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On a causal analysis of economic time series
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Abstract. This paper describes a testing methodology for causal relations between
time series. The concept of the local causality and the instantaneous local causality is
introduced. The mathematical structure of the local causality is shown. The data of
GNP and Money Supply are analized by the proposed test.

Key words: Local and weak stationality. KM_{2O}-Langevin equation. Test(S), Local
causality, Instantaneous local causality, Real GNP, Money Supply, Local Causal Test,
Instantaneous Local Causal Test.

1. Introduction

A weakly stationary process, whose time parameter space is a finite
interval of T , is called a local and weakly stationary process. The letter
T denotes \{0, \pm 1, \pm 2, \ldots\} . In the present paper, we propose a concept
of causality, which we call local causality, in local and weakly stationary
processes. Local causality is defined from the predictional point of view.
We propose a method, which we call the Local Causal Test, how to test
local causal relations in local and weakly stationary processes. As an ap-
plication, time series of Money Supply and Real Gross National Product
(RGNP), which are known as the most important time series in economics,
are analyzed to find local causal relations.

The well-known Granger’s causality (Granger [7]) was defined for
stochastic processes whose time parameter space is T. Up to this day,
many works on causal analysis in Granger’s sense (eg., [7] , Sims [33], Sar-
gent [31], Ram [30], Komura [10] ) are known. Among them a test which is
called the Granger and Sargent Test is often used. Including these works,
almost all studies in time series analysis use simplified models such as au-
toregressive (AR) or autoregressive moving average (ARMA) models in the
model fitting for given data. As economists emphasize, the methods above,
assuming “weak stationarity” of given data, have a contradiction from the
viewpoint of the theory of stochastic processes (e.g., Sawa [32]).
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On the other hand, we do not take the position that given data have
“weak stationarity” Okabe and Nakano [26] constructed Test(S) which
states a criterion that multi-dimensional data are a realization of a local and
weakly stationary process. We apply this Test(S) to given data, including
some transformed data. If the data pass Test (S), viz . that they are accepted
to be a realization of a local and weakly stationary time series, we proceed
to further analysis. In like manner, Okabe [19] defined causality in local
and weakly stationary processes from the viewpoint of the prediction and
proposed a method how to test it. Okabe and Inoue [25] developed this
analysis further. As we mentioned at the beginning of this section, we
shall propose a concept of causality from the predictional point of view,
and develop its analysis such as the Local Causal Test in this paper. We
compare the Local Causal Test with the Granger-Sargent Test when both
tests are applied to time series of Money Supply and RGNP.

The outline of this paper is as follows: Through this paper the theory
of KM_{2O}-Langevin equations, which are associated with local and weakly
stationary processes, plays a crucial role. Therefore we overview in \S 2 briefly
the theory of KM_{2O}-Langevin equations. As an application of this theory,
it was proposed to apply Test(S) to the question of whether given data are
a realization of a local and weakly stationary process or not (see [26]). In
\S 3 we summarize the deduced process of Test(S). We applied Test(S) to
quarterly data of Money Supply and RGNP in three periods. [30] and [10]
analyzed the causal relation in Granger’s sense between these data in the
period from 1955-1 to 1971-11. They assumed that the first order differences
of \log-transformed data are a realization of an AR model. However the
result of Table 3.1 shows that they are not a realization of a local and weakly
stationary process. In the periods from 1965 to 1987 and from 1965 to 1990,
we accept from Table 3.2 and Table 3.3 that the second order differences of
the original data are a realization of a local and weakly stationary process.

\S 4 introduces Granger’s causality for stochastic processes whose time
parameter space is T and summarizes briefly the Granger-Sargent Test
which is a representative test for Granger’s causality. As above mentioned,
the Granger-Sargent Test also assumes that given data are a realization of
an AR model. This test is applied to quarterly data of Money Supply and
RGNP in the periods from 1965 to 1987 and from 1965 to 1990. The results
shown in Table 4.1 and Table 4.2 report that RGNP causes, in Granger’s
sense, Money Supply in both periods. However converse relations are not
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accepted These results are compared with the results of the Local Causal
Test which is developed in \S 6.

We define in \S 5 the local causality and the instantaneous local causal-
ity between local and weakly stationary processes, and characterize them.
On the basis of the theory of KM_{2O}-Langevin equations, we investigate in
Theorem 5.2 a mathematical structure of the causal relation between local
and weakly stationary processes. Theorem 5.1 gives a theory which judges
causal relations between local and weakly stationary processes. Moreover, a
theory which judges instantaneous causal relations between local and weakly
stationary processes is given by Theorem 5.5.

In \S 6 we apply the theory developed in \S 5 to data analysis. As an ap-
plication of Theorem 5.1, we propose the Local Causal Test which tests the
local causality between given time series, which are accepted by Test(S) as
a realization of a local and weakly stationary process. In the same way,
the Instantaneous Local Causal Test is proposed as an application of The-
orem 5.5. Both tests are applied to quarterly data of Money Supply and
RGNP in the periods from 1965 to 1987 and from 1965 to 1990. Table
5.1 and Table 5.2 report that RGNP locally causes Money Supply in both
periods and Money Supply locally causes RGNP in the period from 1965
to 1987. Now, it is an established theory that Money Supply and RGNP
are mutually related. On the other hand, we can not accept that Money
Supply locally causes RGNP in the period from 1965 to 1990. However, this
phenomenon is explicable from the point of view of economics. Since the
Granger-Sargent Test does not accept in both periods that Money Supply
causes RGNP in Granger’s sense, we can assert the efficiency of the Local
Causal Test.

2. KM_{2O}-Langevin equations

The theory of KM_{2O}-Langevin equations was introduced by Okabe [17].
Following the notation and terminology of [17] and Okabe-Nakano [26], we
overview it in this section. Let d , N\in N . Let X=(X(n);|n|\leq N) be any
d-dimensional stochastic process on a probability space (\Omega, B, \mathcal{P}) .

Definition 2.1 X is called a local and weakly stationary process with c0-

variance function R if it holds that for any n , m\in T , |n|\leq N , |m|\leq N ,

E(X)=E[X(n)]=\mu (2.1)
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E[(X(n)-\mu)^{t}(X(m)-\mu)]=R(n-m) . (2.2)

Without loss of generality, we assume that \mu=0 .

For any n\in\{1, \cdots, N\} , we define a block Toeplitz matrix S_{n}\in M(nd;R)

by

S_{n}=\{

R(0) R(1) R(n-1) \backslash

{}^{t}R(1) R(0) R(n-2)
.\cdot
.

.\cdot

.
.\cdot
.

{}^{t}R(n-2) {}^{t}R(n-3) R(1)
{}^{t}R(n-1) {}^{t}R(n-2) R(0) /

(2.3)

In this paper, we assume

R(0)\in GL(d;R) (A-1)

and

S_{n}\in GL(nd;R) . (A-2)

We set

X(n)=(\begin{array}{l}X_{1}(n)X_{2}(n)\vdots X_{d}(n)\end{array}) (|n|\leq N) . (2.4)

For n_{1}<n_{2} , n_{1} , n_{2}\in\{-N. \cdot, N\} , we define M_{n_{1}^{2}}^{n}(X) , which is a closed
linear subspace of L^{2}(\Omega, B, P) by

M_{n_{1}}^{n_{2}}(X)=the closed linear hull of (2.5)
\{X_{j}(m);1\leq j\leq d, n_{1}\leq m\leq n_{2}\} .

Especially, we define that

M_{0}^{-1}(X)=M_{1}^{0}(X)=0 . (2.6)

For n\in\{0 ,\cdots,^{N\}} , P_{M_{0}^{n-1}(X)} is a projection operator on M_{0}^{n-1}(X) , and

P_{M_{-n+1}^{0}(X)} projection operator on M_{-n+1}^{0}(X) . Now, the random forces of
X , which we call, \nu_{+}=(\nu_{+}(n);0\leq n\leq N) , \nu_{-}=(\nu_{-}(-n);0\leq n\leq N) are
introduced:

\nu_{+}(n)=X(n)-P_{M_{0}^{n-1}(X)}X(n) (2.7)
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\nu_{-}(-n)=X(-n)-P_{M_{-n+1}^{0}(X)}X(-n) . (2.8)

It holds that

\nu_{+}(0)=\nu_{-}(0)=X(0) . (2.9)

P_{M_{0}^{n-1}(X)}X(n) and P_{M_{-n+1}^{0}(X)}X(-n) are caUed fluctuation parts of X.
For any n\in\{1, \cdot , N\} , k\in\{0, \cdots, n - 1\} , there exist \gamma+(n, k) ,

\gamma_{-}(n, k)\in M(d;R) such that

P_{M_{0}^{n-1}(X)}X(n)=- \sum_{k=0}^{n-1}\gamma+(n, k)X(k) (2.10)

P_{M_{-n+1}^{0}(X)}X
(-n)=- \sum\gamma_{-}n-1(n, k)X(-k) . (2.10)

k=0

It holds that

M_{0}^{n}(X)=M_{0}^{n}(\nu_{+}) (2.12)

M_{-n}^{0}(X)=M_{-n}^{0}(\nu
-

) . (2.13)

The following Theorem 2.1 is known as an expression formula of X.

