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Grotzsch ring and quasiconformal distortion functions
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Abstract. The authors obtain improved estimates for the modulus of the Grotzsch
ring, derive sharp bounds for the Schwarz distortion function in the plane, and indicate
some extensions to higher dimensions.
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1. Introduction and Notation

Let Rg n(s) denote the Grétzsch ring in R™, n > 2, which is bounded
by the unit sphere S"~! and the ray {(z1,z2,...,2n) ER" : 21 > 5, 2; =0,
2 < j <n}, s > 1. The conformal capacity of Rg ,(s) is denoted by

’Yn(s) = cap RG,n(S)a (1.1)
and the modulus M,(r) of Rgn(1/r), 0 <r <1, is defined by
Mi(r) = [wn-1/3m(1/m)] 7Y, (1.2)

where wy,_1 is the (n — 1)-dimensional surface area of the unit sphere gn—1
in R™. These functions are important in the study of distortion properties
of quasiconformal mappings [G, I, Vul-2, AVV1-4, P1].

The function Ma(r) is usually denoted by p(r), and has the explicit
expression [LV, p. 60]

7 K'(r)
pu(r) = 9 K(r)’

(1.3)

where
s

K(r) = /02(1 _2sin2e) 3 dt, K'(r) = K(r'),

r=(1- r2)%, 0 < 7 < 1, are complete elliptic integrals of the first kind
[BF, Bo, BB]. We also need the complete elliptic integrals of the second
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kind

£(r) = /05(1 “2sin?i)ddn, €)= £().

For n > 2 let QCk(B™) denote the class of all K-qc mappings of B™
into B™ with f(0) = 0 [V&, Vul-2]. For K > 1and 0 < r < 1, define [AVV2

Crn(r) =sup{|f(z)] : [e| =7, f€QCK(B")}. (1.4)

For n = 2 and K > 0 we define
k() =i (=p(r)). (1.5)
v K

For K > 1 it is well known that ¢} o(r) = ¢k (r). These distortion
functions are important in geometric function theory and, in particular,
appear in the quasiconformal version of the Schwarz lemma and other dis-
tortion properties of quasiconformal mappings [LV, Vu2, AVV4, P2-3, Q,
VV]. The function @k (r) also satisfies numerous peculiar identities due to
S. Ramanujan for various integer values of K, as pointed out in [Vu3].

The main purpose of this paper is to study some properties of the above-
mentioned functions, especially their monotoneity. Functional inequalities
are then derived for these special functions, thus improving earlier results
in quasiconformal theory.

Whenever r € (0,1), we let ' = /1 —r2. We let th denote the hyper-

bolic tangent function, and arth its inverse.

2. Properties of u(r)

Our first result improves the well-known inequalities [LV, p. 62]

log (1%/—& < p(r) < log M, (2.1)

for r € (0,1) (cf. [AVVS5, Theorem 4.9]).

Theorem 2.2 (1) The function fi(r) = u(r)/arthv/r' is strictly in-
creasing from (0,1) onto (1,00).

(2) The function fy(r) = p(r) arth/r is strictly increasing from (0,1)
onto (0,7%/4).
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Proof.  For (1) let r = @4(x?). Then ' = ((1 —z)/(1 + z))? and

IL’2
2h(r) = aﬁfch :1):’

by Landen’s transformation (cf. [LV, p. 64]). It suffices to prove that
F is strictly increasing from (0, 1) onto (2, c0).

By differentiation and Legendre’s relation [BF, p. 10] we get
%x(l _ 2K (2 (artha! )2 F'(z) = Fi(x)
= 2'(1 4 2?)K(2®)K'(2?) — 7 arth 2’ (2.3)
and
' Fl(z) = 22K(z?)K' (2?) Fa (), (2.4)

where

22) — (22
Fie) =1+ — — 4 ’C(wj,qu) )

Then F, is strictly decreasing from (0,1) onto (—2,00). In fact, if
we let g(r) = K(r) — £(r) and h(r) = r2K(r), then g(r)/h(r) = [K(r) —
E(r)]/(r?K(r)) and ¢'(r)/H(r) = E(r)/(E(r) + r"2K(r)) = 1/(1 + G(r)),
where G(r) = r'K(r)/(E(r)/r") is decreasing by [AVV6, Theorems 1.2 and
1.3]. Hence g(r)/h(r) is increasing by [AVV4, Lemma 2.2], and thus F> is
decreasing. Hence, by [2.4), there exists a unique zo € (0, 1) such that F}
is strictly increasing on (0, xg] and decreasing on [zg,1).

