||_{2}}{h_{1}!\cdots h_{\nu}!}h_{1}+\ldots+h_{v}=\mu .

(106)

Now it is sufficient to observe that |u|_{j}=||D^{j}u||_{L^{2}(R^{n})} , and to use the Sobolev
immersion

||D^{h_{i}+1}u||_{\infty}\leq c_{n}||D^{h_{i}+k}u||_{2}

with k=[n/2]+2 , which holds true for the functions in \gamma\lfloor_{2}^{s)} : we thus
obtain (19), with constants \Lambda and 2 c_{n}M_{R} .

As to (20), the Fr\’echet derivative of f(x, u_{x}) with respect to u is
given by D_{p}f(x, u_{x})v_{x} ; now this can be viewed as a first order operator on
v(x) with coefficient D_{p}(x, u_{x}) . Thus (20) will follow by Lemma 3, as
soon as we show that D_{p}f(x, u_{x})\in\gamma f_{2}^{s)} . Indeed, proceeding as in (104), we
have, if ||u_{x}||\leq R (which is true for some R if u varies in some bounded
subset of X_{r}^{s} for some r>0),

||D^{j}(D_{p}f(x, u_{x}))||_{2} \leq\sum_{0\leq\nu\leq\mu\leq j}j!(j-\mu)!^{s-1}\nu!^{s’-1}(\nu+1)^{S’}\Lambda^{j-\mu}(c_{n}M_{R})^{1J}

h_{1}+ \cdot+h_{\nu}=\mu h\geq 1\sum_{1}\frac{||D^{h_{1}+k}u||_{2}\cdots||D^{h\nu\dagger k}u||_{2}}{h_{1}!\ldots h_{\nu}!} . (107)

Now, since u is in a bounded set of X_{r}^{s} , we can assume that, for some
\Lambda_{3}>0 ,

||D^{j}u||_{2}\leq\Lambda_{3}^{j}j!^{s}j^{-ks-2} (108)

hence

\frac{||D^{h_{i}+k}u||_{2}}{h_{i}!}\leq\Lambda_{3}^{h_{i}+k}h_{i}!^{s-1}(h_{i}+k)^{-2} (109)

and using the inequality (see (54), (55))

(j-\mu)!^{s-1}h_{1}!^{s-1}\ldots h_{\nu}!^{s-1}=(\begin{array}{l}j\mu\end{array})(h_{1} \mu\cdots h_{\nu})1-Sj!^{s-1}\leq\nu!^{1-s}j!^{s-1}
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we have

||D^{j}(D_{p}f(x, u_{x}))||_{2} \leq\sum_{0\leq\nu\leq\mu\leq j}j!^{s}\nu!^{s^{r}-s}(_{1/}+1)^{S’}\Lambda^{j-\mu}(c_{n}M_{R})^{\nu}

h_{1}+..+h_{\nu}= \mu\sum_{\dot{h}_{\iota}\geq 1}\frac{\Lambda_{3}^{\mu+k\nu}}{(h_{1}+k)^{2}\ldots(h_{\nu}+k)^{2}} . (110)

Now we remark that

\sum_{\mu\geq 0}\sum_{h_{1}+..,+h_{\nu}=\mu\dot{h},,\geq 1}\frac{1}{(h_{1}+k)^{2}\ldots(h_{\nu}+k)^{2}}\equiv(\sum_{j\geq 1}\frac{1}{(j+k)^{2}})^{\nu}\equiv c_{k}^{\nu} . (111)

Hence (we can assume \Lambda , \Lambda_{0}\geq 1 )

||D^{i}(D_{p}f(x, u_{x}))||_{2} \leq j!^{s}\sum_{0\leq\nu\leq j}l/!^{s^{r}-s}(1/+1)^{S’}\Lambda^{j}\Lambda_{0}^{j+k\nu}(c_{n}c_{k}M_{R})^{\nu} , (112)

and finally, since (\nu+1)_{1}^{s^{r}}\nearrow!^{s^{r}-s}\leq c(s) ,

||D^{j}(D_{p}f(x, u_{x}))||_{2}\leq c(s)j!^{s}\cdot j\cdot [\Lambda\Lambda_{0}^{k+1}(c_{n}c_{k}M_{R}+1)]^{j} (113)

which implies (20), as observed above.
Proposition 1 is now a direct consquence of Thm. 1, in the case of

compactly supported data.
2) General data in \gamma f_{2}^{s)} . We begin by observing that, if we choose H

=L^{2}(R^{n}) , V=H^{1}(R^{n}) , B=\nabla , then all the assumptions of Lemma 1 are
satisfied. Note in fact with this choice of the spaces neither (11) nor (12)
hold, but these assumptions are not used in the proof of the a priori esti-
mate. Hence, if we have a sequence u_{0}^{j} , u_{1}^{j} of initial data belonging to a
bounded set of \gamma f^{s)}2 , we can apply the a priori estimate to the correspond-
ing solutions, and the lifespan \overline{T} and the constant \overline{C} given by Lemma 1
will not depend on j .