Theorem 2.2 There exists the unique system

\{\gamma+(n, k), \gamma-(n, k)\in M(d;R);0\leq k<n\leq N\}

such that

X(n)=- \sum_{k=0}^{n-1}\gamma_{+}(n, k)X(k)+\nu_{+}(n) (2.10)

X(-n)=- \sum_{k=0}^{n-1}\gamma-(n, k)X(-k)+\nu_{-}(-n) . (2.15)

Here, \delta_{+}(n) , \delta_{-}(n)(1\leq n\leq N) which are known as partial correlation
functions, are defined as

\delta_{+}(n)=\gamma_{+}(n, 0) , \delta_{-}(n)=\gamma_{-}(n, 0) . (2.16)
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The equations (2.14) and (2.15) are called KM_{2O}-Langevin equations
associated with X. There exist interactions between fluctuation parts and
dissipation parts. These interactions are called the Fluctuation-Dissipation
Theorem (FDT). For n\in\{0, \cdot , N\} , we set

E(\nu_{+}(n)^{t}\nu_{+}(n))=V_{+}(n) and E(\iota/-(-n)^{t}\nu_{-}(-n))=V_{-}(n) . (2.17)

FDT is described as follows:

Theorem 2.3 (FDT). For 1\leq k<n\leq N ,
(i) \gamma+(n, k)=\gamma_{+}(n-1, k-1)+\delta_{+}(n)\gamma-(n-1, n -- 1 -- k)

(ii) \gamma_{-}(n, k)=\gamma_{-}(n-1, k-1)+\delta_{-}(n)\gamma+ (n-1 , n–l–k)
(iii) \delta_{+}(n)=-(R(n)+\sum_{m=0}^{n-2}\gamma_{+}(n-1, m)R(m+1))V_{-}(n-1)^{-1}

(iv) \delta_{-}(n)=-(^{t}R(n)+\sum_{m=0}^{n-2}\gamma_{-}(n-1, m)^{t}R(m+1))V_{+}(n-1)^{-1} .
For 1\leq n\leq N .

(v) V_{+}(n)=(I-\delta_{+}(n)\delta_{-}(n))V_{+}(n-1)

(vi) V_{-}(n)=(I-\delta_{-}(n)\delta_{+}(n))V_{-}(n-1) .
For the special case n=0, we get

(vii) V_{+}(0)=V_{-}(0)=R(0)

(viii) \delta_{+}(1)=-R(1)R(0)^{-1}

(ix) \delta_{-}(1)=-^{t}R(1)R(0)^{-1} .
When d=1 , R(n)={}^{t}R(-n) . Therefore, we can see that

\{

\delta_{+}(*)=\delta_{-}(*)

\gamma+(*, \cdot)=\gamma-(*, \cdot)

V_{+}(*)=V_{-}(*) .
(2.14)

The system

\{\gamma_{+}(n, k), \gamma_{-}(n, k), V_{+}(l), V_{-}(l);0\leq k<n\leq N, 0\leq l\leq N\}

is called a KM_{2O}-Langevin data associated with covariance function R.

3. test (S)

Test(S) was proposed by Okabe-Nakano [26] to test whether a given
time series is a realization of a local and weakly stationary process or not.
Following [26], we summarize the deduced processes of Test(S).

Any d , N\in N be fixed. We are given any N+1 vectors Z(n)\in R^{d}(0\leq

n\leq N) . Z =(Z(n);0\leq n\leq N) is called data. The sample mean vector
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\mu^{Z} of Z and the sample covariance matrix function R^{Z}=(R_{jk}^{Z})_{1\leq j,k\leq d} of
Z are defined as follows:

\mu^{Z}\equiv\frac{1}{N+1}\sum_{m=0}^{N}Z(m) (3.1)

R_{jk}^{Z}(n) \equiv\frac{1}{N+1}\sum_{m=0}^{N-n}(Z_{j}(n+m)-\mu_{j}^{Z})(Z_{k}(m)-\mu_{k}^{Z}) (3.2)

R_{jk}^{Z} (-n)\equiv R_{kj}^{Z}(n) , (3.3)

where

\mu^{Z}=(\begin{array}{l}\mu_{1}^{Z}\vdots\mu_{d}^{\mathcal{Z}}\end{array}) , Z(n)=(\begin{array}{l}Z_{1}(n)\vdots Z_{d}(n)\end{array}) (0\leq n\leq N) . (3.4)

The standardized data \mathcal{X}=(\mathcal{X}(n);0\leq n\leq N) of Z is defined as follows:

\mathcal{X}(n)=(0\sqrt{R_{11}^{Z}(0)^{-1}} \cdot . \sqrt{R_{dd}^{Z}(0)^{-1}}0)(Z(n)-\mu^{Z}) . (3.5)

Let R^{\mathcal{X}}=(R_{jk}^{\mathcal{X}})_{1\leq j,k\leq d} be the sample covariance matrix function of \mathcal{X}

defined similarly to (3.1), (3.2) and (3.3). We can define the sample block
Toeplitz matrix S_{n}^{\mathcal{X}}(1\leq n\leq N) similarly to (2.3). Here, it is assumed that

S_{n}^{\mathcal{X}}\in GL(nd;R) (1 \leq n\leq N) . (3.6)

Replacing R by R^{\mathcal{X}} in the algorithm from (i) to (ix) in \S 2, we get the sample
KM_{2O}-Langevin data

\{\gamma+(n, k), \gamma-(n, k), V_{+}(l), V_{-}(l);0\leq k<n\leq N, 0\leq l\leq N\} .

Then \nu_{+}=(\nu_{+}(n);0\leq n\leq N) which is called the sample random
force of data \mathcal{X} is introduced by

\{

\nu_{+}(0)=\mathcal{X}(0)

l/+(n)= \mathcal{X}(n)+\sum_{k=0}^{n-1}\gamma+(n, k)\mathcal{X}(k) (1 \leq n\leq N) .
(3.7)
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We choose lower triangular matrices W_{+}(n)\in GL(d;R) such that

V_{+}(n)=W_{+}(n)^{t}W_{+}(n) (0\leq n\leq N) . (3.8)

We define the d-dimensional data \xi_{+}=(\xi_{+}(n);0\leq n\leq N) by

\xi_{+}(n)=W_{+}(n)^{-1}\nu_{+}(n) (0\leq n\leq N) . (3.8)

Set

\xi_{+}(n)=(\begin{array}{l}\xi_{+1}(n)\vdots\xi_{+d}(n)\end{array}) (0\leq n\leq N) . (3.10)

Rearranging (3.10), we can construct the one-dimensional data \xi=(\xi(n) ;
0\leq n\leq d(N+1)-1) as follows: For n=0, \cdots , d(N+1)-1 ,

\xi(n)=\xi_{+p}(m) , n=dm+p-1 (1 \leq p\leq d, 0\leq m\leq N) . (3.11)

Then, the Construction Theorem of Okabe [17] suggests that (S.I) and (S.2)
below are equivalent to each other.

(3.8) \mathcal{X} is a realization of a local and weakly stationary time series with
R^{\mathcal{X}} as its covariance function.

(S.2) \xi realizes an one-dimensional standardized white noise.
To test (S.2), we introduce

\mu^{\xi} , (v^{\xi}-1)^{\sim} and R^{\xi}(n, m)(1\leq n\leq L_{N}, 0\leq m\leq L_{N}-n)

by

\mu^{\xi}=\frac{1}{d(N+1)}\sum_{k=0}^{d(N+1)-1}\xi(k) (3.12)

(v^{\xi}-1)^{\sim}= \frac{1}{d(N+1)}(\sum_{k=0}^{d(N+1)-1}\xi(k)^{2})

\cross(\sum_{k=0}^{d(N+1)-1}(\xi(k)^{2}-1)^{2})-1/2 (3.13)

R^{\xi}(n, m)= \frac{1}{d(N+1)}\sum_{k=m}^{d(N+1)-1-n}\xi(k)\xi(n+k) . (3.14)
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Here L_{N} is an effective length of R^{\xi} , in this case, is taken to be L_{N}=

[2\sqrt{d(N+1)}]-1 .
We institute the following criterion (M), (V), and (O) for checking

whether \xi satisfies (S.2) or not.
(M) \sqrt{d(N+1)}|\mu^{\xi}|<1.96

(V) |(v^{\xi}-1)^{\sim}|<2.2414

(O) for any n , m(1\leq n\leq L_{N}, 0\leq m\leq L_{N}-n)

d(N+1)( \sum_{j=1}^{2}(L_{n,m}^{(j)})^{1/2})^{-1}|R^{\xi}(n, m)|<1.96 .

Here L_{n,m}^{(j)}(1\leq j\leq 2) are defined as follows: Dividing d(N+1) and m
by 2n and n respectively, we get the following expression form.

d(N+1)=q(2n)+r (0\leq r\leq 2n-1) (3.15)

m=sn+t (0\leq t\leq n-1) . (3.16)

If r\in\{0, \cdots, n\} , then

\{

L_{n,m}^{(1)}=\{\begin{array}{l}n(q+(s/2))-mn(q-(s+1)/2)\end{array} (s(sisodd)iseven)

L_{n,m}^{(2)}=\{\begin{array}{l}n(q-1-(s/2))+rn(q-1+(s+1)/2)+r-m\end{array} (s(sisodd)iseven)

(3.17)

and if r\in\{n+1, \cdot , 2n-1\} ,

\{

L_{n,m}^{(1)}=\{\begin{array}{l}n(q-1+(s/2))+r-mn(q-1-(s+1)/2)+r\end{array} (siseven)(sisodd)

L_{n,m}^{(2)}=\{\begin{array}{l}n(q-(s/2))n(q+(s+1)/2)-m\end{array} (sisodd)(siseven)
.

