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Asymptotic behaviors of radially symmetric solutions
of [J u = |ulP for super critical values
p in odd space dimensions

Hideo KUuBO and Koji KUuBOTA
(Received July 6, 1994)

Abstract. We study asymptotic behaviors as t — Fo0o of solutions to the nonlinear
wave equation uit — Au = |ulP (p > 1) in ¢ € R®, —o0o < t < oo for p larger than a
critical value pg(n). These asymptotic behaviors guarantee the existence of the scattering
operator. We prove the radially symmetric small solutions exist and are asymptotic to
the solutions of the homogeneous wave equations, provided n is odd and n 2 5.

Introduction

This paper is concerned with radially symmetric solutions of the semi-
linear wave equation

ugp —Au=F(u) in zeR" teR, (0.1)

where F(u) = |ulP or F(u) = |ufP~lu with p > 1 and n 2 2.

Let po(n) be the positive root of the quadratic equation in p:
n—1, n+1
o P
Note that 3 < pp(2) < 4,2 < po(3) < 3,p0(4) = 2 and 1 < pp(n) < 2 for
n25. If 1 <p < pp(n), it is known that the Cauchy problem for (0.1) with
initial data prescribed on ¢t = 0 does not admit global (in time) solutions,
provided the initial data are chosen appropriately. (See John [8], Glassey
[6] and Sideris [18]). The same is true for p = po(n) if n =2 or n = 3. (See
Schaeffer [17]). On the other hand, if p > po(n) and 2 < n < 4, it is known
that the Cauchy problem admits global solutions for small initial data. (See
John [8], Glassey [7] and Zhou [23]). Thus p = po(n) is conjectured to be
a critical value. If p is large enough, it is known that the Cauchy problem
admits global solutions for arbitrary space dimensions and small initial data.

(See Christodoulou [4], Li Ta-tsien and Chen Yun-mei , Choquet-Bruhat
3] and Li Ta-tsien and Yu-Xin [13]).

®(n,p) =

p—1=0. (0.2)
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Moreover, when p > pg(n) and either n = 2 or n = 3, it has been shown
that the scattering operator for (0.1) exists on a dense set of a neighborhood
of 0 in the energy space. (See Pecher , Tsutaya and Kubota and
Mochizuki [11]). Namely, let u_(z,t) be the solution of the homogeneous
wave equation

uy —Au=0 in ze€R"teR, (0.3)
with small initial data
u(z,0) = f(z), wu(z,0)=g(z) for ze€R"

Then there exists uniquely a solution u(z,t) of (0.1) such that ||u(t) —
u—_(t)|le — 0 as t — —oo, where

lo®lle ={ [ (9o(a 02+ |vt<x,t>|2)dx}1/2,

and there exists uniquely another solution u, (z, t) of (0.3) such that |Ju(t)—
u4(t)|le — 0 as t — co. The analogous results have been obtained also for
the higher dimensional case, i.e., n 2 4, provided

n+3
n—1

P1 (n) <p <
where p;(n) is the largest root of the quadratic equation in p:
U(n,p) =n®(n,p) —(n—1)p+n+1=0

with ®(n,p) in [0.2). (See Strauss [19], Mochizuki and Motai and [15]).

Note that
¥(n,po(n)) = (n — L)p-(n),

where p_(n) is the negative root of [0.2), hence po(n) < p1(n).

The purpose of this paper is to study the asymptotic behaviors of ra-
dially symmetric solutions of (0.1), which guarantee the existence of the
scattering operator, for p > pg(n) in odd space dimensions n = 5.

1. Statements of main results

First consider the Cauchy problem for the homogeneous wave equation:

n—1

Ut — Upp — up =0 in €,

r
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u(r,0) = f(r), wu(r,0)=g(r) for r >0, (1.1)

where n = 2m + 3,m is a positive integer, @ = {(r,t) € R?r > 0} and
u = u(r,t) a real valued function. Then we have

Theorem 1.1 Assume f € C?([0,0)),g € C*([0,00)) and

Zlf“ )T Zlg(’) ()™ < efr)Te

7=0
for >0, (1.2)

where € and Kk are positive numbers and (r) = v/1+r2. Then (1.1) admits
uniquely a solution u(r,t) € C%(Q) such that for (r,t) € Q we have

[u(r,t)] < Cer™™™(r) "N r + [t)) " (r — [t]) 7, (1.3)o

DR yu(r, t)] < Cer™™(r)"Hr = [th ™" 4f |a| =1, (L.3)1
and

DR yu(r, )] < Cer™™ Hr — t) ™% if |a| =2, (1.3)2

where C' is a constant depending only on m and k.

Next consider the nonlinear wave equation

n—1

ur = F(u) in Q (1.4)

Utt — Uppr —

where n = 2m + 3 and m is a positive integer. We impose the following
condition (H) on the nonlinear term F:

F(u) € C}R), F(0) = F'(0) =
(H) and F'(u) is Holder continuous, namely,

there are positive numbers p and A such that

p > po(n), (1.5)
1 2
p<n+ _mr if mz=2 (1.6)
n—3 m

and for u,v € R we have

|[F'(u) = F'(v)]
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Aplu — v[P~1 if n)<p=s2,
< | Aplu—vl po(n) <p 17)
Aplu —v|(julf=2 + [vP7%) if p>2,
where po(n) is the positive root of [0.2).
Note that condition (H) implies
|F'(u)| £ Ap|u[P™! for weR (1.8)
and
|F(u)] £ AulP for ueR. (1.9)

Moreover the functions F(u) = |u|P and F(u) = |u|P~!u satisfy (H) with

some A if and (1.6) hold.

We shall introduce a function space X, in which we will look for solu-
tions of (1.4), by

X = {u(r,1) € C*2(Q); [Jul| < oo}, (1.10)
and
lul| = sup (Ju(r,t)[r™ " (r) + |Dpu(r, t)|r™)
(rit)eQ
X(r =+ [t[)(r — [t))", (1.11)

where £ is the same number as in (1.2) and C1%(Q) stands for the set of
continuous functions on 2 such that D,u(r,t) is continuous on €.
We also impose the following condition on the parameter k:

2
0< k and —1—m—1</~c§q, (1.12)
p_

where
¢ =q(n,p) = (1+ @(n,p))/p
with ®(n,p) in [0.2). Note that ¢ > 1/p for p > pg(n) and that

n—1 n+1
2 P77

q= =(m+1)p—(m+2), (1.13)

Remark. Condition is equivalent to

2
p>1 and —1—m—1<q 1.14)
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hence there exist really numbers & satisfying (1.12), because

p—1(g+m+1-— —?—) = ®(n,p).

p—1
Besides
2 3 3
——2m+1 if p§n+ _m ,
p—1 n—1 m+1
since

(p—1)<]~;f—1—m—1>:m+3—(m+1)p-

We are now in a position to state the main theorem in this paper. Let
u_(r,t) be the solution of (1.1) which is obtained in Theorem 1.1. Note
that u_ € X and

llu—|| £ Cpe for any & > 0, (1.15)

where Cj is a constant depending only on m and k. Then we have

Theorem 1.2 (Main theorem) Assume conditions (H) and (1.12) hold.
Then there are positive constants ey (depending only on F,n and k) and d
(depending only on F' and n) such that, if 0 < € < g, there exists uniquely

a solution u(r,t) of the nonlinear wave equation (1.4) such that u € C%(Q)N
X, [lull = d,

[lull = 2[fu_]] (1.16)
and for (r,t) € Q we have

[u(r,) = u(r, )] < CllulPri=™(r) ~Hr + [t)) "1 (r — )7, (1.17)-

| Dra(u(r,t) — u_(r,t))]

< Cu|Prizm=ledgpylel=2 gy — )= (1.18)_
if 15 |al£2,

where C is a constant depending only on F,n and k. In particular

lu(t) —u_(@)lle = CllulP(&)™ i t=<0, (1.19)
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where

1/2

lo®lle ={ [~ (Dro(r )+ 1Drote ) tar )

Moreover there ezists uniquely a solution uy(r,t) of the homogeneous wave
equation

-1
Ut — Upp — —r-L—;—ur =0 in Q (1.20)

which belongs to C*() N X, such that for (r,t) € Q we have
[u(r,t) — up (r, )] < Cllul|Pri=™(r) " Hr + L) THr +6) 77 (1.17)4
| D7y (u(r, t) — ug(r, t))|

< CllulpPr'=m=1ol ) let=2r — ) "L 4 1) (118),
if 1<l <2,

In particular

u(t) = us Ol < CllulP®)™ i t20. (119);

Remarks. 1) Consider the following Cauchy problem

-1
utt—urr—n ur = Fy(u) in r>0,t>0,
u(r,0) =0, w(r,0)=g(r) for r >0, (1.21)
where Fy(u) = |ulP or |u[P"lu with p > 1 and n =2 2. It is known

that, if g(r) 2 Mr~* for r 2 1 with some positive constants M,y and
p < (p+1)/(p—1), then (1.21) does not admit global solutions. (See
Asakura [2], Agemi and Takamura [1], Tsutaya and Takamura [20]).
Therefore condition (1.12) is partially necessary to obtain [Theorem 1.2.
More precisely, if po(n) <p < (n+3)/(n—1) = (m+ 3)/(m+ 1), then the
following condition

2
0S ——-—m—-15k
p—1
is necessary for (1.21) to admit a global solution.