Now let u_{0} , u_{1}\in\gamma\lfloor_{2}^{s)} ; choose a compactly supported Gevrey function
\phi(x) such that \phi(x)=1 for |x|\leq 1 , \phi(x)=0 for |x|\geq 2 , define \phi_{j}(x)=\phi(x/j)

and u_{0}^{j}=u_{0}\cdot\phi_{j} , u_{1}^{j}=u_{1}\cdot\phi_{j} : finally, let f_{i}=f\cdot \phi_{j} . Clearly the sequences u_{0}^{j} ,
u_{1}^{j} belong to a bounded subset of \gamma f^{s)}2 ; moreover, the corresponding solu-
tions u_{j}(t, x) (which exist by step 1) have a common lifespan, and a com-
mon bound, by the above remark. Finally, by the finite speed of propaga-
tion, for each fixed t , x the sequence u_{j}(t, x) is eventually constant.
Hence the limit u(t, x)= \lim_{j}u_{j}(t, x) is well defined, and satisfies (102) by
the common a priori estimate. \square

As a second application, we consider the mixed problem for (95), (96)
with Dirichlet boundary conditions. We assume that (97)-(100) hold for
(t, x)\in[0, T]\cross\overline{\Omega} , where \Omega is a bounded open subset of R^{n} with real ana-



The Cauchy problem in abstract Gevrey spaces
for a nonlinear weakly hyperbolic equation of second order 139

lytic boundary. Moreover, we assume that
D_{x}^{a}f(t, x, 0,0)\equiv 0 \forall\alpha , \forall x\in\partial\Omega . (114)

We recall that \gamma^{(s)}(\overline{\Omega}) denotes the space of functions such that an inequal-
ity like (101) holds, with suitable constants, where the norm is replaced
by the L^{2}(\Omega) norm.

Then we have

PROPOSITION 2. Under the above assumptions, for all u_{0} , u_{1}\in\gamma^{ts)}(\overline{\Omega})

with D^{a}u_{j}(x)=0 on \partial\Omega, Pb. (95), (96) has a unique local solution u\in C^{1}([0 ,
T];\gamma(\overline{\Omega})) , vanishing with all its derivatives at the boundary of \Omega , prO-
vided 1\leq s’<s\leq 1+\lambda/2 , s<2 .

PROOF. H=L^{2}(\Omega) , V=H_{0}^{1}(\Omega) , V’=H^{-1}(\Omega) , B=\nabla . The proof is
similar to that of Prop. 1: see [AS] and [D] for more details. \square

Our final application concerns the non-kowalewskian Cauchy problem

u_{tt}+a(t) \Delta^{2}u+\sum_{i,j=1}^{n}m_{ij}(t)u_{x_{i}x_{j}}=f(t, x, u, \nabla u, \nabla^{2}u) (115)

u(0, x)=u_{0}(x) , u_{t}(0, x)=u_{1}(x) (116)
where, for some \lambda\in ]0, 2],

a(t)\in C^{\lambda}([0, T]) , a(t)\geq 0 , (117)
m_{ij}(t)\in L^{1}(0, T) . (118)

Then we can prove

PROPOSITION 3. Assume (117), (118) hold, and that the function f
satisfies

|D_{x}^{a}D_{r}^{\nu}D_{p}^{\beta}D_{q}^{\gamma}f(t, x, r, p, q)|\leq\chi(t)\Lambda^{|a|}M_{R}^{\nu+|\beta|+|\gamma|}|\alpha|!^{s}(\nu+|\beta|+|\gamma|)!^{S’}(119)

Then, for all u_{0} , u_{1}\in\gamma f^{s)}2Pb. (115), (116) has a unique local solution u(t, x)
\in C^{1}([0, T] ; \gamma f_{2}^{s)}) , provided

\frac{1}{2}\leq s’<s<\frac{1}{2}+\frac{\lambda}{4}, s<2 . (120)

PROOF. H=L^{2}(R^{n}) , V=H^{2}(R^{n}) , B=B=\Delta . We omit the details,
since they are straightforward (see [AS], [D]). \square
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