(3.18)

Now, it is known that the estimator R(n) has a poor performance when n
comes close to N . A rule of experience concerning data analysis tells us
that an effective number of the sample covariance matrix function R^{\mathcal{X}} is
considered to be at most [3\sqrt{N+1}/d] . Therefore, we set

M=[3\sqrt{N+1}/d]-1 . (3.19)

Making use of the reliable \{R(n);0\leq n\leq M\} and the reliable subsystem
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\{\gamma_{+}(n, k), \gamma_{-}(n, k), V_{+}(l), V_{-}(l);0\leq k<n\leq M, 0\leq l\leq M\} , we restate
the new criterion alternative to (M), (V) and (O).

For each i\in\{0, \cdot , N-M\} , we consider the shifted data \mathcal{X}_{i} with \mathcal{X}(i)

as its initial point \mathcal{X}_{i}(0) :

\mathcal{X}_{i}=(\mathcal{X}(i+n);0\leq n\leq M) . (3.20)

Similarly to (3.7), the sample random force \nu_{+i}=(\nu_{+i}(n);0\leq n\leq M) of
data \mathcal{X}_{i} is defined by

\{

\nu_{+i}(0)=\mathcal{X}(i)

\nu_{+i}(n)=\mathcal{X}(i+n)+\sum_{k=0}^{n-1}\gamma_{+}(n, k)\mathcal{X}(i+k) (1\leq n\leq M) . (3.21)

In (3. 10) replacing \xi(n) by \xi_{i}(n) , \xi_{+j}(n)(1\leq j\leq d) by \xi_{+ij}(n)(1\leq j\leq d)

and N by M respectively, the one-dimensional data \xi_{i}=(\xi_{i}(n);0\leq n\leq

d(M+1)-1) is constructed similarly to (3.11). Moreover, we replace \xi(n)

by \xi_{i}(n) and N by M from (3.12) to (3.18). Then, we get the criterion
(M)_{i} , (V)_{i} and (O)_{i} which checks that \xi_{i} is a realization of a normalized
white noise. Concerning the main problem of testing the local and weak
stationarity of the original data Z , [26] proposed:

Test(S) : the rate of i\in\{0, \cdot , N-M\} for which (M)_{i} (resp. (V)_{i}

and (O)_{i}) holds is over 80 percent (resp. 70 percent and 80 percent).
We say that data Z is a realization of a local and weakly stationary

process if Test(S) is accepted. Also we say simply that Z has the local and
weak stationarity.

The efficiency of Test(S) was certified in [26].
Money Supply and Gross National Product (GNP) are known as repre-

sentative economic indices. Money Supply is the stock of money consisting
of coin, currency, and bank demand deposits. There are several ways to
define Money Supply. The bank of Japan has used for some time M_{1} as
Money Supply, but now mainly uses M_{2}+CD . Gross National Product is
the the total value of the goods and services produced in a nation during
a specific period. There are two kinds. One is called Real Gross National
Product (RGNP) and another is called Nominal Gross National Product
(NGNP).

Ram [30] and Komura [10] discussed the Granger’s causal relations
between quarterly time series, which are Money Supply (M_{1}) and RGNP
of Japan from 1955-1 to 1971-11. They assumed that given data have weak
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stationarity in a wide sense.
Now, we apply Test(S) to these data. Let data Z_{1}=(^{t}(Z_{11}(n), Z_{12}(n)) ;

0\leq n\leq 65) be M_{1} and RGNP above. Transforming Z_{\infty} , we introduce
seven tw0-dimensional data Z_{1}^{(j)}=(Z_{1}^{(j)}(n);0\leq n\leq N_{j}^{(1)})(0\leq j\leq 6 ,
N_{0}^{(1)}=N_{3}^{(1)}=N_{4}^{(1)}=65 , N_{1}^{(1)}=N_{5}^{(1)}=N_{6}^{(1)}=64 , N_{2}^{(1)}=63) by

Z_{1}^{(j)}(n)={}^{t}(Z_{11}^{(j)}(n), Z_{12}^{(j)}(n)) (3.22)

=\{

{}^{t}(\mathcal{Z}_{11}(n), Z_{12}(n)) (j=0)
{}^{t}(\mathcal{Z}_{11}(n+1)-Z_{11}(n), Z_{12}(n+1)-Z_{12}(n)) (j=1)
{}^{t}(Z_{11}^{(1)}(n+1)-Z_{11}^{(1)}(n), Z_{12}^{(1)}(n+1)-Z_{12}^{(1)}(n)) (j=2)
t (log Z_{11}(n) , log Z_{12}(n) ) (j=3)
t (arctan Z_{11}(n) , arctan Z_{12}(n) ) (j=4)
{}^{t}(Z_{11}^{(3)}(n+1)-Z_{11}^{(3)}(n), Z_{12}^{(3)}(n+1)-Z_{12}^{(3)}(n)) (j=5)
t (arctan Z_{11}^{(1)}(n) , arctan Z_{12}^{(1)}(n) ) (j=6) .

Table 3.1 shows the results of Test(S) for these data.

Table 3.1 Test(S) for t ( M_{1} , RGNP) from 1955-1 to 1971-11.

j (M) (V) (O) (S)
0 1.000 0.163 0.981 NS
1 0.962 0.203 1.000 NS
2 1.000 0.188 1.000 NS
3 0.981 0.381 1.000 NS
4 1.000 0.527 1.000 NS
5 0.962 0.500 0.925 NS
6 0.981 0.444 1.000 NS

Here, (M), (V) and (O) denote the rate of i such that (M)_{i} , (V)_{i} and
(O)_{i} hold respectively. ” S” and ” NS” indicate for stationarity and non-
stationarity respectively. We could not get “stationary data” as far as we
tried.

Let Z_{2}=(^{t}(Z_{21}(n), Z_{22}(n);0\leq n\leq 91) and Z_{3}=(^{t}(Z_{31}(n), Z_{32}(n) ;
0\leq n\leq 103) be quarterly time series of M_{2}+CD and RGNP from 1965
to 1987 and from 1965 to 1990 respectively. Let j\in\{0,1,2,5\} . Table 3.2
and Table 3.3 report the results of Test(S) for transformed data Z_{2}^{(j)}=
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(Z_{2}^{(j)}(n);0\leq n\leq N_{j}^{(2)})(N_{0}^{(2)}=91, N_{1}^{(2)}=N_{5}^{(2)}=90, N_{2}^{(2)}=89)

and Z_{3}^{(j)}=(Z_{3}^{(j)}(n);0\leq n\leq N_{j}^{(3)})(N_{0}^{(3)}=103, N_{1}^{(3)}=N_{5}^{(3)}=102 ,
N_{2}^{(3)}=101) respectively. Here the number j of Z_{2}^{(j)} and Z_{3}^{(j)} corresponds
to transformations of (3.22). We can find that the second order differences
in the original data in both periods have local and weak stationarity. We
apply these results in \S 4 and \S 6.

Table 3.2 Test(S) for t (M_{2}+CD , RGNP) from 1965 to 1987.

j (M) (V) (O) (S)
0 1.000 0.000 1.000 NS
1 0.961 0.628 0.974 NS
2 0.974 0.701 0.974 S

5 1.000 0.628 0.871 NS

Table 3.3 Test(S) for t (M_{2}+CD , RGNP) from 1965 to 1990.

j (M) (V) (O) (S)
0 1.000 0.088 1.000 NS
1 0.955 0.674 0.898 NS
2 0.977 0.704 0.943 S

5 0.988 0.528 0.865 NS

4. Granger’s causality and the Granger-Sargent Test

It has long been recognized that high correlation among a set of vari-
ables does not in any necessary sense establish that they are causally related
(Pierce and Haugh [29]). Wold [34] emphasized the importance of causal
analysis in science, explaining the examples of economic time series. Under
the circumstances, Granger [7] introduced the definitions of causal relation
in stochastic processes whose time parameter spaces are T in view of the
predictability as follows:

Let X=(X(n);n\in T) , and Y=(Y(n);n\in T) be d_{1} and d_{2} -

dimensional stochastic processes. For each n\in T , I_{n} is an information set,
including at least \{X(n), Y(n)\} . Let \overline{I}(n)=\{I(m), m<n\} , -\overline{I}(n)=\{I(m) ,
m\leq n\} . \overline{X}(n) , \overline{X}(n)-,\overline{Y}(n) , \overline{Y}(n)- are defined similarly. \overline{I}(n)-\overline{Y}(n) is
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equal to the set of elements of \overline{I}(n)_{-}without the elements of \overline{Y}(n) . Denote
by \sigma^{2}(X(n)|\overline{I}(n)) , \sigma^{2}(X(n)|\overline{I}(n)_{-}-Y(\underline{n})) the mean square prediction error
of X(n) given information set I(n) , I(n)-\overline{Y}(n) respectively. Granger’s
definitions of causality are:

Definition 4.1 (Granger’s causality) If \sigma^{2}(X(n)|\overline{I}(n))<\sigma^{2}(X(n)|\overline{I}(n)

-\overline{Y}(n)) , it is said that Y(n) causes X(n) in the sense of Granger, denoted
by Y(n)\Rightarrow GCX(n) . Otherwise, we say that Y(n) does not cause X(n) in

the sense of Granger, denoted by Y(n)\Leftrightarrow X(n)GC .