2) The upper bound ¢ = ¢(n,p) of k in condition (1.12) has been
conjectured in Glassey , p. 260.
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3) Condition (1.6) guarantees that the function: (0,1) 3z g™m+1-mP
is integrable.

4) As will be easily seen from the proof of [Theorem 1.2, one can also
show that the Cauchy problem for the nonlinear wave equation (1.4) with
the same initial data as (1.1) admits a unique global solution, provided the
hypotheses of Theorems [.1 and are fulfilled.

The plan of this paper is as follows. In the next section we study the
fundamental solution for the Cauchy problem (1.1) and then in section 3 we
prove [[heorem 1.1l Section 4 is devoted to research a certain integral equa-
tion related with the nonlinear wave equation (1.4). Finally we complete

the proof of [Theorem 1.2 in section 5.

2. Preliminaries

In this section we shall study the fundamental S(-)lution for the Cauchy
problem (1.1). As will be seen in the next section, a solution of (1.1) is
given by

|r+t| |+t
u(r,t) = / JNK, r0)dA + Dy / FOVKO, r8)dA, (2.1)
|r—t| |r—t|
where
—1)™ / )\ 2m+1 9 1\™
Ko =S () (55) oo (2.2)
and

p(A\, 7 t) = 72— (A — t)?
= (r—t+A)(r+t—A\). (2.3)

(See e.g. Courant and Hilbert [5], pp.699-703 or Kubo [9], §2).
First we shall examine qualitative properties of K(\, r,t).

Lemma 2.1 Letr # 0 and A\t € (—o00,00). Then K(\,r,t) is odd in A
and even in t, namely, we have

K(=\rt)=—-K(\rt) (2.4)
and

K(\ 1, —t) = K(\r,t). (2.5)
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Moreover
-1
(D2~ D2 -~ " "D,)K(\rt)=0 (2.6)
and
-1
(2(Dt—Dr)—nr )K()\,r,t)zo on A=t+r, (2.7) 4
-1
(2(Dt+Dr)+n )K(A,r,t) =0 on A=t-—r. (2.7)—
r
In addition,
K(r,m,0)=1/2. (2.8)
Proof.  Set
o 1\™
Ki(\rt) = X" ——— ] ¢™
1( T ) (8)\2)\) ¢ ()\,T,t),
so that
()™ A
K\ rt) = 5l p2Zml Ky(A ).

Since ¢ (A, 7,t) is a polynominal in A of degree 2m, we find that K; (A, r,t)
is even in X hence (2.4) follows. Clearly K;(A,r,t) is a homogeneous poly-
nomial in (A, 7,t) of degree 2m which is even in 7. Thus we conclude that
Ki(A,rt) is even in t hence (2.5) follows.

Next we shall prove [2.6). Since 2m+1 = n— 2, it suffices to show that

n—1

(D? — D? — D) (r? g™ (A, 7, t)) = 0.

Moreover, since

(Dg + m 1Dr)r2_n =0,
we get
n—1 _
(D} = D} = “—=D,)(r*"¢")
n—1 2—n
= r2~"{(D} - D? — D.)¢™ — 2 D.¢™}.

r



Asymptotic behaviors of solutions of []u = |u|? 295

Thus we have only to prove

n—3
(D} — D? +

D.)¢™(\, 7, t) = 0. (2.9)

For convenience we shall introduce new variables by

E=r+t, n=r—t. (2.10)
Note that

Dy+ D, =2D¢, D;—-D,=-2D, (2.11)
hence D? — D? = —4D,D,, and D, = D¢ + D,,. Besides

1 2

-= —. 2.12

S (2.12)
Therefore becomes

{DeDy — —— (D¢ + Dy)}™ (A, 7, t) = 0. (2.13)

§+n

Moreover implies

7 (A 1) = (n+A)"(E =)™ (2.14)
Therefore

De¢™ = —2_¢™, Dy = — g™

£E— A n+ A
hence
m2
D¢D, ™ = m
D" = e’
and
m_ §+n m
e+ Da)e™ =m e N0

Thus follows.

Thirdly we shall prove (2.7)y. It follows from and that
these equations become

(D —I—m+1>K(A,r,t)=0 on A=¢,

Tt
1
(DE—}—T;—:—T))K()\,T,t):O on A= -—.
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Moreover we have

DpK (A, r,t)|xze = Dn(K (A7, 8)|52¢);
DfK(/\7 r, t)|,\:—n = DE(K()‘a r, t)‘)\z—n)‘

Thus (2.7)4 are equivalent to

m+1 B

(Dn+ §+n)K(€7T7t)_0a (215)+
m+1 B

(D‘f + f—}——T])K(_n’T, t) e 0 (215)_

Furthermore it follows from (2.2) and (2.14) that

KA, t)|)\:g = 1<§)2m+1 <i>m(f +n)™.

2\r 2¢
Therefore by (2.12) we obtain
KA, 1) o = 27E™H (€ + )™ (2.16) 4
Similarly we have
K\, t)yey = =270 (E+ ) (2.16)
Now from (2.16)4 we have
D,K(€,1, ) =~ K(6.m1),

which implies (2.15)+. Analogously (2.15)_ follows from (2.16)_. Thus we
obtain (2.7)4.

Finally we shall prove (2.8). From and we have

1 /A\?™Tlro 1\™ -
ko0 == (2) (55) W)

2m! \ r
hence
1 1 0\™
- - (== )\2__ 2\m )
K(r,r.0) 2m!<2>\8)\) A=)

Noting that
1 0 0

AN oA
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we obtain [2.8). Thus we prove the lemma. ]

Next we shall examine quantitative properties of K (X, r,t). (See Kubo
[9], §4).
Lemma 2.2 Letr >0,t 20 and |[r —t| £ X< r+t. Then we have
D™ (A, t)| S CrmaAmlel for 0< ol < m (2.17)
and
IDPe™ (A, t)| < Cr¥m Bl for 0<|8] < 2m, (2.18)

where D = (D, Dy, D) and C is a constant depending only on m.

Proof. If A< r+t, then
r+t—A20 and r—t+ <2
If0<t—7r <\ then
OSr—t+A<X and r+t—-A< 2
Moreover, if 0 £ r — ¢t £ )\, we have
O0Sr—t+A<2\ and r+t-A<2t <2
Therefore (2.17) and (2.18) follows from [2.3). The proof is complete.  []

Lemma 2.3 Let (A, r,t) be as in the preceding lemma. Then we have
DK (\,r,0)] £ Gt AmH=lol | pmei-ol yme)
for 0=]a| =2, (2.19)

where D = (Dy,D,,D;) and C is a constant depending only on m. In
particular

DK\, 7, t)| £ Cr~m=1\mH1-lel
if t<2r and 0= o £2. (2.20)

Proof.  If follows from that

K\, t) =172 1N oo DIg™ (A, 7, t) (2.21)
§=0
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with some constants C;. Hence (2.17) implies (2.19) for || = 0. Let
1 < |a| £ 2. Using (2.18) also, we then have

o]
DK\, r,t)| £ Y G imRpmaL-laltk
k=0

with some constants Cj, since (2.18) implies
\DﬁD§\¢m()\,r,t)\ <or?m 87 for m+1<8]+j < 2m.

Therefore (2.19) follows. In particular, if ¢ < 2r, then X+ < ymHi-lel
(3r)lel for 0 £ A < r +t. Hence we obtain (2.20). The proof is complete.
[

3. Linear wave equation

The main purpose of this section is to prove [Theorem 1.1l.

First we shall show that the Cauchy problem (1.1) admits a weak solu-
tion even if the initial data are singular at r = 0. To this end we will often
use the following notations:

Qo = {(r,t) € Q; r # |t]},
Q= {(r,t) e r+t >0}

and

Q= {(r,t) € Qu; 7 # t}.

