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Bounded subsets in spaces of distributions

of L”-growth
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Abstract

In this paper we characterize bounded subsets of the spaces ©'1», 1<p
<oo, of distributions of L? growth. Moreover, we give necessary and
sufficient conditions on a sequence in 9©'.» to converge to 0.
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The space 9';» of distributions of L? growth has been studied by sev-
eral authors in the past few years. Pahk [6] gave necessary and sufficient
conditions for a convolution operator in ®';» to be hypoelliptic. Ortner
and Wagner [5] considered the convolution of elements in these and corre-
sponding weghted spaces and some other related questions. In [1] the
spaces of convolution operators and multipliers of these spaces and their
topologies are studied. The characterization of bounded sets in ultradis-
tribution spaces ®'¥%" is given in [7].

In this work we characterize bounded subsets of the spaces ®';», and
characterize convergent sequences in these spaces.

We use the standard notations as in [7] and [3]. We consider ¢ in
the interval [1, o] and p=¢/(¢—1) is its conjugate number ; if g=1 then p
=co. Recall [9], the space D¢, g<[1,0], consists of all the functions ¢
in C*(R") such that D% in L? for all @ in N¢ (No=NU/{0}), provided with
the topology defined by the seminorms

” ¢||m,q =§1£12||D“¢||u, mE No.

¥ is the completion of ® in D;-; its dual is ¥;:. The dual of Die, g<]1,
o), is denoted by ¥'.», where p is the conjugate number for g.

In the main Theorem 2 we shall use the fact that Dk is dense in Dk,r,
€N, where K is a compact set in R” and ©«,» is the space of functions
supported by K which have all the derivatives up to # continuous, sup-
plied with the usual norm.

THEOREM 1. Let B’ be a subset of ¥'1e, p<[1,0]. The following
conditions arve equivalent :
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(1) B is bounded.
(ii_) For every bounded subset B of Dre, pE(1, ], g=p/(p—1), (reap.
of B if p=1)
sup{| T*¢(x)|; TEB, ¢=B, xR"}< .

(iii) For every bounded open set QCR" and every $=Dis, pE(1, ], g
=p/(p—1), (resp. $EB if p=1)

sup{| T*¢)(x), TEB, x€Q}< .

PROOF.  The spaces Dis, ¢<[1, ) and B are barrelled which implies
that the weak and strong boundedness in the corresponding strong duals
are equivalent. Also, this implies that a set B’ is bounded in the strong
dual topology if and only if for every bounded set B in the basic space

sup{|<T, ¢>|; TEB', $€B}< .
Since BCDyq, ¢€[1, ©)(resp. BCB), is bounded if and only if
{¢(x—"), $EB, xER"}

is bounded in D.« (resp. in B), the proof of the theorem simply follows.
The following theorem characterizes the convergence in ¥'re.

THEOREM 2. Let p<[1, ] and T;, jEN, be a sequence in ¥ such
that for every ¢<=9, Ti*x¢, JEN, is a sequence from ¥'1» which converges
to 0 inDras j— 0, Then T; converges to 0 in D'ys.

PrROOF. By [8] any ¢=9 is of the form

(1) ¢:§1¢i*¢i, ¢:, 9:€9, 1=1,...,N.

N
This implies that Tj*¢=§(7}*¢i)*¢i, JEN, and by [9], for every i=1, ...,
N

mi
7}*¢i:2071j(,62:,)sy ]EN’
S=
where Tj,.s, /€N, is a sequence in L? which converges to 0 in L?. This
implies that for every s=0,1, ..., m;, i=1, ..., N

Tjis*d:— 01in L? as j — oo,

Thus, the assumption of the theorem implies that for every ¢€9, T;x
¢, €N, is a sequence from L? which converges to 0 in L?. By using (1)
again, we have 7,—0in ®’, j — oo,
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Let K be a compact set in R” and
Bi={6€L?; ||0|.-=1}.
Let 9=®k. Because {T;*¢, jEN} is bounded in L?,

sup |< Ty*x¢,o>|= sup | < T, ¢ >|< oo,
JEN je

YEDN B $EDN B

Thus, {T;*¢ ;JEN, ¢=DN B} is equicontinuous in D'x and there
exists a neighbourhood of zero in ¥«

Vile)={0€Dk ; |0|x.r<€}
such that
oV (e) = sup |< ’J}*(Z 0V>|= sup |< T3+0, ¢ >|<1.
¢E}%ﬁBl (/JE]%OBl

The same holds for the closure of V,(€) in Dk, since DN B, is dense
in Bi. This implies that for every 6&%®«,,, T;*0<L?, jEN, and there
exists C>0 such that

vV Vv
sup |< Tix¢p 0 >|= sup | T5+0, ¢ >|<C.
¢E]%ﬂ31 ¢€]%ﬂBl

Thus, for any ¢&D we have

%gl <T*0, ¢ >|<Cl¢|Le,

i.e. for every 0&%x,, the set {T;*0; jEN} is bounded in L*. _By using
[9] we have that for suitable compact neighbourhood of zero w, 0w =K, rE
N and mE&N, there are €%k, and =Dk such that

T;=A"T;*0+ T;*¢, JEN.

This implies that {73, &N} is bounded in ®'.».
From this theorem and its proof we have:

COROLLARY 1. Let T; be a sequence in ®'1r, p<[1,©]. It coverges
to 0 in Dir if and only if T;+¢ converges to 0 in L™ for every ¢=D(j —
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