Definition 4.2 (Granger’s instantaneous causality) If \sigma^{2}(X(n)|\overline{I}(n) ,
\overline{\overline{Y}}(n))<\sigma^{2}(X(n)|\overline{I}(n)) , it is said that Y(n) causes X(n) instantaneously
in the sense of Granger.

In the stationary case, \sigma^{2}(X(n)|\overline{I}(n)) , \sigma^{2}(X(n)|\overline{I}(n) -\overline{Y}(n)) , and
\sigma^{2}(X(n)|\overline{I}(n),\overline{\overline{Y}}(n)) are independent of n . Then, we denote simply Y(n)
\Rightarrow X(n)GC by Y\Rightarrow GC X.

Under the assumption that given data are a realization of an AR model,
some tests (e.g. , [7], Sargent [31], Sims [33], etc.) are proposed to test
Granger’s causal relations among them. Now, one of such tests which is
called the Granger-Sargent Test is well known and applied to economic
time series (e.g., [30], [10]) .

The Granger-Sargent Test is as follows: Let Z= ((\begin{array}{l}X(n)Y(n)\end{array}) ; n\in T) be
a bivariate AR(m)-model with mean 0 such that

X(n)= \sum_{i=1}^{m}a_{i}X(n-i)+\sum_{i=1}^{m}b_{i}Y(n-i)+u_{1}(n) (4.1)

Y(n)= \sum_{i=1}^{m}c_{i}Y(n-i)+\sum_{i=1}^{m}d_{i}X(n-i)+u_{2}(n) (4.2)

where m\in N . It is assumed that I_{n}=\{X(n), Y(n)\} , n\in T . To judge
Y\Rightarrow XGC or not, we test the null hypothesis
H_{0} : b_{1}= =b_{m}=0

against an alternative hypothesis
H_{1} : exists j\in\{1, \cdot , m\} such that b_{j}\neq 0 .
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The testing procedure is as follows: Given data Z = ( (\begin{array}{l}\mathcal{X}(n)\mathcal{Y}(n)\end{array}) ; 0\leq

n\leq N) , we estimate the coefficients \{a_{i}, b_{j} ; 1\leq i, j\leq m\} by least square
estimation. Then, the coefficient of determination of (4.1) is defined by

R^{2}= \frac{\sum_{n=m}^{N}(\sum_{i=1}^{m}a_{i}\mathcal{X}(n-i)+\sum_{i=1}^{m}b_{i}\mathcal{Y}(n-i))^{2}}{\sum_{n=m}^{N}\mathcal{X}(n)^{2}} . (4.3)

Secondly, it is assumed that \mathcal{X}=(\mathcal{X}(n);0\leq n\leq N) is a realization of the
following one-dimensional AR(m) model

X(n)= \sum_{i=1}^{m}e_{i}X(n-i)+u_{3}(n) . (4.4)

Using data \mathcal{X} , the coefficients \{e_{i}; 1\leq i\leq m\} are estimated by least square
estimation. The coefficient of determination of (4.4) is given by

R_{1}^{2}= \frac{\sum_{n=m}^{N}(\sum_{i=1}^{m}e_{i}\mathcal{X}(n-i))^{2}}{\sum_{n=m}^{N}\mathcal{X}(n)^{2}} . (4.5)

Now, the test statistic F_{1} is defined by

F_{1}= \frac{(R^{2}-R_{1}^{2})/m}{(1-R^{2})/(N-3m+1)} . (4.6)

At the \alpha significant level,

IfF_{1}>F(m, N-3m+1)_{\alpha} then reject H_{0}

IfF_{1}\leq F(m, N-3m+1)_{\alpha} then accept H_{0}

where F(m, N-3m+1)_{\alpha} is the critical value at the \alpha level of F distribution
with m and N-3m+1 degrees of freedom.

To test X\Rightarrow GCY or not, exchanging of X for Y. we can define F_{2}

similarly to F_{1} .

Remark 4.1 Coefficients of (4.1), (4.2) and (4.4) are conveniently estimated
by the sample covariance matrix function of Z (e.g., Akaike and Nakagawa
[1], [10] ) , alternative to least square estimation.

We apply the Granger-Sargent Test to the quarterly data of {}^{t}(M_{2}+CD ,
RGNP) in two periods from 1965 to 1987 and from 1965 to 1990. In \S 3, the
second order differences in the original data were accepted to be stationary.
It is here assumed that the order m of the AR model is at most \sqrt{(N+1)}/2 .
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Table 4.1 The Granger-Sargent Test for t (M_{2}+CD , RGNP)
from 1965 to 1987.

m N - 3m+1 F_{1} F_{2}

1 87 0.0820 0.029
2 84 4.010* -0.0232
3 81 3.580* 0.204
4 78 2.803* 0.293
5 75 2.157* 0.343
6 72 2.279* 0.381
7 69 3.653* 0.333
8 66 3.271* 0.469
9 63 2.917* 0.747

Table 4.2 The Granger-Sargent Test for t (M_{2}+CD , RGNP)
from 1965 to 1990.

m N - 3m+1 F_{1} F_{2}

1 99 2.870* 0.475
2 96 2.318 0.634
3 93 1.937 0.295
4 90 2.545* 0.688
5 87 1.782 1.520
6 84 1.608 1.209
7 81 1.213 1.091
8 78 0.948 0.996
9 75 0.956 0.969
10 72 0.826 0.898

Table 4.1 and Table 4.2 report the results of the Granger-Sargent Test for
the second order differences in the original data in two periods. Since we
choose the second order differences in the data, N=89 in the Table 4.1 and
N=101 in the Table 4.2 respectively. Here we choose that \alpha=0.10 . The
symbol ”*” indicates the cases in which the F_{1} value or F_{2} value exceeds
the critical value at the 0.10 level. In both periods, there are some cases
where F_{1} exceeds the critical point at the 10 percent level. On the other
hand, there are no cases where the F_{2} exceeds the critical point at the 10
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percent level. Therefore we accept in both periods that

M_{2}+CD\Leftrightarrow GC RGNP, RGNP \Rightarrow M_{2}GC+CD . (4.7)

In \S 6, these results are compared with the results by the Local Causal Test.

5. A local causality and its characterization

We develop, in this section, a causal analysis of local and weakly sta-
tionary processes. Granger’s causal analysis introduced in \S 4 assumes that
given data are a realization of a bivariate AR model. We do not assume
that given data are a realization of a specified process. After accepting
by Test(S) that the data are a realization of a local and weak stationary
process, we proceed to further analysis. In like manner, Okabe [19] defined
a causality in local and weakly stationary processes from the viewpoint of
the prediction and proposed a method how to test it. Okabe and Inoue [25]
developed this analysis further. The definition of causality by [25] is as fol-
lows: Let X=(X(n);n\in T) , Y=(Y(n);n\in T) be d_{1} and d_{2} dimensional
stochastic processes respectively. It is said that Y causes X in the sense of
Okabe-Inoue if for each n\in T there exists a measurable mapping F_{n} from
the infinite-dimensional space (R^{d_{2}})^{N^{*}} to the finite dimensional space R^{d_{1}}

such that X(n)=F_{n}(Y(n), Y(n-1), Y(n-2) , \cdot) .

Under the assumption that Z= ((\begin{array}{l}X(n)Y(n)\end{array}) ; n\in T) is a (d_{1}+d_{2}) -

dimensional weakly stationary process, the necessary and sufficient condi-
tion in which Y causes X in the sense of Okabe-Inoue was investigated and
applied to data analysis in [25]. Moreover, Okabe-Ootsuka [27] and [28]
investigated the non-linear prediction problem.

Now, let us introduce the definition of local causality in local and weakly
stationary processes and investigate its characterization. Let X=(X(n) ;
|n|\leq N) and Y=(Y(n);|n|\leq N) be d_{1} and d_{2}-dimensional local and
weakly stationary processes respectively. Moreover, we assume that Z=
(Z(n);|n|\leq N) ,

Z(n)= (\begin{array}{l}X(n)Y(n)\end{array}) (5.1)

is a (d_{1}+d_{2}) -dimensional local and weakly stationary process.
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We set

X(n)=(\begin{array}{l}X_{1}(n)\vdots X_{d_{1}}(n)\end{array}) , Y(n)= (\begin{array}{l}Y_{1}(n)\vdots Y_{d_{2}}(n)\end{array}) (5.2)

For each n\in\{0, \cdots, N\} , I(n) is an information set at time n , including at
least X_{i}(n) , Y_{j}(n)(1\leq i\leq d_{1},1\leq j\leq d_{2}) . The available set at time n is
defined by

I_{0}^{n}=\{I_{m}; 0\leq m\leq n\} . (5.3)

Let J be an information set and \hat{X}_{J}(n) be the linear prediction X(n) by J .
Then, the prediction error of X(n) by J and its variance are defined :

\epsilon(X(n)|J)=X(n)-\hat{X}_{J}(n) (5.4)

\sigma^{2}(X(n)|J)=||\epsilon(X(n)|J)||^{2} . (5.5)

I_{0}^{n}-X_{0}^{n} denotes all the elements of I_{0}^{n} eliminated X_{i}(m)(0\leq m\leq n ,
1\leq i\leq d_{1}) . Similarly, I_{0}^{n}-Y_{0}^{n} is defined. Here we set I_{0}^{-1}=I_{0}^{-1}-X_{0}^{-1}=

I_{0}^{-1}-Y_{0}^{-1}=\phi . Local causality between X and Y is defined as follows:

Definition 5.1 (local causality) If there exits n\in\{0, \cdot , N\} such that

\sigma(X(n)|I_{0}^{n-1})<\sigma(X(n)|I_{0}^{n-1}-Y_{0}^{n-1}) , (5.6)

we say that Y causes X locally, denoted by Y\Rightarrow LC X. Otherwise, we say

that Y does not cause X locally, denoted by Y\Leftrightarrow LC X.