Lemma 3.1 Let u(r,t) be defined by (2.1). Assume f = 0 and g €
CHR™"), where Rt = (0,00). Then u belongs to C?(Qp) and satisfies the
homogeneous wave equation

n—1

Ut — Upy — Upr = 0 mn QO (31)
with inatial data
u(r,0) = f(r), u(r,0) =g(r) for r>0. (3.2)

Proof.  Since (2.1) and (2.5) imply that u(r,¢) is odd in ¢, it suffices to
prove the lemma with )y replaced by 5. In what follows, by £ and n we
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often mean the notations given by (2.10), namely, we set £ = r + ¢t and
n=r—1t. By D, or Dg we also denote one of D, and D;. Let £ > 0 and
n # 0. Then (2.1) with f = 0 can be written as

¢
u(r,t) = / dVE (O, t)dA. (3.3)
|n]
Hence we have

Dyu(r,t) = /I:I g AN) Do K (A, 7, t)dX + g(§)K (&, 7, 1)

—(Dalnl)g(In)) K (|nl,r,t) for (r,t) € Qy,

where £ =7+t and n =r —t. Moreover

¢
DsDou = / g(NDgDuKdA + gD K|y
In

—(Dg|n)gDaK |r=y)
+Dp(gK |x=¢) — (Dalnl) Dg(g K |r=jy|)-

Since
Dg(g(§)K (&, m,t)) = g (K (&, 7,t) + g(§)(DrAK + DgK)(§,7,t)
and
Dg(g(In) K (Inl,r,t)) = ¢'(InD)(Dglnl)K (Inl,r,t)
+g(In))((Dg[nl)DAK + DgK)(|nl,r, 1),
we have

3
DsDau(r,t) = / g\ DD K (A 7, t)dA
Inl

+(OK (€ t)
=(Dalnl)(Dglnl)g (In)K (Inl, 1)
+9(§)(DAK + Do K + DgK)(€,1,t)
=9(In1)(Daln)(Dgln|) (DAK)(|n], )
—g(11)(Dal)Da + (Dala) DsK) (1], 1)

for (r,t) € Qq, (3.5)

where { =r+tand n=1r—t.
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We are now in a position to prove the lemma. Noting that K(\,r,t) is
smooth in R x R* x R according to [2.2), we see from (3.4) and (3.5) that
u € C? (QQ)

Next we shall prove (3.2) with f = 0. Clearly, implies u(r,0) = 0.
Let r > ¢ > —r. Then n > 0 and we have from (3.4)

we(r,t) = / ™ GOVDK (A 1)
—ifg;(t'r +t)K(r+t,rt)+g(r—t)K(r —t,rt)
hence
ug(r,0) = 29(r)K(r,r,0).

Therefore by we get (3.2).
Finally we shall prove [3.1), where Qg is replaced by Q. From (3.5) we

have
3
et — Upy = / g(\)(D? = DK (A, 7, t)d
||

+29(A) (Dt — D) K(A, 7, )| 2=¢
+29(A)(Dy[nl) (Dt + Dr) K (X, 7, 8) r=yy),

since Drn =1 and Dyn = —1. Moreover it follows from (2.4) that

(Dﬁlnl)(Dt + D?")K()‘a Ty t)|)\=|n| = (Dt + DT)K(Av T t)l,\:n

= —(Dt + D’[‘)K(A7 T, t)l/\=_77'

Similarly, by (3.4) we get

3
Dyu(r,t) = / gD K (A7, £)dA
Il

—{—g()\)K(/\, T, t)|/\=§ + g(|71[)K(_77a T, t)'

Thus we obtain

n—1
Ut — Upp — Uy
T

n—1

¢
:/Ilg()\)(D? — D222 DK, t)dA
n

n—1

+o{2D: - D) - T KO e

r
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o {2(De+ D)+ KO O

Therefore follows from and (2.7)+. The proof is complete.  []

In order to prove the uniqueness of such a solution of (1.1) as in
1.1 we will employ the following

Lemma 3.2 Let u(r,t) € C*(Qo) N C1(Q) be a solution of (3.1) with the
zero initial data

u(r,0) =0, w(r,0)=0 for r>0. (3.6)
Assume

for (r,t) €Q such that0 <r =1, (3.7)

where C, 8 are positive constants. Then u(r,t) vanishes identically in €.

Proof. It suffices to prove
ur(ro,t0) =0, ut(ro,to) =0 (3.8)

for each (ro,tp) € 2. To do it, one can assume without loss of generality
that tg > 0.
First we shall show that

T0o
/ (u2 + u?)|ptor™ T
d

ro+to
+ (ur — ut)2
T0
to
+ 2upur’
0

rldr
t=ro+to—r

odt=0 (3.9)

r=d

for each fixed d € (0,7¢). For 0 < € < d we set
Q. ={(rt) e d<r<rog+ty—t,
0<t<tyand |r—t| > e}

Using the identity

n—1 _

2(utt = Upr —
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= Dy(u? + ul)r"™ ! — 2D, (upuyr™ )
in ()., we have from

0= / {ve(u? +u?) — 2vupu }r™ 1S,
00

where (v, 1) is the outward unit normal to 8€)., the boundary of Q.. Tend-
ing € to zero, by (3.6) we get [3.9), because u € C1(Q).

Now it follows from (3.7) that the last term on the left hand side of
tends to zero as d — 0. Hence we obtain

T0
/ (U,g + U?)‘t=t07‘n—1d’)" § 0,
0

which implies (3.8). The proof is complete. []

In order to prove the uniqueness of such a solution of the nonlinear wave

equation (1.4) as in [Theorem 1.2 we will need the existence of a solution of
(1.1) with initial data singular at r = 0.

Lemma 3.3 Let f € C*(RT) and g € CY(Rt). Assume

FOIF™ 4 ()] + lg(r))rm 18

(If
4 10+ 19 )2 )
< e(r)y ™18 for r>0 (3.10)

holds, where 6 and k are positive constants with § < 1. Then there exists
uniquely a solution u € C?*(Qp) N CY(Q) of (3.1) with (3.2) such that for
(r,t) € Q we have

[u(r,t)| < Cer™™(r + [t]) =8 (r — Jt|) =" (3.11)
and
|Dyu(r, t)] + |Du(r, t)| < C’er*m_“'é(r + |t|>‘6<r —[th™", (3.12)

where C' is a constant depending only on m,k and 6. Moreover the solution
is given by (2.1).

Proof.  Since the uniqueness of a solution follows from (3.12) and the
preceding lemma, it suffices to show that there exists such a solution. Define
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u(r,t) by (2.1). For convenience we set

|r+t|
wr (r, £) = /1 , SVE Q7 5 (3.13),
and
4
wa(r, £) = /lr_tb FOVK, 7 )d), (3.13),

so that (2.1) can be written as
u = u1 + Dyus.

Then implies that u; and us belong C?(£)) and satisfy (3.1).
In addition, u satisfies (3.2), because ug(r,t) is odd in ¢ according to (2.5).
Moreover it follows from (3.5) with g replaced by f that up € C3(Qg).
Therefore we conclude that u belongs to C?(Q) and satisfies and
(3.2). Thus we have only to show that v € C!(Q) and that and
(3.12) hold.

First we shall prove
u; € C1() (3.14),
and
uy € C%(), (3.14)5

so that u € C*(Q), since u1,us are odd in t. It follows from (2.20) and
(3.10) that g(A\)DK (A, r,t) = O(A™1*?) and g(\)K (A, 7,t) = O(X%) as X —
0 uniformly for (r,t) near a fixed point (rg,ty) € Q; such that ro = t.
Therefore by (3.4) we get (3.14)1, since u; € C?(£)). Analogously, by (3.5)
we obtain (3.14)s.

Next we shall prove and (3.12). To do it one can assume without
loss of generality that ¢ = 0. First we deal with the case where

t=2r>0. (3.15)

Then by (2.1) and one can writte as

u(r,t) = r—2m1 Z Cjiu;(r,t), (3.16)
=0
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where
t+r . .
uj(r,t) = / gMNTIDLo™ (A, 7, t)dA
t—r
t+r . .
+Dy FOONTIDL ™ (A, v, t)dA (3.17)
t—r
with [2.3).
From (3.17) we have
t+r
wo(r, ) = / Ag(VE™ (A, 7, £)dA
t—r
t+r
+ Af(A) D™ (A, 7, t)dA.
t—r
Since Dip(A,r,t) = —Dx¢p(A, r, t), integrating by parts, we get
t+r
UO('I“, t) = Go(/\)(bm()\, T, t)d)\, (318)0
t—r
where ¢p(A\, 7, t) = (r—t+ A)(t +r— ) and
Go(A) = Ag(N) + F() + Af'(N). (3.19)0
If 1 £ j < m, we have from
t+r . .
wi(r,t) = — / (W g\ DI~ g™ (A, 7, £)dA
t—r
t+r . 1
=Di [ )Y DO )N
t—r
Thus we obtain, as above,
t+r .
w;(r,t) = G;(ND ™A, t)dh for 1< 5<m, (3.18);
t—r
where
G;i(A) = =N Tg(N) — (WFLF(N)". (3.19);

We are now in a position to prove and (3.12) with [(3.15). It

follows from (2.18) that

D{T' ™ (A, t)] < OrPmH
for t—r<A<t+r and 1=j<m.