Next, F;(04) = 0 by [BF, 112.01, 900.00], while F;(1—) = 0 by [AVVS5,
Theorem 2.2(3)]. Hence, Fi(z) > 0 for z € (0,1), and the monotoneity of
F follows from (2.3).

By I'Hopital’s Rule, F/(0") = 2. Since

arth
i — =0,

lim K(z?)arthe’ = lim «'K(z?)

r—1~ z—1~ T

F(17) = oo by [AVV5, Theorem 2.2(3)] and [1.3).
Part (2) follows from (1) and

p(r)p(r') = —. (2.5)
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In view of Theorem 2.2 it is natural to ask whether the function pu(r) —
arthv/r' is concave on (0,1). The next result gives a rather surprising
answer to this question.

Theorem 2.6 There ezists ro € (sin 89.999°,sin89.9993°) such that the
function f(r) = u(r) — arthv/7’ is increasing on (0,70] and decreasing on
[ro,1) with f(0T) = f(17) = 0. However, f is neither concave nor conves
on (0,1). In particular, for r € (0,1),

0 < f(r) < 0.141414121 . (2.7)

The proof of this theorem requires the following technical lemma.

Lemma 2.8 The function g(r) = (1 +/7)2(1 +7r)K/(r) — 8E'(r) has a
unique zero r1 € (0,sin2°) such that g(r) > 0 for r € (0,71) and g(r) <0
for r e (ry,1).

Proof. Step 1 We first prove that
g(r) <0 for r € [sin5°1). (2.9)
By differentiation and simplification,

rg'(r)

(1 —+/r)(6r+3yr +1)

= g1(z) = 2K'(z*) — g2(x)

E'(z?) — K/ (z?)
1—2z4 ’
where £ = /r and go(z) = (723 + 52% + 3z + 1) /(622 + 3z + 1).

Let g3(z) = 21x3 + 2122 4+ 9z — 1. Then, on (0,1), g3 has a unique
zero 1 € 0,v/sin1°) so that g9 is decreasing on (0, ;] and increasing on
[z1,1) since (622 + 3z + 1)%2g5(x) = 2xg3(z). Hence, by [AVV5, Theorem
2.2(3),(7)];

(2.10)

£'(a?) — a*K'(a?)
1—at

for z € [a,b] C [V/sin1°,1). By computation, we have
g4(Vsin23°,1) = 0.01..., g4(Vsin8°,V/sin23°) = 0.02...

g1(z) 2 ga(a,b) = ak'(a®) — g2(b)

and

gs(Vsin 5°,v/sin8° ) = 0.06... .
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Hence, g1(z) > 0 for z € [Vsin5°1). By [2.10] we conclude that g is
increasing on [sin 5°, 1), so that (2.9) holds

Step 2 We now prove that g is decreasing on (0,sin2°] so that, on
(0,1), g has a unique zero r1 € (0,sin2°) and g(r) > 0 for » € (0,71) and
g(r) < 0 for r € (ry,sin 2°).

It follows from that, for z = 1/r € (0,/sin2°),

r
1 —

g'(r) < Vsin2° K(sin88°)(6z* 4+ 3z + 1)

<

T2 522 4+ 3x +1
cos? 2°
[£(sin 88°) — K (sin 88°) sin? 2°]
= (6z2 +3z+1)-0.886...
— (723 + 522 + 32+ 1)-0.99... <0,

by [AVVS5, Theorem 2.2(3),(7)]. This yields the conclusion, since g(sin 2°) =
—1.1... <0 and g(0%) = o
Step 3 Finally, we prove that

g(r) <0 for r € (sin2°sin5°). (2.11)
Clearly, for r € [a, b] C [sin 2°,sin 5°],
9(r) < gs(a,b) = (1 + Vb)*(1 + b)K'(a) — 8E'(a).
Now (2.11) follows, since
g5(sin2°,sin3°) = —0.48..., g¢s5(sin3°,sin4°) = —0.62...,
and
g5(sin4°,sin 5°) = —0.67 ..