Definition 5.2 (instantaneous local causality) If there exits n\in\{0 , \cdots ,
N\} such that

\sigma(X(n)|I_{0}^{n-1}, Y(n))<\sigma(X(n)|I_{0}^{n-1}) , (5.7)

we say that instantaneous local causality of Y to X occurs, denoted by
Y\Rightarrow ILC X. Otherwise, we say that instantaneous local causality of Y to X

does not occur, denoted by Y\Leftrightarrow ILC X.

Here, we discuss only the case when I_{n}=\{X_{i}(n) , Y_{j}(n);1\leq i\leq d_{1} ,
1\leq j\leq d_{2}\}(0\leq n\leq N) . Hence, it follows that I_{0}^{n-1}-Y_{0}^{n-1}=\{X_{i}(m) ;
1\leq i\leq d_{1},0\leq m\leq n-1\} (0\leq n\leq N) .



196 Y. Nakano

Let n\in\{0, \cdots, N\} . We get the following KM_{2O}-Langevin equations:

X(n)=P_{M_{0}^{n-1}(X)}X(n)+\nu_{+X}(n) (5.8)

Z(n)=P_{M_{0}^{n-1}(Z)}Z(n)+\nu_{+Z}(n) . (5.9)

Here

\nu_{+Z}(n)= (\begin{array}{l}\nu_{+Z,X}(n)\nu_{+Z,Y}(n)\end{array}) (5.10)

is defined by

\nu_{+Z,X}(n)=X(n)-P_{M_{0}^{n-1}(Z)}X(n) (5.11)

\nu_{+Z,Y}(n)=Y(n)-P_{M_{0}^{n-1}(Z)}Y(n) . (5.12)

The following Lemma 5.1 is clear.

Lemma 5.1

\epsilon(X(n)|I_{0}^{n-1}-Y_{0}^{n-1})=\nu_{+X}(n) (5.13)

\epsilon(X(n)|I_{0}^{n-1})=\nu_{+Z,X}(n) . (5.14)

Now, we have

Lemma 5.2 Y\Leftrightarrow XLC if and only if
\nu_{+X}(n)=\nu_{+Z,X}(n) (0\leq n\leq N) . (5.15)

Proof We assume that Y\Leftrightarrow LC X. Then,

||\nu_{+X}(n)-\nu_{+Z,X}(n)||^{2}

=\langle\nu+x(n)-\nu+z,x(n), \nu+x(n)-\nu+z,x(n)\rangle

=\langle\nu+x(n), \nu+x(n)\rangle+\langle\nu+z,x(n), \nu+z,x(n)\rangle

-2\langle\nu_{+Z,X}(n), \nu_{+X}(n)\rangle . (5.16)

From (5. 13) and (5. 14),

||\nu_{+X}(n)||^{2}=||\nu_{+Z,X}(n)||^{2} (5.17)
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Since \nu_{+X}(n)-\nu_{+Z,X}(n)\in M_{0}^{n-1}(Z) ,

\langle\nu_{+}z,x(n), \nu_{+X}(n)-\iota/+Z,X(n)\rangle=0 . (5.18)

Hence

||\nu_{+X}(n)-\nu_{+Z,X}(n)||^{2}=2||\nu_{+Z,X}(n)||^{2}

-2 \langle\nu+z,x (n) \nu+x(n)-\nu+z,x(n)+\nu+z,x(n)\rangle

=2||\nu_{+}z,x(n)||^{2}-2||\nu_{+Z,X}(n)||^{2}

=0. (5.19)

Therefore, we get \nu_{+X}(n)=\nu_{+Z,X}(n) . It is clear to prove the sufficient
condition. \square

Let us consider how to characterize (5.15). For n\in\{0, \cdots, N\} , we set

V_{+X}(n)=E\nu_{+X}(n)^{t}\nu_{+X}(n) (5.20)

V_{+}z,x(n)=E_{l}/+z,x(n)^{t}\nu+z,x(n) (5.20)

V_{+Z}(n)=ElJ+z(n)^{t}\nu_{+Z}(n) . (5.22)

V_{+X}(n) , V_{+Z,X}(n) and V_{+Z}(n) are covariance matrices of \nu_{+X}(n) , \nu_{+Z,X}(n)

and \nu_{+Z}(n) respectively. Furthermore, let W_{+X}(n) , W_{+Z,X}(n) and W_{+Z}(n)

be lower triangular matrices such that

V_{+X}(n)=W_{+X}(n)^{t}W_{+X}(n) (5.23)

V_{+}z,x(n)=W+z,x(n)^{t}W+z,x(n) (5.20)

V_{+Z}(n)=W_{+Z}(n)^{t}W_{+Z}(n) . (5.25)

Then we get the following Theorem 5.1.

Theorem 5.1 The necessary and suffiffifficient condition of Y\Leftrightarrow XLC is that
either of the following (L-1), (L-2) or (L-3) holds. Here, (I)_{d} denotes the
d-dimensional identity matrix.

(L-1) W_{+Z,X}(n)^{-1}\nu_{+X}(n) , 0\leq n\leq N is a d_{1} -dimensional white noise
with mean 0 and covariance matrix (I)_{d_{1}} .

(L-2) W_{+X}(n)^{-1}\nu_{+Z,X}(n) , 0\leq n\leq N is a d_{1} -dimensional white noise
with mean 0 and covariance matrix (I)_{d_{1}} .
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(L-3) W_{+Z}(n)^{-1} (\begin{array}{l}\nu_{+X}(n)\nu_{+Z,Y}(n)\end{array}) , 0\leq n\leq N is a(d_{1}+d_{2}) -dimensional

white noise with mean 0 and covariance matrix (I)_{(d_{1}+d_{2})} .

Proof. We prove that (L-3) is equivalent to Y\Leftrightarrow LC X. We assume that
(L-3) holds. Then, we obtain

W_{+Z}(n)^{-1}E (\begin{array}{l}\nu_{+X}(n)\nu_{+Z,Y}(n)\end{array})t (\begin{array}{l}\nu_{+X}(n)\nu_{+Z,Y}(n)\end{array})tW_{+Z}(n)^{-1}

=(I)_{(d_{1}+d_{2})} . (5.26)

Therefore

E (\begin{array}{ll}\nu_{+X}(n)^{t}\nu_{+X}(n) \nu_{+X}(n)^{t}\nu_{+Z,Y}(n)\nu_{+Z,Y}(n)^{t}\nu_{+X}(n) \nu_{+Z,Y}(n)^{t}\nu_{+Z,Y}(n)\end{array})

= E (\begin{array}{ll}\iota/+z,x(n)^{t}\nu_{+Z,X}(n) \nu_{+Z,X}(n)^{t}\nu_{+Z,Y}(n)\nu_{+Z,Y}(n)^{t}\nu_{+Z,X}(n) \nu_{+Z,Y}(n)^{t}\nu_{+Z,Y}(n)\end{array}) (5.27)

From the special case of (5.27),

E\nu_{+X}(n)^{t}\nu_{+X}(n)=E\nu_{+}z,x(n)^{t}\nu_{+Z,X}(n) . (5.28)

Setting

\nu_{+X}(n)=(\begin{array}{l}\nu_{+X,1}(n)..\nu_{+X,d_{1}}(n)\end{array})- \nu_{+Z,X}(n)=(\begin{array}{l}\nu_{+Z,X,1}(n)\vdots\nu_{+Z,X,d_{1}}(n)\end{array}) , (5.29)

we have E\nu_{+X,i}(n)^{2}=E\nu_{+Z,X,i}(n)^{2}(1\leq i\leq d_{1}) . As shown in Lemma 5.2,
we get \nu_{+X,i}(n)=\nu_{+Z,X,i}(n)(1\leq i\leq d_{1}) . The proof of the converse is
clear. \square

Sims [33] introduced a distributed lag model as a model of Granger’s
causal relation between AR models. Here we get the following Theorem 5.2

which shows the structure of Y\Leftrightarrow LC X.