(3.20)



Asymptotic behaviors of solutions of [Ju = |ul|P 305

Moreover (3.10) and (3.19) imply that for A > 0 we have

|Go(M\)| L eX™mHo())—r71-0 (3.21)0
and

IG; (V)] £ CeNTm 0NV +=8 for 1< < m. (3.21);

Since \! <771 for A 2t —r 2 r, it follows from [3.15), (3.18), (3.20) and
(3.21) that

t+r
fu(r, )] < Cer™ s / (A)"F 0 < 2Cer™ I+ (4 _ py=r

t—r

for 0 < 5 £ m. Therefore by we get
lu(r, )] £ Cer ™0 (t 4 7)7r 8,

sincet —r 2 (t+r)/3 for t 2 2r. Thus follows under 3.15). Analo-
gously we obtain (3.12), because (2.18) implies

IDD} '™ (A, 7, t)| £ Cr2mI
for t—r<A<t+r and 1<j<m. (3.22)

Next we shall deal with the case where
0= ¢t < 2, (3.23)

Then it follows form (2.1) and (3.4) that

T4t r4t
u(r,t) = /| GVEMN A+ [ FNDK(A, 7, t)dA

r—t| |r—t|
n
FFK Ol + S FOIK Aurs )y
for r#t. (3.24)
Moreover (2.20) and (3.10) imply that
lgNE X, 1) + [f (N DK (A, 7,8)] S Cer™™ 1A (N) 7717

and

IFVK (A 7, t)| £ Cer M INIFE () =178
for |r—t[SASr+t<3n
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Therefore if 0 < 7 < 1 we have from [3.23) and (3.24)
3r
lu(r,t)| < Cer‘m_l""s/ d\ + Cer™™F9,
0
which implies for0<t<2r<2 Ifr 21, then

u(r, )] = Csr‘m_1</lro:|<)\>—n—1d)\ + (r — t>—n)
< Cer ™ Y p — )7,

which yields (3.11), since 7 2 (r 4 t)/3 for t < 2r.

Finally we shall prove (3.12) with (3.23). Then we employ (3.4) and
(3.5) applied to u; and ug, respectively. It follows from (2.20) and (3.10)
that

[g(N)DaK (A, 7, )| + | f(A) Do DK (A, 1, 1)
< Cer M INTIH6 () —r-1-6

and

(g + S IDIE A, 0)[ + [ F)DE (A, 7, 1))
< Cer™mINO(N) 77170

for |r —t| < A <7+t < 3r. Therefore we have
|Dou(r,t)] £ Cer—™1

r+t
x ( / AT ) 180 4 [ 4] (r t)"“_l*‘s). (3.25)
|

r—t|

Now, if 0 < r £ 1, we get by (3.23)

3r
|Du(r,t)] < Car_m-l(/ AN + (37‘)6>
0
< Cs,,,—m—l-l—&
which implies (3.12). If r 2 1 and |r — ¢| 2 1, we have
|Dou(r,t)| £ Cer™™ 1y —¢) =1

9

because A71T¢ < C(A\)7!1*5 for A 2 1. Therefore we obtain (3.12) with
(3.23). Finally suppose 7 2 1 and |r —¢t| =< 1. Then the integral in (3.25) is
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dominated by

1 00
/ AN / AT 24\
0 1

hence we get

|Dou(r,t)| £ Cer~™!

?

which implies (3.12). Thus we prove [Lemma 3.3|. []
Proof of [Cheorem 1.1 We must only modify a little the proof of [Lemmal

3.3 with 6 = 1. Since (1.2) implies (3.10), we see that all conclusions of
are valid. Hence it suffices to show that the second derivatives
of u(r,t) are continuous at each point (r,t) € Q such that |t| = r and that
(1.3) holds, where u(r,t) is the function defined by (2.1).

First we shall prove

Do Dgus(r,t) € C°(Qy), (3.27);

DaDﬁDtUQ(Tvt) < CO(Ql) (327)2

with uy,ug given by (3.13), which yield u € C%(Q), since u; and usy are
odd in t and satisfy (3.14). To this end we shall employ (3.5). Since
(Daln)(Dslnl) = (Dan)(Dgn) and (2.4) implies

(Dﬁ‘n‘)(DaK)(hﬂ’ rt) = (Dﬁn)(DaK)(U»T’, t),
we have from (3.5) and (3.13);

§
DoDgun(r,t) = / 9(\)DaDsK (A, 7, £)dA
Il

+9'(§)K (&, r,t) + g(§)(DAK + Do K + DgK)(€,7,1)
—(Dan)(Dam){g (InN) K (Inl, 7, t) + g(In))(DAK)(Inl, r,t)}
—g(In){(Dgn)(DaK)(n,7,t) + (Dan)(DpK)(n, 7, 1)}

for (r,t) € Qs. (3.28)

Therefore we get (3.27)1, since g € C1([0,00)) and K(\,r,t) € C®(R x
R* x R). Similarly we obtain (3.27)2, using (2.4), (2.20) and (3.28) with g
replaced by f. Thus we conclude that u € C%().

Next we shall prove (1.3). First suppose holds. Then we adopt
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through (3.19). From (1.2) and (3.19) we have, instead of (3.21),
Go(N)| £ e(n) ™17 (3.29)o
and
|Gj(N)] £ Ce(A\)T™™ 2% for 1< < m. (3.29);

Hence by (3.18) and (3.20) we get

t+r
luo(r, £)] < Cer?™ / ()" 1R
t

—-r

< 2C€T‘2m+1 <t _ T)—m—l—fc

and

. [itr :
uj(r,8)] < Cer® 157 [ yimm-2ongy

t—r

< 2Cer®™ 2t —p)~m=27% for 1< <m.
Since t —r 2 (t +r)/3 for t 2 2r, we thus obtain from [3.16
u(r,t)| < Cer'™™(t +7)727",

which implies (1.3)o. Analogously we get (1.3);, using (3.22) instead of
(3.20). Similarly we obtain (1.3);. Indeed, from (3.18),, we have, for exam-

ple,
t+r

D2ty (r,t) = - Grm(AN)DZDT 1™ (N, 7, t)dA
+Gm()‘)DrDT_1¢m()" Ty 8) tr
and the last term is dominated by
Cer™(t —r)=27%
according to (3.22) and (3.29),,. Moreover (2.18) implies
ID*DY 1™ (N, t)| S Cr™ 1 for t—r SASt+T
Therefore we get

| D2 (r, t)| £ Cer™(t — r) 27",

Thus we obtain (1.3)s.
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Finally suppose holds. Then we see from the proof of
with § = 1 that (1.3)p and (1.3); hold. Thus we have only to prove (1.3)s.
It follows from (1.2), (2.20) and (3.28) that

|DoDguy(r,t)] < Cer ™! (/ AT RN 4 (r — t>_2_'€)
|[r—t|
< Cer ™ N p — )72,

which implies (1.3)2 if f = 0. To estimate the third derivatives of uy, we
replaced g by f in (3.28). If m = 2, one can show that (2.20) is true for
|a| = 3. Therefore we get as above

|D¢DoDgus(r,t)] £ Cer ™ Hr —t) 727"
If m = 1, it follows from (2.18) and that
\DtDaDﬁK()\, r, t)| § Cr_?’

for |r —t| S A< r +t < 3r. Therefore, if 0 < r < 1, we have

3r
| Dt Do Dpgus(r,t)| = Ce(r_g' dr+r_2)
0
< Cer™?,

which yields (1.3)2. If 7 2 1, then

r+t
|DtDaDgus(r, t)| £ Ce(r™ / N2+ — 1))
|

r—t]|
< Cer™2(r —t)=27",

Thus we obtain (1.3)2 with (3.23). The proof is complete. B

4. Nonlinear wave equation

As will be seen, a solution of the nonlinear wave equation (1.4) can be
furnished by a solution of the following integral equation

u(r,t) = u_(r,t) + L(u)(r,t) in Q.

Here u_ is a solution of the Cauchy problem (1.1) and

L(u)(r,t) = /_toow(r,t,T)d’r (4.2)
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with
A+
w(r,t,7) = G\, T)K(A, 7t — 7)d, (4.3)
A~

where Ay =t —7+7r,G(\,7) = F(u(A, 7)) with F the function in (1.4) and
K (A, 7, t) is defined by [2.2).

The main purpose of this section is to establish basic a priori estimates
for the integral operator L. Throughout the present section, by L,w and
G we mean the above operator or functions, unless stated otherwise. By C
we also denote various constants depending only on F and n.

From and we have easily

Lemma 4.1 Assume that F(u) € CY(R) and (1.8), (1.9) hold with p > 1.
Letu e X. Then

G(\, 1) € CHO(Q) (4.4)
and for (\,7) € Q we have

GO )] < Allul PATTPOVPO )P = )P (45),
and

’D/\G(/\a T)|
< ApllulPA= DR NP )P (0 — )P (4.5),

For qualitative properties of w we have

Lemma 4.2 Let G(\,7) € CY°(Q). Then

Dyw(r,t,T) € C’O((Q X R\{|t — 7| #r})
for 0= |al £2, (4.6)

n—1

(D? — D? - Dy)w(r,t,7) =0
for (r,t) € Q, T €R such that |t—7|#"r (4.7)
and

w(r,t,7) =0, Diw(r,t,7)= G(rt)
for 7=t and (r,t) € Q. (4.8)
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Proof.  Note that the right hand side of coincides with that of (2.1) if
f = 0 and we replace g(A),t by G(A,7),t — 7 respectively. Then we obtain
(4.6), (4.7) and (4.8) analogously to Lemma 3.1. The proof is complete.