[]

(2.12) Proof of Theorem 2.6. That f(1—) = 0 is clear, while f(0+) =0
follows from [LV, (2.11), p. 62]. By differentiation,

arr2K(r)*f'(r)

= Fi(r) = VP1+ VP 1+ )K(r)? — =2 (2.13)
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Let Fy(r) = F1(r'). Then F5(0%) = —72, F5(1) = 0 and
47 (1= Vr)Fy(r) = K'(r)a(r),

where g is as in Lemma 2.8. Hence, by Lemma 2.8, F; has a unique zero
ro € (0,1) such that Fy(r) > 0 for r € (0,79) and Fy(r) < 0 for r € (ro,1),
and the piecewise monotoneity of f follows from [2.13).

By [QV1, Theorem 1.9], for r € (0, 1),

VN 1) [z ton ] =7 = ) < R

8 4+ r2

< Fy(r) = VA1 + Vi) (1 +1") [9096 4]2—7r2.

8-|—7’210g;'7

Since F3(sin 89.999°)=0.017703... > 0 and Fy (sin 89.9993°)=—0.096869 .. . .
< 0, 79 € (sin 89.999°, sin 89.9993°).
Next, let Fy(r) = Fy(r)/(rr’2K(r)?). Then

£'r) = 3F5(r)
and

—4(rr' 2K (r)Fi(r) = Fs(r) = 4n2[(1 + r2)K(r) — 2E(r)]
V(L VP YL+ ) A+ 7)) — 1+ V)2 + ()3,
Since Fg(1/v/2) = —0.79... < 0 and Fg(1~) = oo, Fj is neither increasing

nor decreasing on (0,1). Hence, f is neither concave nor convex on (0, 1).
Finally, by [QV1, Theorem 1.9],

f(ro) < p(sin89.999°) — arth(+/cos 89.9993° )
7 9.096 8+ sin®89.999° log(4/sin 89.999°)
2 9 9-5in?89.999° log(4/ cos89.999°)
—arth(v/cos 89.9993° )
= 0.1414141209... < 0.141414121 .

]

Remark 2.14. (1) One can also apply to prove [Theorem 2.2/(1)
directly.



Grétzsch ring and quasiconformal distortion functions 557

(2) The Jacobi product for pi(r), K > 1,0 < r < 1, gives
er(r) < th*(Kpu(r')). (2.15)

I'heorem 2.6 implies that the upper bound in inequality cannot be
replaced by th*((K — 1)u(r’) + arth/7). In fact, by [Theorem 2.6, the
function p(s’) — arth{/s, where s = pg(r), is strictly decreasing in K on
[1,00) as long as 7 > c0s89.999°. Hence, for r > c0s89.999°, K > 1,

p(s') —arthy/s < p(r') — arth/r,

that is,

s > th*((K — 1)u(r') + arth/7).

Lemma 2.16 (1) Let 1o be the unique zero of the function f(r) =1+
I 4% on (0,1). Then ry € (sin53°,sin 54°).
(2) Let fair) =r'(1 +r?)K(r)K'(r?) — 7 arth’, 0 < r < 1. Then

< .
0< Org?%(l fa(r) < e, (2.17)

where ¢ = fa(\/T0) < 1.3460753717.

Proof. (1) Clearly, fi is strictly decreasing from (0,1) onto (—2,00).
Hence, f; has a unique zero ro € (0,1). Since f1(sin53°) = 0.001... > 0
and fi(sin54°) = —0.02... < 0, ry € (sin 53°, sin 54°).