Theorem 5.2 The necessary and suffiffifficient condition of Y\Leftrightarrow LCX is as
follows: there exist the unique matrices \{A(n, k)\in M(d_{2}\cross d_{1} ; R) , 0\leq k\leq

n\leq N\} , and appropriate matrices \{B(n, k)\in M(d_{2}\cross d_{2}; R) , 0\leq k\leq n\leq



On a causal analysis of economic time series 199

N\} , such that for any n\in\{0, \cdot\cdot, N\} , Y(n) is expressed as

Y(n)= \sum_{k=0}^{n}A(n, k)X(k)’+\sum_{k=0}^{n}B(n, k)\nu^{\star}(k) . (5.30)

Here,

B(n, n)\in GL(d_{2;}R) (5.31)

(5.32) (\nu^{\star}(n);0\leq n\leq N) is orthogonal to M_{0}^{N}(X) , and is

a d_{2} -dimensional white noise with mean 0 and
covariance matrix (I)_{d_{2}}

(5.33) \nu^{\star}(n) is orthogonal to M_{0}^{n-1}(Y) , for n=1 , \cdot , n-1 .

Proof. We assume Y\Leftrightarrow LC X. For n\in\{o ,\cdots,_{N\}} , let W_{+Z}(n) be a lower
triangular matrix defined by (5.25). We set

\nu^{*}(n)=W_{+Z}(n)^{-1}\nu_{+Z}(n)

=W_{+Z}(n)^{-1} (\begin{array}{l}\nu_{+Z,X}(n)\nu_{+Z,Y}(n)\end{array})= (\begin{array}{l}\nu_{1}^{*}(n)\nu_{2}^{*}(n)\end{array}) (5.34)

Let d=d_{1}+d_{2} . Then, \nu^{*}(n) , 0\leq n\leq N is a d-dimensional white noise with
mean 0 and covariance matrix (I)_{d} . We define KM_{2O}-Langevin equations
of X and Z as follows:

X(n)=- \sum_{k=0}^{n-1}\gamma_{+X}(n, k)X(k)+\nu_{+X}(n) (5.36)

(\begin{array}{l}X(n)Y(n)\end{array}) =- \sum_{k=0}^{n-1}\gamma_{+Z}(n, k) (\begin{array}{l}X(k)Y(k)\end{array})

+ (\begin{array}{l}\nu_{+Z,X}(n)\nu_{+Z,Y}(n)\end{array}) (5.36)

Multiplying W_{+Z}(n)^{-1} from the left-hand side of (5.36), we get

W_{+Z}(n)^{-1} (\begin{array}{l}X(n)Y(n)\end{array})=-\sum_{k=0}^{n-1}W_{+Z}(n)^{-1}

\cross\gamma_{+Z}(n, k) (\begin{array}{l}X(k)Y(k)\end{array}) + (\begin{array}{l}\nu_{1}^{*}(n)\nu_{2}^{*}(n)\end{array}) (5.37)
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We set a lower triangular matrix W_{+Z}(n) by

W_{+Z}(n)=(\begin{array}{ll}B_{11}(n) 0B_{21}(n) B_{22}(n)\end{array}) . (5.38)

where B_{ij}(n)\in M ( d_{i}\cross d_{j} ; R) (i, j=1,2) , B_{12}(n)=0 , and B_{ii}(n)\in

GL(d_{i;}R)(i=1,2) . W_{+Z}(n)^{-1} is also a lower triangular matrix defined by

W_{+Z}(n)^{-1}=(\begin{array}{ll}C_{11}(n) 0C_{21}(n) C_{22}(n)\end{array}) . (5.39)

where C_{ij}(n)\in M ( d_{i}\cross d_{j} ; R) (i, j=1,2) , C_{12}(n)=0 , and C_{ii}(n)\in

GL(d_{i;}R)(i=1,2) . Moreover, we set

W_{+Z}(n)^{-1}\gamma_{+Z}(n, k)= (\begin{array}{ll}\Gamma_{11}(n,k) \Gamma_{12}(n,k)\Gamma_{21}(n,k) \Gamma_{22}(n,k)\end{array}) (5.40)

Then, (5.37) leads to

C_{21}(n)X(n)+C_{22}(n)Y(n)

=- \sum_{k=0}^{n-1}\Gamma_{21}(n, k)X(k)-\sum_{k=0}^{n-1}\Gamma_{22}(n, k)Y(k)+\nu_{2}^{*}(n) . (5.41)

Since C_{22}(n)\in GL(d_{2;}R) ,

Y(n)=-C_{22}(n)^{-1}C_{21}(n)X(n)

- \sum_{k=0}^{n-1}C_{22}(n)^{-1}\Gamma_{21}(n, k)X(k)-\sum_{k=0}^{n-1}C_{22}(n)^{-1}\Gamma_{22}(n, k)Y(k)

+C_{22}(n)^{-1}\nu_{2}^{*}(n) . (5.42)

Any component of \nu_{2}^{*}(n) is a linear combination of components of \nu_{+Z}(n) .
Therefore,

EX(k)^{t}\nu_{2}^{*}(n)=0 (0\leq k\leq n-1) . (5.43)

Moreover, any component of \nu_{+Z,X}(n) is expressed as a linear combination
of components of \nu_{1}^{*}(n) . This shows

E_{l}\nearrow+z,x(n)^{t}\nu_{2}^{*}(n)=0 . (5.44)

From the definition of M_{0}^{n-1}(Z) , E\{P_{M_{0}^{n-1}(Z)}X(n)\}^{t}\nu_{2}^{*}(n)=0 .
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The KM_{2O}-Langevin equation shows

X(n)=P_{M_{0}^{n-1}(Z)}X(n)+\nu_{+}z,x(n) . (5.45)

Hence, we get

EX(n)^{t}\nu_{2}^{*}(n)=0 . (5.46)

Similarly to (5.45),

X(n+1)=P_{M_{0}^{n}(X)}X(n+1)+\nu_{+X}(n+1) . (5.47)

We have \nu_{+X}(n+1) = \nu_{+Z,X}(n+1) from the assumption. Hence
E\nu_{+X}(n+1)^{t}\nu_{2}^{*}(n)=0 . Therefore we have

EX(n+1)^{t}\nu_{2}^{*}(n)=0 . (5.48)

Inductively, we get

EX(k)^{t}\nu_{2}^{*}(n)=0 (0\leq k\leq N) . (5.49)

Substituting Y(k) , 0\leq k\leq n-1 in (5.41) inductively, we have the expres-
sion of (5.30).

Let us show that \{A(n, k), 0\leq k\leq n\leq N\} is unique. If Y(n) has
another expression form such as

Y(n)= \sum_{k=0}^{n}\overline{A}(n, k)X(k)+\sum_{k=0}^{n}\overline{B}(n, k)\eta^{\star}(k) , (5.50)

we multiply {}^{t}X(m)(0\leq m\leq n) to (5.30) and (5.50) from the right-hand
side. Taking their expectations, we get

\sum_{k=0}^{n}A(n, k)R(k-m)=\sum_{k=0}^{n}\overline{A}(n, k)R(k-m) . (5.41)

The Toeplitz condition of \S 2 suggests

A(n, k)=\overline{A}(n, k) (0\leq k\leq n) . (5.52)

Let us prove the converse. We set

\gamma_{+Z}(n, k)=(\begin{array}{ll}\gamma_{11}(n,k) \gamma_{12}(n,k)\gamma_{21}(n,k) \gamma_{22}(n,k)\end{array}) (0\leq k<n\leq N) , (5.53)
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where \gamma_{ij}(n, k)\in M ( d_{i}\cross d_{j} ; R) (i, j=1,2) . From (5.36), we have

X(n)=- \sum_{k=0}^{n-1}\gamma_{11}(n, k)X(k)

- \sum_{k=0}^{n-1}\gamma_{12}(n, k)Y(k)+\nu_{+Z,X}(n) . (5.54)

We substitute Y(k) , 0\leq k\leq n-1 of (5.30) in (5.54). Then there exist
appropriate matrices C(n, k)\in M(d_{1;}R) and D(n, k)\in M ( d_{1} ; R) such that
X(n) is expressed as

X(n)=- \sum_{k=0}^{n-1}C(n, k)X(k)

- \sum_{k=0}^{n-1}D(n, k)\nu^{\star}(k)+\nu_{+Z,X}(n) . (5.55)

Since B(k, k)\in GL(d_{2;}R) , any components of \nu^{\star}(k) belong to M_{0}^{k}(Z) .
Hence

E_{l}/_{\dagger}z,x(n)^{t}\nu^{\star}(k)=0 (0\leq k\leq n-1) . (5.56)

The assumption leads to

EX(l)^{t}\nu^{\star}(k)=0 (0\leq l\leq N) . (5.57)

Multiplying {}^{t}\nu^{\star}(k)(0\leq k\leq n-1) to the right-hand side of (5.55) and
taking its expectation, we get

D(n, k)=0 (0\leq k\leq n-1) . (5.58)

Hence, we have

\nu_{+Z,X}(n)=\nu_{+X}(n) . (5.59)

This shows Y\Leftrightarrow LC X. \square

Remark 5.7 In (5.30) and (5.51), the following holds.