[

In order to show that L(u) € C?(2) we will employ the following

Lemma 4.3 Let the hypotheses of Lemma 4.1 be fulfilled. In addition,

assume
n—1 m+1
< = ' 2 2. 4.9
p<—e=_—— ¥ m2 (4.9)
Then
Dyw(r,t,7) € CoAxR) for 0< o) £1. (4.10)

Moreover for (r,t) € Q and 7 € R we have
lw(r,t, )| £ O|u||Pr—™(r)~ min{patl} (4.11),
and
|Drgw(r, t,7)| < Cllul[P(r=m Y (r) mintpatl)
T, (4.11),

where q is the number defined by (1.13). Furthermore for (r,t) € Q and
T € R such that |t — 7| # r we have

D2 u(r,£,7)| < OlJullP (= =) ) mintpa )
+CIul[P(r) P{r~™ + (A (M)} (411):
where P(A) =0 for A > 1 and
0 if (m—1)p <m,

b(A) =1 [logA| if (m—1)p=m,
Am=(m=Upif (m—1)p>m

for0O< A= 1.

Proof. It follows from (2.5) and that w(r,t,7) is odd in t — 7. Hence

one can assume without loss of generality that ¢t — 7 2 0.
First we shall prove (4.10). The procedure is analogous to the proof of
(3.14)1 with (3.13);. In view of (4.6) we have only to examine D,w(r,t,T)
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near t — 7 = r, i.e, near A_ = 0. Let (rg,tp,79) be a point such that
to — 70 = ro > 0. Then it follows from (2.20) and (4.5)¢ that

GO T)K(\ 7t —7)=0(°) as A —0

uniformly for (r,t,7) near (ro, to, 70), where § = m+1—(m—1)p. Since (4.9)
implies § > 0, we see from that w(r,t,7) is continuous at (ro, to, 70).
Similarly we find that D%w(r,t,7) is continuous at the point for |a| = 1
hence (4.10) follows.

Next we shall prove (4.11)o. It follows from (2.19), (4.5)¢ and (4.9) that

A
(ryt,7)| < Cllulfr=t [ ()™ 7)) Pa,
A1

Sincem+1—-mp=p—q—1,if p< g+ 1 we have
At
lw(r,t, )| < C’Hu”pr_m_l(T)_p/ d.
|-

If p=2gqg+1, then
At
w(ryt, ) < CllulPr [ O+ frl) e an
|A-1

Therefore (4.11), follows, since Ay — A_ = 2r.
Thirdly we shall prove (4.11);. It follows from (2.19), (4.5)¢, (4.9) and

(3.4) applied to that
| Dy rw(r, t, 7)|
At
< Clfulf? (T“m_l/ AT=RTDR () PN 4 |7]) "PdA
[A-]
At
=2 / (NPT + ) PdA
[A-]
47O (A 4 [7)) 7).

Moreover, since (4.9) implies

/ 1 Am=(m=lpgx < ¢,
0
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we have
At
A= m=D2(X) =P (3 4 |r]) ~Pd
|A-]
At
SCUNP+ [ (NPTITEA 4 |])TPdN).
IA-]

Hence (4.11); follows as before, because p —q—2 = —m(p—1) < 0.
Finally we shall prove (4.11),. It follows from (2.19), (4.5), (4.9) and

(3.5) applied to that

Ay
D2 w(r,t,7)| < C||u||P(/| (A4 AA+ B+ B, (112

where

Ay = 7N DP 0PN 7)),
Ay = rE NPT A ) (4.13)

and
By = r AL PO (| + | [) P
+r 2P (A + 7)) 7P (4.14)

Analogously to (4.11)y we also have
At .
Agd) < Cr=™=2(7)~ min{patl} (4.15)
|A-]

First suppose |A_| 2 1. Then we have easily

A
" Avd) < o), (4.16)
A

and
By < C(r~™ L 4 pm 2y () min{patl} (4.17)+

Next suppose 0 < |A_| £ 1 < Ay. Then (4.17)4 is still valid and we
have

B_ < C(r)P(r—m Ao (mmlp 4 o2y, (4.18)
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Now write as
At
Ald)\ Aid) + / Avdr =1 + Is.
IA-| A

Then we see from that (4.16) holds for I5. Moreover

1
L LCor™™ )P [ ymol=(m=Lpgy

IA-|

Thus we obtain

I/\)\j Apd) £ C<T>_p{7'_m + T_m_l(l +7/)(‘)\_’))} (419)

Finally suppose 0 < Ay < 1. Then we have from
At 1
Aydr < Crm 1 (z) P / A= 1=(m=1)p g\
|A-| A~
hence (4.19) follows. Moreover (4.9) and (4.14) yield
By £ C(r)™P(r~m2 4 pmml [y o (m=Dpy,

Thus (4.11); follows from (4.12) and through [(4.19). The proof is
complete. [

We are now in a position to deal with L(u). First we shall examine its
differentiability.

Lemma 4.4 Let the hypotheses of the preceding lemma be fulfilled. In
addition, assume

po 1l ez
so that ¢ > 0 accordingly to (1.13). Then

L(u) € CY(Q) (4.21)
and

Do L(u)(r,t) = /t Dow(r,t,7)dr for (r,t) € Q, (4.22)

where D, stands for one of D, and D;. Moreover we have
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t
DoDgL(u)(r,t) :/ DoDgw(r,t, 7)dr
+XagG(r,t) i D(Q) (4.23)
and

/ \DaDgw(r, t,7)|dr < C|lu|P(r™™ + pm—l T.—m—Q)

for (r,t) € Q, (4.24)

where D'(Q) is the space of distributions in Q,xap = 1 if Do = Dg = Dy
and Xop =0 if Do = D, or Dg = D;. Furthermore

n—1

(D? — D? - D.)L(u)(r,t) = G(r,t) in D'(Q) (4.25)

holds.

Proof. It follows easily from the preceding lemma with that
and (4.22) hold, since p > 1 and ¢ +1 > 1. By (4.9), (4.11)2 and [4.20) we

also get (4.24).
Next we shall prove (4.23). Let ¢(r,t) € CZ(R2) be a test function.

Then from we have
/ / L(u)(r,t) D Dusp(r, t)drdt
Q
__ / / DsL(u)(r, t) Dat(r, t)drdt.
Q

Moreover by (4.11); and (4.22) we get

//Q DgL(u)(r,t)Dawp(r, t)drdt

~ lim / /Q L 5(u)(r, t) Daco(r, t)drdt, (4.26)

where
t—r—6 t
Last=( [+ [ )Dauirtrar
—00 t—r+6

In what follows we shall deal with the case where D, = Dg = Dy, since
the others can be handled analogously. Then we may write as
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/ /Q Lgs(uw)(r,t) Dasp(r, t)drdt

o) 00 T+r—=6 oo
:/ dT/ dr(/ —i—/ )th(r, t)Dyo(r, t)dt
—00 0 T T+r+6

if 6 <r on suppy. Therefore it follows from (4.6) and (4.11); that

/ /Q Lgs(u)(r,t) Dep(r, t)drdt

t—r—§ t
= —// w(r,t)drdt(/ —l—/ )wa(r,t, T)dT
Q —00 t—r+6

+Rs, (4.27)

where

Rs = [~ dr [ (=Dw)(r,t,m)p(r, o), dr
—00 0
+ [ ar [T (D)ol
Furthermore we find from (4.11); that

limRs = — // (Dew)(r, 7, 7)o (r, 7)drdT.
4]0 0

Thus by (4.24), (4.26) and [4.27) we get

_ / /Q Dy L(u)(r, t) Dyo(r, t)drdt

- //Q o(r,t)drdt | too Dw(r,t, 7)dr
* .//Q(th)(r’ 7, 7)p(r, T)drdr.

Hence (4.8) yields (4.23).
Finally we have from (4.22) and (4.23)

n—1
(D} - D2 -

D, )L(u)(r,t)

T

t ~1
= / (D? — D? - n Dy )w(r,t, 7)dr + G(r, t)
—00

T

in D'(Q).
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Therefore follows from (4.7), (4.10) and (4.24). Thus we prove
44. (]

Now one can show that L(u) € C%(Q).
Proposition 4.5 Let the hypotheses of the preceding lemma be fulfilled.
Then L(u) € C%(Q).