(2) It was shown in the proof of [Theorem 2.2 that f, is strictly in-
creasing on (0, /o] and decreasing on [,/Tg, 1). Hence holds.

Next, let f3(r) = r'2(1 + r?)3. Then f3 is strictly decreasing on
(1/4/2,1), and so is the function

fa(r) =71+ P)KEHK (r?) = V1 =4 DK (r?) - f3(r),
by [AVV5, Theorem 2.2(3)]. Therefore,
¢ = max fa(r) < f4(Vsin 53°) — marth(v/1 — sin 54°)

V/'sin 53° <r<+/sin 54°
< 1.3460753717.
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Theorem 2.18 (1) The function f(r) = p(r)/[c + arthv/r] is strictly
decreasing from (0,1) onto (0,1), where ¢ = ¢1/(27) < 0.214274309, while
c1 1s as in Lemma 2.16(2).

(2) The function g(r) = p(r)[c + arth/r] is strictly decreasing from
(0,1) onto (72/4, 00).

Proof. (1) Set 7 = p4(z?). Then r' = ((1 — z)/(1 4+ z))? and
p(z?)
2c + arthz’’

by Landen’s transformation [BB, BF].
By differentiation, we obtain

2f(r) = F(x)

2¢z’ 2(1 + z2)K(2%)2(2¢ + arthz’ )2 F'(x)
= m(fa(z) — 2mc) = n(f2(z) — e1),
where f5 is as in [Lemma 2.16/(2), from which the monotoneity of f follows
by Lemma 2.16(2). The limit f(1—) = 0 is clear, while f(0+) = 1 by
I’Hopital’s Rule.
Part (2) follows from (1) by (2.5). []

3. Inequalities for m(r)

The function m(r) = (2/7)r' 2K(r)K'(r), r € (0, 1), plays an important
role in the study of properties of the quasiconformal distortion function
ek (r) [W, QVV, QV2, AVV5]. In this section, we obtain some properties
of m(r).

First, by [Lemma 2.16/(2), we have the following result.

Corollary 3.1 Let c; be as in Lemma 2.16(2). Then, for r € (0,1),
2v/1 — rarth <\/1 — r) < m(r)
§2\/1—r(arth(\/1—r)+gl>. 0

T

The next result improves earlier related results for m(r).

Theorem 3.2 (1) The function f(r) = [m(r) + logr]/r’ is strictly de-
creasing from (0,1) onto (0,log4).

(2)  The function g(r) = [m(r)+logr]/log(1+7r") is strictly decreasing
from (0,1) onto (0,2).
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(3) Forr e (0,1),
2V/1—rlog(l+7) <m(r)+logr < (147" )log(l1+7").  (3.3)
These two inequalities are asymptotically sharp as r tends to 0.
Proof. (1) First,

%[m(r) +logr] ér'lC'(r) K(r)—&(r)

i) &

, (3.4)

and

?

4 (Kl 8] (2= rKe) 26t

dr T2 r'r3
which is negative on (0,1) by [AVVS, (3.3), p. 519]. Hence,
LK)~ £)

2
is strictly decreasing on (0, 1), and the monotoneity of f follows from by
the Monotone I’'Hopital’s Rule [AVV4, Lemma 2.2]. The end value f(0+) =
log 4 was obtained in [AVV5, Lemma 4.2(1)], while f(1) = 0 follows by
I’Hopital’s rule.
(2) We write g as

/

Q(T)Zf(T)'m,

which is a product of two positive and decreasing functions on (0, 1). Hence
the result follows from (1).

(3) The second inequality in (3.3) was proved in [QV2, Lemma 2.20].
For the first inequality, let F(r) = m(r) +logr — 2y/1 —rlog(1+7'). Then
F(0")=F(17) =0, and
T

PO =

Fi(r), (3.5)
where Fi(r) =21 -1+ w— I Jog(1+1") — 49/ (1 41/ )IC’(T)’—C—(C)?}@.