B(n, k)\nu^{\star}(k)=\overline{B}(n, k)\eta^{\star}(k) , 0\leq k\leq n\leq N (5.60)

B(n, k)^{t}B(n, k)=\overline{B}(n, k)^{t}\overline{B}(n, k) , 0\leq k\leq n\leq N . (5.61)
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We can show (5.60) as follows: Since \sum_{k=0}^{n}B(n, k)\nu^{\star}(k)

= \sum_{k=0}^{n}\overline{B}(n, k)\eta^{\star}(k) ,

\sum_{k=0}^{n-1}B(n, k)\nu^{\star}(k)-\sum_{k=0}^{n-1}\overline{B}(n, k)\eta^{\star}(k)

=B(n, n)\nu^{\star}(n)-\overline{B}(n, n)\eta^{\star}(n) . (5.62)

Components of the left-hand side of the above equation belong to M_{0}^{n-1}(Z) .
On the other hand, B(n, n)\nu^{\star}(n)-\overline{B}(n, n)\eta^{\star}(n) is orthogonal to M_{0}^{n-1}(Z) .
Hence we get (5.60). It is easy to get (5.61) from (5.60).

Similarly to (5.35), we get that

Y(n)=- \sum_{k=0}^{n-1}\gamma+Y(n, k)Y(k)+\nu_{+Y}(n) . (5.63)

Example 5.1 Let d_{1}=d_{2}=1 and Y(n)=aX(n)+w(n)(a\neq 0) . Here
w(n) , 0\leq n\leq N is a white noise with variance \sigma^{2} , and independent of
X(k) , 0\leq n\leq N . Let the covariance function of X be \{R(n);|n|\leq N\}

such that R(1)\neq 0 . From Theorem 5.2, Y\Leftrightarrow LC X. We get that \nu_{+Z,Y}(1)=

Y(1)-aR(1)X(O)/R(0) and \nu_{+Y}(1)=Y(1)-a^{2}R(1)Y(0)/(a^{2}R(0)+\sigma^{2}) .

Therefore, we have \nu_{+Z,Y}(1)\not\equiv\nu_{+Y}(1) . This leads to X\Rightarrow YLC

Theorem 5.3 The necessary and suffiffifficient condition of Y\Leftrightarrow LCX and
X\Leftrightarrow YLC is

E\nu_{+X}(n)^{t}\nu_{+Y}(m)=0 n\neq m , n , m\in\{0, \cdot , N\} . (5.64)

Proof If Y\Leftrightarrow LCX and X\Leftrightarrow LC Y. \nu_{+X}(n)=\nu_{+Z,X}(n) , \nu_{+Y}(n)=
\nu_{+Z,Y}(n) , for each n\in\{0, \cdot\cdot, N\} . Hence, (5.64) holds.

We show the converse. For each m\in\{0, \cdots, N\} , Y(m) is a linear
combination of \nu_{+Y}(0) , \cdot\cdot , \nu_{+Y}(m) . Therefore we have

E\nu_{+X}(n)^{t}Y(m)=0 (0\leq m\leq n-1) . (5.65)

It is clear that E\nu_{+Z,X}(n)^{t}Y(m)=0(0\leq m\leq n-1) . On the other hand,
\nu_{+X}(n)-\nu_{+Z,X}(n) is a linear combination of X (0) , \cdot\cdot , X(n-1) , Y(0) ,
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., Y(n-1) . Hence, we get ||\nu_{+X}(n)-\nu_{+Z,X}(n)||^{2}=0 . This shows that
\nu_{+X}(n)-\nu_{+Z,X}(n)=0 . Similarly, we have \nu_{+Y}(n)-\nu_{+Z,Y}(n)=0 . \square

It is easy to get the following Corollary 5.1.

Corollary 5.1 If EX(0)^{t}Y(0)=0 , the necessary and suffiffifficient condition

of Y\Leftrightarrow XLC and X\Leftrightarrow YLC is

EX(n)^{t}Y(m)=0 n , m\in\{0, \cdots, N\} . (5.66)

Corollary 5.1 shows that the conception of causality is more universal
than the conception of correlation.

Let us now consider the instantaneous local causality.

Theorem 5.4 The necessary and suffiffifficient condition that instantaneous
local causality of X to Y does not occur is

C_{21}(n)=0 (0\leq n\leq N) . (5.67)

where C_{21}(n) is defined by (5.39).

Proof (5.36) and (5.41) show that the necessary and sufficient condition
ILC

of X\neq\Rightarrow Y is

||\nu_{+Z,Y}(n)||^{2}=||C_{22}(n)^{-1}\nu_{2}^{*}(n)||^{2} (0\leq n\leq N) . (5.68)

From (5.37), we get

(\begin{array}{l}\nu_{1}^{*}(n)\nu_{2}^{*}(n)\end{array}) = (\begin{array}{ll}C_{11}(n) 0C_{21}(n) C_{22}(n)\end{array})(\begin{array}{l}\nu_{+Z,X}(n)\nu_{+Z,Y}(n)\end{array})

= (\begin{array}{l}C_{11}(n)\nu_{+Z,X}(n)C_{21}(n)\nu_{+Z,X}(n)+C_{22}(n)\nu_{+Z,Y}(n)\end{array}) (5.69)

Hence

||C_{22}(n)^{-1}\nu_{2}^{*}(n)||^{2}

=||C_{22}(n)^{-1}C_{21}(n)\nu_{+Z,X}(n)+\nu_{+Z,Y}(n)||^{2}

=||C_{22}(n)^{-1}C_{21}(n)\nu_{+Z,X}(n)||^{2}+||\nu_{+Z,Y}(n)||^{2}

+2E^{t}(C_{22}(n)^{-1}C_{21}(n)\nu_{+Z,X}(n))\nu_{+Z,Y}(n) . (5.70)
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Since C_{11}(n)\in GL(d_{1} ; R) , we obtain from (5.69)

E\nu_{+Z,X}(n)^{t}(C_{21}(n)\nu_{+Z,X}(n)+C_{22}(n)\nu_{+Z,Y}(n))=0 . (5.71)

We shall indicate by trA the trace of a matrix A . Now, we have from (5.71)

E^{t}(C_{22}(n)^{-1}C_{21}(n)\nu_{+Z,X}(n))\nu_{+Z,Y}(n)

=trE_{l\nearrow+Z,Y}(n)^{t}(C_{22}(n)^{-1}C_{21}(n)\iota/+z,x(n))

=trEC_{22}(n)^{-1}(C_{22}(n)\nu_{+Z,Y}(n)+C_{21}(n)\nu_{+Z,X}(n)

-C_{21}(n)\nu_{+Z,X}(n))\cross{}^{t}(C_{22}(n)^{-1}C_{21}(n)\nu_{+Z,X}(n))

=-trE(C_{22}(n)^{-1}C_{21}(n)\nu_{+Z,X}(n))^{t}(C_{22}(n)^{-1}C_{21}(n)\nu_{+Z,X}(n))

=-E^{t}(C_{22}(n)^{-1}C_{21}(n)\nu_{+Z,X}(n))(C_{22}(n)^{-1}C_{21}(n)\nu_{+Z,X}(n))

=-||C_{22}(n)^{-1}C_{21}(n)\nu_{+Z,X}(n)||^{2} . (5.72)

Hence,we get

||C_{22}(n)^{-1}\nu_{2}^{*}(n)||^{2}=||\nu_{+Z,Y}(n)||^{2}

-||C_{22}(n)^{-1}C_{21}(n)\nu_{+Z,X}(n)||^{2} . (5.73)

This shows that the necessary and sufficient condition of X\Leftrightarrow YILC is

||C_{22}(n)^{-1}C_{21}(n)\nu_{+Z,X}(n)||^{2}=0 . (5.74)

Therefore, we have

C_{22}(n)^{-1}C_{21}(n)\nu_{+Z,X}(n)=0 . (5.71)

This leads to

C_{22}(n)^{-1}C_{21}(n)V_{+Z,X}(n)=0 . (5.76)

Since C_{22}(n)\in GL(d_{2;}R) , and V_{+Z,X}(n)\in GL(d_{1;}R) , we have C_{21}(n)=0 .
\square

For n\in\{0, \cdot , N\} and i , j\in\{1, \cdots, d\} , let V_{+Z,ij}(n) be the (i, j)
component of covariance matrix V_{+Z}(n) . Then we obtain:

Corollary 5.2 The necessary and suffiffifficient condition that instantaneous
local causality of X to Y does not occur is

V_{+Z,ij}(n)=0

(d_{1}+1\leq i\leq d_{1}+d_{2},1\leq j\leq d_{1},0\leq n\leq N) . (5.77)
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Proof. The necessary and sufficient condition that (5.67) holds is

B_{21}(n)=0 (0\leq n\leq N) . (5.78)

It is clear that (5.78) is equivalent to (5.77). \square

It is easy to get the following Corollary 5.3.

Corollary 5.3 The necessary and suffiffifficient condition that instantaneous
local causality of X to Y does not occur is

E\nu_{+Z,Y}(n)^{t}\nu_{+Z,X}(n)=0 (0\leq n\leq N) . (5.79)

Corollary 5.3 shows that Y\Leftrightarrow XILC and X\Leftrightarrow YILC are equivalent to each
other.

Now we characterize X\Leftrightarrow YILC

Theorem 5.5 The necessary and suffiffifficient condition that instantaneous
local causality of X to Y does not occur is that

(\begin{array}{ll}C_{11}(n) 00 C_{22}(n)\end{array}) \nu_{+Z}(n) , 0\leq n\leq N (5.80)

is a white noise with mean 0 and covariance matrix (I)_{d} .