Proof. If (m—1)p < m, it follows immediately from Lemmas 4.3, 4.4 and

that L(u) € C?(2). Hence we assume from now on that (m—1)p > m,
because the case of (m — 1)p = m can be analogously handled. In view of

(4.4, and [4.25) we have only to prove that Do, DgL(u) € C°(£2) with
Dy = D, or Dg = D,. Then (4.23) implies

DoDgL(u)(r,t) = /_too DoDgw(r,t, T)dT. (4.28)

Let (ro,to) € Q be a fixed point. Then we shall prove that for each
e > 0 there exists a positive number § such that

|DoDgL(u)(r,t) — DaDgL(u)(ro,to)| < ¢ (4.29);
if

Ir —rol <6, |t—to] <. (4.29)4
Set 69 = ro/5 and in what follows we suppose

lr —ro| £ 6o, |t —to] = bo. (4.30)
For convenience we set

DoyDgw(r,t,7) = f(r,t,7),

so that yields
Do DgL(u)(r,t) — Do DgL(u)(ro,to)

= tf(T,t,T)dT

to

+ t:o{f(r, t,7) — f(ro,to, 7) }dr. (4.31)

Note that f(r,t,7) may be singular only on 7 = t — r according to (4.6).
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Then from (4.11), and (4.30) we have

t

Flrot,7)dr| < ChJt — tol, (4.32)

to

because |A_| =r—t+717 219 — 286 ifeithertg S7<tort <7< ¢,
Next we shall deal with the second term on the right hand side of [4.31).
Write as

to
_ {f(T,t, T) - f(TOa t07T)}dT
to—7o+361
= /t { T

0—To—381
to—rg—361 to
+(/ +/ ){ Hdr
—00 to—ro+361
=1L (7‘, t) + I (”l“, t), (433)

where 0; is a positive number with §; £ § which will be fixed below. Then
it follows from (4.11)9 and [4.30) that

to—ro+361
lll(T‘,t)| § 02{61 + ('t—T—Tlm_(m_l)p
to—ro—361

+|to — 1o — T|m_(m_1)p)d7'}

56
< Cq(by —1—2/ 1 I)\lm—(m—l)pd/\)’
—561
if
P —rol S &1, |t —to] £ 6. (4.34)

In what follows we shall fix §; so that 0 < 6§; < &y and
561

Cy (6, + 4 AT (m=PgN) < /3,
0

which is possible according to (4.9), and suppose holds. Then we
obtain

I (r, )| < £/3. (4.35)
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Besides, it follows from (4.6) and (4.11), that

lim  Iy(r,t) =0,
(ryt)—(ro,to) 2( )
because implies |A_| 2 &1 if |7 — (to —70)| = 381. Thus (4.29); follows
from (4.29)2, (4.31), (4.32), (4.33) and (4.35) if § is small enough. The proof
is complete. (]

Finally we shall derive basic a priori estimates for the operator L.

Proposition 4.6 Let the hypotheses of Lemma 4.3 be fulfilled. Moreover
assume (1.14) and (1.12) hold. Then L(u) € C%(Q) and for (r,t) € Q we
have

|L(w)(r, t)] £ C|lulPr'=™(r) " r + [t) " (r — )7, (4.36)0

DaL(@)(r8)] < CllulPr™(r) o= [th 2 r =)™ (4.36);
and

|DaDpL(u)(r,t)| < Cllul[Pr=™ " r — [t~ (r — ) 7%, (4.36)2

where Dy or Dg stands for one of D, and Dy.

In order to prove this proposition we will often employ the following

estimates which have been obtained in [10], §4 (see Lemmas 4.9 through
4.12 in it or their proofs).

Lemma 4.7 ([10]) Let the hypotheses of Lemma 4.1 be fulfilled. More-
over assume (1.14) and (1.12) hold. Then for (r,t) € Q we have

t At —g—1 () — |y P~
/_oodT/|A_|<>\> A+ [7)7PA = |7]) P"dA

SC{r—t)", (4.37)1

t At —g—1 () _ |y P~
/_oodT/lA_W A+ 7)) 7P(A = |7]) 7P dA

< Crir+ [t)™5 i |t 2 2 (4.37)
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[ ar [ 2A+|r|> P\ [r]) P
<C r—t) (4.38)

/ ;<A+>p-q—1<x+ 1) PO — [7]) Pedr

SClr+t) Hr—t)™" (4.39) 4
and
/_too<)\—>1’—q—1<|)\_| + |fr|>—p<p\_| . |T|>_p”d7'
=cren (4.39)_

where Ay =t — 7 1 and q is the number given by (1.13).

Proof of [Proposition 4.6/ Since (1.14) implies [4.20), we see that all conclu-
sions of Lemmas 4.1 through 4.4 and [Proposition 4.5 are valid, in particular,
L(u) € C%(Q). Therefore we have only to prove (4.36).

First we shall deal with the case where 0 < r < 1. Then it suffices to
prove

|L(u)(r, t)] £ Cllu|Pri=™ ()~ 1, (4.40)0

| Do L(u)(r, t)] < Clu]Pr=™(t)~" (4.40)
and

|DaDpL(u)(r,t)] £ Cllul[Pr=™= (t) =1 (4.40)2

for (r,t) € 2 such that 0 < r < 1. In view of (4.2), (4.22) and (4.23), one
can write as

t—2r t
L(u)(r,t) = / w(r,t,7)dT + w(r,t,7)dr
—0o0 t—2r
= Ag(r,t) + Bo(r, 1), (4.41)
t—2r t
Dy L(u)(r,t) = / Dyw(r,t,7)dr + Dyw(r,t,7)dr
— 00 t—2r

= Ay (r,t) + By(r, t) (4.41)1
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and

t—2r
Do DgL(u)(r,t) = / Do Dpgw(r,t, 7)dr
t
+ DoDgw(r, t,7)dr
t—2r

= Aag(T, t) + BQB(T, t) (4.41)9

unless D, = Dg = Dy.
First consider Ag, A, and A,g. Suppose

t—7122r>0. (4.42)

Then A_ 2 r and analogously to [3.16) one can rewrite as

m
w(r,t,7) =r~2m1 Z Ciwj(r,t, 1), (4.43)
5=0
where
Ap .
wj(r,t,T) = NTIG(A, T) D3 ™ (A, 7yt — T)dA
A
with

S\t — 1) = (A= A_)( Ay — N).

Moreover we have, like (3.18),

At
wo(r,t,7) = / Go(A, 7)™ (A, 1yt — 7)dA (4.44)q
A
and
At .
wj(r,t,7) = Gij(A,7)D5 ¢™ (A, ryt — T)dA
A
for1<j<m, (4.44);
where
Go(A\, 7) = AG(A, T)
and

G\ 1) = =DA(NTG(\ 7)) for 1<j<m.
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By Lemma 4.1 we also get
Go(A 7] S AJulPAI DR P 4 )P~ [y P (4.45),
and
G5O T)| < Cllu| PR =I=DPONVEP O [7]) P (A — ||y 7P
for 1=j5<m. (4.45);
Now it follows from (3.20), (4.44) and (4.45) that

[wj(r,t,7)| < ClJul[Prm*
At

x [ AmTTUPOYITPO ) TP () — [y PR (4.46)
A

for 0 < j<m,since V<7 "™A" for A2 A_2rand1 << m If
T<t—r—1, we have A\_ = 1 hence

[w;(r,t,7)] < Cllul[Pr™
A
§ / TP O [ ) P (A Jrf) PR (4.47),
A

fort<t—r—1and 0 < j < m, because of [1.13). If t —r—1 <7< ¢t —2r,
then r < A_ <1 and

At
AT M=DP(OVIPON 4 |7]) PN — |7]) TPRdA
A

pp [ m—(m—1)p
< C(r) A )

max{1,A4+}
+/ <)\>P—q“1<)\+ ’7-|>—P<)\_ |7[)"PRd\.
1
Therefore we obtain
ij(’l", t, T)l g CHul|p{rm+2<7—>—p—pI€(1 + ()\_)m—(m—l)p)

At
[T )P - )L (447
fort—r—1<7=<t—-2rand 0 j<m.
Now it follows from (4.9), and (4.47) that
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t—2r
| et i < Cllulrt (i

—0

t—2r Ay
+%/_002 d'r/)\ </\>p—q—1<)\+ ‘Tl>—p<)\_ |T|>_pﬂd)\),

Therefore by (4.37)2 we get
|Ag(r, )| < C|u||Pri=™(#) "1 for 0<r <1, (4.48)0

since, if |t| < 2r < 2, it suffices to note that

Ap AL
/ NP L 4 ) PdA < Ol — 1yt [ i
_ A

Analogously we obtain
|Ag(r, )] £ Cllu|Pr~™() "1 for 0<r<1, (4.48)1
using (4.48)p and (3.22) instead of (3.20). Similarly one can prove
|Aas(r,t)| S Cllu|Pr—™ " 1t)™*1 for 0<r<1. (4.48)4

Indeed, from (4.44),, we have, for example,

At
D2wp(r,t,7) = Gm(A\, T)DEDY 1™ (A, vyt — 7)dA
A

+Gm(\ T)Dp DY L™ (Nt — T)

and the first term on the right hand side may be handled analogously to
Ay, by using (2.18) instead of (3.20). Moreover by (3.22) and (4.45),, we
get

t—2r
/ G, 7) (D DT ™) (A, t — 7)|dr

t—2r
< Clfurrm [ (gt

— 0

XA P (s + 1) P (0 = ) P
t—2r
<cllupr( [ Quymeimtrry e

t—r—1

[ W O+ ) — [y ).

—0o0

Thus we find from (4.9), (4.39) and that (4.48), is valid.
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Next consider By, B, and Byg in (4.41). Suppose

0St—7<2r and O0<r<1. (4.49)
Let [A\_-| = X< Ay. Then A; £ 3r < 3 and it follows from (4.5) that

G\, 7)] < Cju|PA=m=Dp(7)7pops (4-50)0
and

IDAG(A, 7)| £ Clu|[PA=(M=DP=1(7)=p=p~ (4.50),
Hence (2.20) and yield

w(ryt,7)]  ClllPr==tr) 27 [ ymai=mrgy,

Therefore by (4.9) we obtain
|Bo| < C|Jul[Pr!=™(t)"P7P% for 0<r <1, (4.51)¢

because
t

/t " (r) PR < o) / dr.