Since r/(KC(r) — E(r))/r? is strictly decreasing from (0, 1) onto (0,7/4)
and since log(1+7") > r'/(1 +77),

1\_|/_FT,F1(7’) ) = 11:__:;7"\/ —r K'(r (3.6)
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for r € (0,1). It is easy to show that ((1+3r)/(147"))y/(1 — r)/r is strictly
decreasing on (0,1). Hence F is strictly decreasing on (0,1) by [AVVS5,
MTheorem 2.2(3)]. Since F»(sin19°) = 0.006... > 0,

Fi(r) >0 for r € (0,sin19° (3.7)

by [3.6).
Next, since both (2/1 —r + %— IE Jog(1 + ') and
(14K (r)r'[K(r) — 8(7‘)]/7"2 are strictly decreasing on (0, 1),

Fi(r) > Fs3(a,b)=2vV1-b+ (Hb,?, 1+blog(1+b’)
N %a'(l—&—a' )’C/(G)K:(a)a;g(a)

for r € [a,b] C (0,1). By computation, we have:

F3(sin19°,8in24°) =0.26...,  F3(sin24°,sin28°) =0.15...,
F3(sin 28%,5in31°) = 0.106..., F3(sin31°,5in33°) = 0.107... .

Hence, it follows that
Fi(r) >0 for r € [sin19° sin33°]. (3.8)
By (3.7) and (3.8), F' is strictly increasing on (0,sin 33°], and hence,
F(r)>0 for r € (0,sin33°]. (3.9)

On the other hand, since (2r/(v/1 +r(1+7"))++v/1+r (log(1+7"))/r’)
is increasing, and since rK'(r) and (K(r) — &£(r))/r? are both strictly in-
creasing on (0,1) by [AVV6, Theorems 1.2, 2.1(6)],

F'(r) < Fy(a,b) = 2\/1—+bl()1 ) + \/z,-l——_b log(1 +b')
B %K,(G)K(a) — E(a)’
T a
for r € [a,b] C (0,1). We have
Fy(sin68°,1—) = —0.046..., F4(sin57°,sin68°) = —0.034. ..,

F4(sin51°,sin57°) = —0.028. . . ,
F4(sin48° sin51°) = —0.042. .. .
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Hence, F'(r) < 0 for r € [sin48°,1) and
F(r) >0 for re€[sin48°1). (3.10)

Next, since m(r) + logr and /1 —r log(1 + ') are both strictly de-
creasing on (0, 1), it follows that

F(r) > Fs(a,b) = m(b) + logb — 2/1 — a log(1 +d’),
for r € [a,b] C (0,1). By computation,

Fy(sin 33°,5in40°) = 0.028..., Fx(sin40°,sin48°) = 0.005... .
Hence,

F(r)>0 for r € [sin33° sin48°]. (3.11)

Now, the first inequality in (3.3) follows from (3.9), (3.10), and (3.11).
The asymptotic sharpness is clear. []

Conjecture 3.12 Based on our computation, we make the following two
conjectures:

(1) The function [m(r) + logr]/r' is concave on (0,1).

(2) The function [m(r)+logr]|/[(1+7")log(1+r")] is concave on (0, 1).

4. Inequalities for ¢ (7)

In this section we employ the results concerning u(r) obtained in Section
2 to derive some functional inequalities for the function ¢k (r).
For our next result, let

th? (Karth /1), if0<r<r),
A(r, K) = § O (Karthy/r) PESTSTe g
th*(K — D)u(r') +arth¢/r), ifr) <r <1,
th? ((—113 — 1) p(r’) -i—arth{‘/?) , if0<r <7,
B(r,K) = (4.2)

th* ((%—1)04— %arth{“/?), ifry <r<1,

for (r,K) € (0,1) x [1,00), where 79 and c are as in [Theorem 2.6 and
Theorem 2.18, respectively. Then, by Theorems and .18, respectively,

A(r,K) > th*(K arth/r),
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B(r,K) > th* ((% — 1) c+ %arth%)
for (r, K) € (0,1) x [1,00).