Proof. The necessity is clear from Corollary 5.2. We show the sufficiency.
We set

C(n)= (\begin{array}{ll}C_{11}(n) 00 C_{22}(n)\end{array}) (5.81)

Since

V_{+Z}(n)=C(n)^{-1}\cross {}^{t}C(n)^{-1} , (5.82)

we obtain (5.77). \square

6. Data analysis of local causality

We introduce the Local Causal Test for the analysis of local causality
and the Instantaneous Local Causal Test for the analysis of instantaneous
local causality. These tests are applied to the data of t (M_{2}+CD , RGNP).

Let \mathcal{X}=(\mathcal{X}(n);0\leq n\leq N) be d_{1} -dimensional data, and \mathcal{Y}=(\mathcal{Y}(n) ;
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0\leq n\leq N)d_{2}-dimensional data. Set d=d_{1}+d_{2} . We construct the d-

dimensional data Z = ((\begin{array}{l}\mathcal{X}(n)\mathcal{Y}(n)\end{array}) ; 0\leq n\leq N) . Following \S 3, we construct

the sample KM_{2O}-Langevin equations and other related quantities. These
quantities are represented by replacing X with \mathcal{X} , Y with \mathcal{Y} , and Z with
Z respectively in the variables defined in \S 5. At first we apply Test(S) to
data Z . If Test(S) for Z is accepted, we proceed to test whether Y\Rightarrow LCX

or not.
Let M be defined by (3.19). For each i\in\{0, \cdots, N-M\} , we introduce

the shifted data Z_{i} , \mathcal{X}_{i} and \mathcal{Y}_{i} similarly to (3.20). Then we get the sample

KM_{2O}-Langevin fluctuation force (\begin{array}{l}\nu_{+i,\mathcal{Z},\mathcal{X}}(n)\nu_{+i,Z,\mathcal{Y}}(n)\end{array}) (0\leq n\leq M) of Z_{i} , the

sample KM_{2O}-Langevin fluctuation force \nu_{+i,\mathcal{X}}(n)(0\leq n\leq M) of \mathcal{X}_{i} ,
the sample KM_{2O}-Langevin fluctuation force \nu_{+i,\mathcal{Y}}(n)(0\leq n\leq M) of \mathcal{Y}_{i}

respectively. In Test(S) for Z , by replacing the component \nu_{+i,Z,\mathcal{X}}(n) of

(\begin{array}{l}\nu_{+i,\mathcal{Z},\mathcal{X}}(n)\nu_{+i,Z,\mathcal{Y}}(n)\end{array}) by \nu_{+i,\mathcal{X}}(n) for all n\in\{0 ,\cdot,^{M\}} , we get

W_{+Z}(n)^{-1} (\begin{array}{l}\iota\nearrow+i,\mathcal{X}(n)\nu_{+i,Z},y(n)\end{array}) , 0\leq n\leq M . (6.1)_{i}

Test(S) for the one-dimensional data constructed from (6.1)_{i} is called the
LC_{1} Test. If the LC_{1} Test is accepted (resp. not accepted), we can find

from (L-3) of Theorem 5.1 that Y\Leftrightarrow XLC (or Y\Rightarrow XLC). Similarly, Test(S)
for the one-dimensional data constructed from

W_{+Z}(n)^{-1} (\begin{array}{l}\nu_{+i,Z,\mathcal{X}}(n)\nu_{+i},y(n)\end{array}) . 0\leq n\leq M (6.2)_{i}

is called the LC_{2} Test. If the LC_{2} Test is accepted (or not accepted),
X\Leftrightarrow LCY (or X\Rightarrow LCY ). The Local Causal Test (LC Test) is the general
term for the LC_{1} Test and the LC_{2} Test.

Similarly to \S 4, we apply these tests to the second order differences in
the quarterly data of t (M_{2}+CD , RGNP) in two periods from 1965 to 1987
and from 1965 to 1990.

” S” (or ‘(NS” ) indicates that the LC Test is accepted (or not accepted).
Table 6.1 and Table 6.2 report that RGNP locally causes Money Supply in
both periods and Money Supply locally causes RGNP in the period from
1965 to 1987. Now, it is an established theory that Money Supply and
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Table 6.1 The LC Test for t (M_{2}+CD , RGNP) from 1965 to 1987.

Table 6.2 The LC Test for t (M_{2}+CD , RGNP) from 1965 to 1990.

RGNP are mutually related. On the other hand, we can not accept that
Money Supply locally causes RGNP in the period from 1965 to 1990. We
can explain these phenomena as follows: During the three years from 1987
to 1989, Japan went through a s0-called bubble economy. The anomalous
increase in the Money Supply is an example of this phenomenon. However
this increase was nominal and failed substantially to boost RGNP.

Figure 6.1 and Figure 6.2 illustrate the local causal relations between
Money Supply and RGNP.

Let us now compare the LC Test with the Granger-Sargent Test. (4.7)
shows that the Granger-Sargent Test could not accept M_{2}+CD\Rightarrow GC RGNP
in the period from 1965 to 1987. On the other hand, the LC Test accepts
that M_{2}+CD\Rightarrow LC RGNP in the same period. As can be seen from the
data analysis above, we can assert the efficiency of the LC Test.

Secondly, we consider how to test X\Leftrightarrow YILC We set

W_{+Z}(n)^{-1}=(\begin{array}{ll}C_{11}(n) 0C_{12}(n) C_{22}(n)\end{array}) . 0\leq n\leq M . (6.3)

Let i\in\{0, \cdot\cdot, N-M\} . Similarly to the LC Test, Test(S) for the one-

Figure 6.1 Local causality
from 1965 to 1987.

Figure 6.2 Local causality
from 1965 to 1990.
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Table 6.3 The ILC Test for t (M_{2}+CD , RGNP).

Figure 6.3 Instantaneous local Figure 6.4 Instantaneous local
causality from 1965 to 1987. causality from 1965 to 1990.

dimensional data constructed from

(\begin{array}{ll}C_{11}(n) 00 C_{22}(n)\end{array})(\begin{array}{l}\nu_{+i,Z,\mathcal{X}}(n)\nu_{+i,Z,y}(n)\end{array}) , 0\leq n\leq M (6.4)

is called the Instantaneous Local Causal Test (ILC Test). If the ILC Test

is accepted (or not accepted), we can find from Theorem 5.5 that X\Leftrightarrow YILC

(or X=4ILY). Applications of the ILC Test to the second differences of
quarterly data of t (M_{2}+CD , RGNP) are shown in Table 6.3, Figure 6.3
and Figure 6.4.

Similarly to Table 6.1 and Table 6.2, ” S” (or ” NS” ) indicates that the
test is accepted (or not accepted). These results are illustrated in Figure
6.3 and Figure 6.4.
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Appendix

Table A Quarterly data of Japan Money Supply M_{2}+CD from 1965 to 1990,
(unit: one billion yen,
source: Databank, Toyokeizai Company, 1976, 1991).

Year I II III IV
1965 21678 22398 23376 25394
1966 25687 26354 27501 29522
1967 29731 30528 31660 34097
1968 34169 35482 36301 39153
1969 39435 41346 42817 46399
1970 46612 48810 50285 54237
1971 55002 58845 61908 67398
1972 68224 72260 75533 84040
1973 85346 90134 92831 98188
1974 98235 102159 102908 109494
1975 109374 113823 116458 125330
1976 126234 132192 134881 142248
1977 142350 147143 148910 158033
1978 157331 165076 167461 178720
1979 177587 184497 187794 195012
1980 194734 200250 199238 208985
1981 208097 217791 219200 232041
1982 230485 238028 240229 250466
1983 247926 255752 257236 268692
1984 267172 274751 279321 289714
1985 291609 299756 298904 314938
1986 313893 323076 323060 343887
1987 341860 355366 358173 380867
1988 380995 394455 398179 419732
1989 419615 433606 438292 470020
1990 472477 488055 495901 504972
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Table B Quarterly data of RGNP from 1965 to 1990,
(unit: one billion yen, source: Databank, Toyokeizai Company, 1991).

Year I II III IV
1965 98209.69 99735.81 101896.29 103098.64
1966 106076.01 110631.11 113185.28 115268.23
1967 118371.29 121498.60 125714.28 128152.62
1968 131073.26 135839.40 138949.09 147732.80
1969 148577.10 152773.07 156197.76 162995.67
1970 167713.04 169192.18 174021.33 173813.68
1971 174559.62 177414.66 180425.90 182278.55
1972 187336.36 191269.92 195155.95 200124.06
1973 206472.57 208376.62 208501.38 210108.22
1974 204711.41 206395.56 208692.68 207357.88
1975 207093.75 212430.81 214653.93 217128.78
1976 218960.03 220760.27 223468.66 224092.79
1977 229443.96 231294.76 232687.24 236124.81
1978 239969.33 241920.21 245332.34 248396.84
1979 252587.19 256803.72 259272.22 261244.60
1980 264987.60 264164.02 266706.46 269937.72
1981 273731.49 273943.75 276643.88 277837.72
1982 280889.91 284347.12 285907.10 288785.51
1983 289804.67 290870.27 295221.30 296067.13
1984 301134.08 305081.63 306776.56 309458.94
1985 314832.56 320582.12 322546.73 327069.65
1986 324254.63 329177.45 330809.87 335300.05
1987 337484.68 339459.30 345743.11 353281.28
1988 359179.54 361860.14 368643.16 373095.36
1989 376977.24 376976.68 386060.58 391148.04
1990 397447.82 402877.40 407432.80 409539.20
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