~2r t—2r

Applying (3.4) to [4.3), we have as above

| Daw(r,t,7)| < Cflul[Pr=m=1 () PP"

X ( / ? \m=(m=Dpqy + i/\ii"”“‘(m‘l)”).
0

Hence (4.9) yields

|Ba| < C|u||lPr™™ () P™P* for 0<rZ1. - (4.51)4
Finally we shall prove

|Bog| < Cllu|[Pr—™ 1) ™P7P% for 0<r<1. (4.51)9
Applying (3.5) to and using also (4.50);, we have as above

|DaDgw(r,t, )] < Cllu|[Pr=m= (r)7P7P"

><(/‘3 /\m—l_(m_l)pd)\+ I/\:t|m—(m—1)p)'
IA-]

Therefore by (4.9) we obtain (4.51)s.
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Now (4.40) follows immediately from (4.41), (4.48) and (4.51), unless
D, = Dg = Dy. Besides, if D, = Dg = Dy, we employ (4.9), and
(4.50)¢. Thus we obtain (4.40), for Dy = Dg = Dx.

Finally we shall prove (4.36) for r =2 1. In what follows we suppose
r 2 1. It follows from (2.19), [4.3), (4.5)0 and (4.9) that

At
w(r,t,7)| = CHUHPT“m_l/ O O L P
A
X(A—|7)7Pd\ for T <t

By (4.2) and (4.37) we therefore get (4.36)0, since r 2 (r+|t|)/3 for [t| < 2r.
Next we shall prove (4.36);. Applying (3.4) to [4.3), from (2.19), (4.5)¢
and (4.9) we have for 7 < ¢

|Dow(r,t, )|

A
< Clfulf(r=mt [ AmmmDR TP ()TN — [r])TPRdA
|A_]

Ay
pmm=2 / (P79 LA + 7)) P (A — [r])PdA
A
+rT T LPTTH DL+ 1) TP ALl = 7)) ).

Moreover
1

| ATIREUP QNP 7)) PN = [7]) PR
A

1
< C(T>_p_p”/ Am=m=UPgy for |t—r—7| <1
0
Therefore by (4.9) and Lemma 4.7 we get

t
/ Dow(r, t,7)|dr S C|[u|[Pr—""2((r — t)P~P*
—o0

Hr =) e )T e — )"
+(r+t) " r—1)79),

sincem —mp=p—q—2andr = (r+|t|)/3 for |t| £ 2r. Hence by (4.22)
we obtain (4.36);.

Finally we shall prove (4.36)2. Using (4.5) and (3.5) instead of (3.4),
we have as above
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[DaDgw(r,t,7)]

A
< Clfulprm ([T am ey
A~

X (A — |7[)"PdA
2 /:I(A)P—q—lu + 17PN — 7)) "PEdA

AL M=DP P (A £ )P YA — [y
Fr AP ) P (A — |r4>—p*’~)

for 7 < t. Moreover, if [t —r — 7| < 1, we have |A\_| £ 1 and

1
AP ) PN+ []) TP — [7) PR
A~

< O L+ (A ),

where 1(A) is the function in (4.11)2. Therefore by (4.9), (4.23) and
4.7 we obtain (4.36)2. Thus we prove [Proposition 4.6 []

Now, from (1.10), (1.11) and the above proposition we obtain easily the
following

Corollary 4.8 Let the hypotheses of Proposition 4.6 be fulfilled. Then we
have L(u) € X and

[|L(u)|| £ Ci||u|lP for ue X (4.52)

where Cy s a constant depending only on F' and n.

Proof. Let u € X. Then L(u) € CY(Q) according to Lemma 4.4, since
implies [4.20)]. Moreover (4.52) follows immediately from (4.36)y and
(4.36)1, because |r — |t|| 2 (r + |t|)/3 for |t| = 2r and 7 = (r + |t|)/3 for
|t| < 2r. The proof is complete. ]

In order to solve the integaral equation [4.1), we will need a Hélder
continuity of the operator L. To state this, we shall introduce an auxiliary
norm in X by

lulll = sup [u(r,t)]r™(r + [t])(r — [t])". (4.53)
(r,t)e
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Then yields
Hulll = [lul]  for we X, (4.54)

since 7 < (r). Moreover we have

Lemma 4.9 Let the hypotheses of Theorem 1.2 be fulfilled. Then
I1L(w) = L()[[| £ Calllu — vf||([JulP~H + [[o][P~1) (4.55)
and

1Z(u) = L) < Csflu—vl|(llul P~ + |[o]P~)
+Calllw = ol[[P7H([[ull + [Jo]]) (4.56)

hold for u,v € X, where Co,C35 and C4 are positive constants depending
only on F' and n. Moreover one can take Cy =0 if p > 2.

Proof.  First we shall prove (4.55). Then one can relax condition (1.6) as
(4.9). In view of (4.53) we have only to show that

|L(uw)(r,t) — L(v)(r, t)] L CMr ™ (r + |t|) " Hr —t) 7" (4.57)

for u,v € X and (r,t) € Q, where M = |||u — v|||(||u]P~ + ||v][P~1).
It follows from (4.2) that

L(w)(r, t) — L(v)(r, 1) = /t w(r,t,7)dr, (4.58)

—00

where w(r,t,7) is given by with G\, 7) = F(u(\, 7)) — F(v(A,7)).
Since (1.8) yields

1
|F(u) — F(v)] < Aplu — v / O + (1 — 0)v[P~1df,
0
we have

G, 7| £ Ap2P~Hu(A, 7) — v(A, 7|
x(lu(\, TP+ o, )P (4.59)

for (A, 7) € Q. Moreover by and (4.53) we get

G )| £ Ap2P~  MATIMTIPTY NI (A - | ) TP (A — ) 7P



328 H. Kubo and K. Kubota

Therefore it follows from (2.19) and that for (r,t) € Q

|L(u)(r,t) — L(v)(r, t)] £ CMI(r,t) (4.60)
where
t Ap
T — pom—1 dr )\m—(m—l)p AP
I(r,1) [ (A
XA+ |T[)TP(A = [7]) TPRdA. (4.61)

Now, if 7 2 1, we see from the proofs of (4.36)¢ and (4.36); that
I(r,t) S Cr~™(r + |ty Hr —t)" (4.62)1

holds. From now on we suppose 0 < r < 1. Then it suffices to prove

I(r,t) £ Cr—™(t)=" "1, (4.62)2
From we have
t A
P () £ C (7Y PR 4 A= OPy gy [ gy
t—r—1 A

t—r—1 At
+c / dr / NPT [7) P (A — [7]) PRd,

because Ay £3fortr2t—r—1withr<landA_21for7<t—7r—1.
Therefore by (4.9) and (4.37)2 we obtain (4.62)2, as we remarked below
(4.48)o.

Now (4.57) follows immediately from and (4.62).
Next we shall prove [(4.56). We deal with only the case where pg(n) <

p < 2, since the other can be treated less hard. In view of it suffices
to prove
|L(u)(r,t) = L(v)(r,¢)|
é (C3M1 + C4M2)T‘1_m<7“>_1<7' + It‘>_1<7' - t> R (463)0

and
| Dy L(u)(r,t) — DrL(v)(r, t)]
< (CsMy + C4M2)r“m(r)_l(7" — |t|)_1(r —t)7" (4.63)1

for u,v € X and (r,t) € Q, where My = ||u — v[|(||u|[P~! + |[v]||P7}), My =
|[|w—|||P~*(||u|| + ||v]|). The procedure is similar to the proof of (4.36). In
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what follows we shall indicate only points different from the proof of (4.36).

First suppose 0 < 7 = 1. Then we write, analogously to (4.41),

L(u)(r,t) = L(v)(r, )

t—2r t
= / w(r,t, 7)dT + w(r, t,7)dr

—0o0 t—2r

= Ao(r,t) + Bo(r,t)
and

D, L(u)(r,t) — D, L(v)(r,t)

t—2r
= / Dyw(r,t, T)dr + Dyw(r,t, 7)dr
—00 t—2r

= A1(7", t) + Bl<’l“,t).
It follows from that for (A, 7) € Q

G, 7)< Ap2P~ MNP IPO) TP 4 ) TP (A — |7)) 7P

Similarly, by (1.7) and (1.8) we get
IDAG(A, )] = Ap(|[lw — ol |P~[Jul A7
Hlu = l| [[ol[PTIATR=IPTE (N 1P)
XA+ TP =) 7P"
for (A, 7) € Q. Hence we obtain, like (4.45),
IGo(\, 7)| £ Ap2P~ LA AL - (m—1)p
X)TPAH TP =)
and
G5 (A7) = Aplllu — of [P~ H[u] [ WP
XA+ TP = )P

FOMNTIRON PO 4 [7)) PN — 7)) 7P

for 1<j5<m.

(4.64)q

(4.64);

®.(4.65)

(4.66)0

(4.66);

Note that only the factor AY*1~™P in the first term on the right hand side
of (4.66); is different from the factor M ~(m~VP(X)1~P in (4.45),. Therefore

similarly to (4.48)¢ and (4.48); we obtain
[A4j(r, )] = {CMy + C'|lu — ol[[P~H|ul[}r =™ () 5

(4.67);
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for j = 0,1 and 0 < r < 1, if we use also condition (1.6) in addition to (4.9).