Theorem 4.3 For K € (1,00) and r € (0,1),

A(r,K) < og(r) < th*((K — 1)c + K arth+/), (4.4)
B(r,K) < ¢y (r) < th (%arth{‘/?), (4.5)

where ¢ is as in Theorem 2.18 and ¢k 1is as in (1.5). These inequalities are
all asymptotically sharp as r tends to 1.

Proof.  As shown in Remark 2.14(2), it is true that, for r € (rg, 1),
o (r) > th*((K — )u(r') + arthv/r). (4.6)

Next, let s = @g(r). Then u(s') = Ku(r'), and p(s')/arthy/s is
strictly decreasing in K on (1,00) by Theorem 2.2(1). Hence

p(s")/arthy/s < u(r')/arthy/r,

yielding the inequality

¢x(r) > th* (K arth{/r) (4.7)

for (r, K) € (0,1) x (1,00).
The first inequality in follows from [(4.6) and (4.7).
By Theorem 2.18(1), we have

ws')  pr)
c+arthy/s = c+arthy/r’

from which the second inequality in follows.
Clearly, and the second inequality in are reversed if K is
replaced by 1/K. Hence, for [4.5), it is enough to prove that

w1/ (1) > th? ((EI(— - 1) p(r' ) + arth{‘/?) (4.8)

for r € (0,7() and K > 1.
By [Theorem 2.6}, for r € (ro,1), as a function of K, u(s) — arthv/s' is
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strictly decreasing on (1, 00), and hence,

arthv/s' > (% - 1) pu(r) + arthv/r/

for (r, K) € (rp,1) X (1,00), from which follows.
The last conclusion is clear. [

5. Extensions to R, n > 3

Some of the results proved in Section 2 and Section 4 can be generalized
to the higher-dimensional case. Recall that the function Ms = p satisfies the
simple functional identity (2.5) whereas for n > 3 the product M, (r)M,(r')
is not a constant by [Vu2, 7.58]. Presently, no functional identities are
known for M,, n > 3 (cf. [AVV3, 5.1(25)]). The following theorem is an
extension of Theorem 2.2 and (2.5) to R®, n > 3.

Theorem 5.1 (1) The function f(r) = My(r)/arthv/r' is strictly in-
creasing from (0,1) onto(1,00).
(2) g(r) = My,(r) arth{/r is strictly increasing from (0,1) onto (0, 00).
(3) If h(r) = 7" 2M,(r)M,(r" "1, then

wWn—12""/cp < h(r) + h(r') < wn_122_"(10g An)/Cn,

where ¢, 1is the constant in [V&, (10.11), 7.5] and A, is the Grétzsch ring
constant as in [Ca, G, I|. Equality holds in (3) iff r =0 or 1.

Proof.  For (1), we write f as

Mn(r)  p(r)

w(r)  arthv/r’

Then, the result follows from [Theorem 2.2(1) and [AV, Corollary 1; AVV3,

Lemma 2.6(5)].
For (2), we write g(r) as

My(r)
g(r) =
"=
and hence the result follows from [Theorem 2.2(2) and [AV, Corollary 1;
AVV3, Lemma 2.6(5)].
For (3), first from [AVV3, (1.20)] we get

fr) =

- p(r)arthy/r

h(r) > 1" 2w,_127"/cp,
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and the lower bound follows. Next, [AVV3, Lemma 2.6(3) and Corollary
2.8(3)] yield

h(r) < (wn-127"r"?log(An/7))/(cn log(1/T)),
and the upper bound follows, since the function
' 2log(An/7)/ log(1/r)
is clearly increasing from (0, 1) onto (1,2log A,). [
The next result is an analog of the inequality [4.7).
Theorem 5.2 For K >1,r € (0,1) and n > 3,

Ckn(r) > th*(8 arth/r),

where 3 = Kn_lff. The inequality is reversed for K € (0,1].

Proof.  From [AVV1, Theorem 4.9] and Theorem 4.3, it follows that, for
K >1andre€(0,1),

Pkn(r) > @pa(r) > th*(Barthy/r).

For K € (0,1] and r € (0, 1), it follows from [AVV2, 2.18] and Theoreml
4.3 that

zﬁ)gth4(%amh@7>.

L]
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