Note that the estimate (4.5); is unnecessary to derive (4.51)¢ and
(4.51)1. Moreover the right hand side of (4.65) coincides with that of (4.5),
except constants depending on the norms. Therefore analogously to (4.51)g
and (4.51); we obtain

|B;(r,t)| £ CMyrt=m73(t)=P=Pr (4.67)2

for j=0,1and 0 <r £ 1.
Now (4.63) with 0 < r < 1 follows immediately from (4.64) and (4.67).

Next suppose r 2 1. Then, analogously to (4.36)y and (4.36);, we obtain
(4.63), using (4.65) instead of (4.5)g. Thus we prove Lemma 4.9. ]

5. Proof of Theorem 1.2

In this section we will complete the proof of [Theorem 1.2. First we shall
show that the integral equation is uniquely solvable in X  for small
d > 0.

Lemma 5.1 Let the hypotheses of Theorem 1.2 be fulfilled. Then there are
positive constants eg = eo(F,n, k) and d = d(F,n) such that, if 0 < € < g
with € the constant in (1.2), there exists uniquely a solution u(r,t) of the
integral equation (4.1) such that u € C?(Q)NX and ||u|| £ d, where u_(r,t)
is the solution of (1.1) which has been obtained in Theorem 1.1. Moreover
we have (1.16), (1.17)_, (1.18)_ and (1.19)_.

Proof. ~ The procedure is as usual. First of all we set
d = min{1, (4C,) "/ (P~}
where C; is the constant in (4.55). From we then have
1
I1L(u) = L{)[[| = Zlfw — ]l (5.1)

for u,v € Xy, where Xy = {u € X; ||u|| £ d}.

Now, we define a sequence of functions ug(k = 0,1,2,--+) by ug = u_
and ux = ug + L(ug—1) for kK =2 1. It follows from [Theorem 1.1 that
ug(r,t) belongs to X and satisfies (1.15). Let €9 be the maximum of pos-
itive numbers ¢ satisfying the following three conditions : 2Cpe £ d <
1,2PC1(Coe)P~ !t £ 1 and 2PT1C5(Coe)P! < 1, where C;, C3 are the con-
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stants in (4.52), respectively. Suppose 0 < £ < 9. Then by induction
it follows from [Corollary 4.8 that ||uk|| < 2||ug|| and ux € Xy for £ = 0.

Therefore by and (5.1) we get

1 1\ (P—1k
uk+1 — upll = Sllue — we—|| + Cs( 5 for k=1,
2 2

where C5 = 0 if p > 2 and
Cs = 2271 Cy||ug|| [[|u1 — uol|[P~"

if pp(n) < p £ 2. Consequently we find that the sequence ugx(k =0,1,2,--)
converges to a function u in X, because X is a Banach space. Besides,
we have u € Xy and |[u|] £ 2||lu_|| £ 2Cye according to (1.15). Thus
we see from (5.1) that u is a unique solution of in X4. Moreover
by [Proposition 4.6 we find that « € C%(Q) and that (1.17)_,(1.18)_ and
(1.19)_ hold, since (1.19)_ is a direct consequence of (1.18)_ with |a| = 1.
Thus we prove Lemma 5.1. ]

In order to prove the uniqueness of such a solution of (1.4) as in [Theorem
1.2, we shall show that such a solution of (1.4) satisfies [4.1).

Lemma 5.2 Let u_(r,t) € C%(Q) be a solution of the homogeneous wave
equation (1.20). Let u(r,t) € C2(Q)N X be a solution of the nonlinear wave
equation (1.4) such that for r > 0 and t < 0 we have

Ju(r,t) = u—(r,t)| < Cr=™ () 71700 + [t)) 7, (5-2)o

| Dy e(u(r, t) —u_(r,t))| £ Cr~ ™) =0 (r—[t) " (r+ [t]) TH(5.2)1
and
D2, (u(r,t) — u_(r,t))| < Cr ™72 0(r)1=0(r — t) 771, (5.2)

where C,8 and p are positive constants such that 6 < 1. Assume the hy-
potheses of Proposition 4.6 are fulfilled. Then u(r,t) satisfies the integral
equation (4.1).

Proof.  The procedure is similar to the proof of Kubo and Kubota [10],
Lemma 5.5. For a fixed negative number s we consider the following Cauchy
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problem

n—1

Vit — Upp — v, =0 in €,

v(r,s) = f(r,s), v(r,s) =g(r,s) for r>0, (5.3)
where Q, = {(r,t) € Q; |t — s| # r} and

f(r,s) = u(r,s) —u_(r,s),

9(r,8) = Di(u(r,t) — u_(r,t)|e=s. (5.4)
Then it follows from and (5.2) that (5.3) admits a solution
v(r,t;s) € C*(Q,) N CY(Q) which satisfies (3.7) and is given by

|r+t—s|
v(r,t;s) = / g\, s)K(A\,r,t — s)dA
|r—t+s|

|r+t—s|
+D, /| FOLS)K (At — s)dA. (5.5)

r—t+s|

Now for (r,t) €  we set
@(r,t;s) = u_(r,t) + Ls(u)(r, t) + v(r,t; s), (5.6)
where
Li(w)(rt) = [ “w(r,t,)dr

and w(r,t, 7) is given by [4.3). Similarly to Lemma 4.4 and [Proposition 4.6
we then find that L(u) € C%(Q),

n—1

(Dt2 - Dg - D'I‘)LS(U’) - G(Ta t) in Qv
Ls(u)(r,s) =0, DiLs(u)(r,t)],_. =0

|t:s
and (3.7) with u replaced by Ls(u) hold. Therefore we have

n—1

(D; - D7 -

Dy)p(r,t;s) = G(r,t) in

r
and
o(r,s;s) = u(r,s), pi(r,s;s) = ut(r, s).

Consequently we find from (1.4), applied to p—u and (5.2); that
p(r,t;s) = u(r,t) for all (r,t) € Q. In order to show that u(r,t) satisfies
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we thus have only to prove

lim v(r,t;s) =0 foreach (rt)e€ Q. (5.7)

§—>—00

Let (r,t) € Q be fixed and let s < min{0,t —2r}. Thent -7 —s>r

hence similarly to and (3.18) we have from

m
v(r,t;s) = r~2m1 Z Cjvji(r,t; s),
7=0

where

t—s+r )
vi(r,t;8) = /t Fj(\, s)Di¢™ (A, 7t — s)dX

—s—r
with

Fj(As) = ¥Tlg(A, s) + DANTHF(A 9)).
Moreover (5.2) and imply

B, 5)] £ ON-™(s)~"

Therefore by (2.17) we get
t—s+r

il ) S O [,

t—s—r
which yields
lu(r, t;8)] < Cr~™(s)"H.

Thus (5.7) follows. The proof is complete. ]

Proof of Theorem 1.2 Let eg,d and u(r,t) be as in [Lemma 5.1. Then we
see form that u is a solution of the nonlinear wave equation (1.4)
having the properties stated in the theorem, except (1.17)4,(1.18)4 and
(1.19)5.

To prove the uniqueness, let u(r,t) be such a solution of (1.4). Then u
satisfies according to with § = 1 and g = k. Since (5.1)
implies that a solution of is unique in X4, we conclude that such a
solution of (1.4) is unique.

Finally we shall show that there exists uniquely a solution u (r,t) of the
homogeneous wave equation (1.20) satisfying (1.17); and (1.18),. Define
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u4 by

wi(r8) = u_(rt) + / w(r t,7)dr, (5.8)
where w(r, ¢, 7) is given by with the above solution u(r,t). Note that
the right hand side of is defined for (r,t) € Q, according to (4.11),.

Moreover from and we have for (r,t) € Q
u(r,t) —ug(r,t) = —/ w(r,t,7)dr
t

—t
= —/ w(r, t, —7)dr.

—o0

It also follows (2.5) and that
w(r,t, —7) = —w(r, —t,7),

where w(r,t,7) is defined by with G(A, 7) replaced by G(\, —7), so
that

u(r,t) — uy(rt) = L(u)(r,—t), (5.9)

where

t
L(u)(r, ) :/ w(r,t,7)dr.

—0o0
Since is true even if G(A, 7) is replaced by G(\, —7), we see that
Lemmas 4.2 and 4.3 are also valid for . Therefore we find from
4.6 that v —uy € C*(Q) N X and that (1.17), (1.18), and (1.19)4 hold.
In addition, uy € C?(Q) N X, since so is u. Moreover it follows from (1.4),
applied to L(u) and that uy is a solution of (1.20). Thus it
remains only to prove the uniqueness of u, .

Let v4 (r, ¢) be such another solution of (1.20) and set w(r, t) = u (r,¢)—

v4(r,t). Then from (1.18)4 we have ||w(t)||. = ||w(0)]| for ¢ € R. Moreover
(1.19)4 yields that |Jw(t)||. tends to zero as t — co. Therefore we conclude

that w(r,t) is constant. Hence w(r,t) vanishes identically, because w € X.
Thus we complete the proof of Theorem 1.2. []
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