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0. Introduction

This paper is concerned with semilinear wave equations of the form

Utt— Urr— ur = F(u, us, uy) in R 0.1
where u=u(r, t) is a real-valued function and »=2m+3 with » a non-
negative integer. For a large class of the nonlinear term F we will show
that “small” solutions of (0.1) exist and are asymptotic to the solutions
of the linear wave eqaution

n—1

Ut — Urr — ur =0 1n RZ, (O. 2)
namely, there exist solutions u-, u+ of (0.2) and u(¢#)—u+(¢)—0 as t—
* oo in the sense of the energy norm.

As is well known, the equation (0. 1) is the radially symmetric version
of a special case of

uw—Adu = Fo(u, Du, DDu) in R"XR, (0. 3)

where D=(Dx, D:), Dx=(08/0x., ..., 0/0x.) and D.,=0d/3¢t. The existence
of global small solutions of the Cauchy problem for (0.3) has been shown
by Christodoulou , Li Ta-tsien and Chen Yun-mei , and Li Ta-
tsien and Yu Xin [12], provided the nonlinear term Fp and the initial data
prescribed on £=0 are “nice”. Moreover the asymptotic behaviors as t—
+co for solutions of (0.3), which guarantee the existence of the scattering
operator, have been researched by Strauss [19], Mochizuki and Motai
[13], [14], Pecher [15], Tsutaya and Kubota and Mochizuki in
the case where Fy is independent of Dwu, DxDu, i.e., Fo=F\(u), and by
Klainerman [7], Shatah and Klainerman and Ponce in the case
where Fu does not explicitly depend on u, 7. e., Fo=Fy(Du, DxDu).

In the present paper we study the asymptotic behaviors of radial solu-
tions to (0.3), which guarantee the existence of the scattering opeartor, in
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the case where Fy is independent of DxDu, i.e., Fo=F:(u, Du).

Although in this paper we restrict ourselves to the case of odd space
dimensions, one can similarly deal with the case of even space dimensions.
The details will be published elsewhere.

1. Statements of main results
First consider the Cauchy problem for the linear wave equation (0. 2):

n—1 .
Ut — Urr — ” ur=0 1n Rz,

u(r,0)=5(»), us(r,0)=g(r) for r<R,

(1.1)

where »=2m+3 and m is a nonnegative integer. We assume the pair
{f, g} of the initial data belongs to the following function space E,: The
set of {f, g} such that f, g are even functions of R, fEC""*(R), g<
C™?*R) and ||{f, g}|]jo<oc. Here the norm is defined by

I, gMllo = _sup | F(r)i<ryme+s

m+2 ' | (1. 2)
+3 sup (P2,

where <r>=y1+7?, g‘j’(r)=<—aé,—i;)Jg(r) and x is a positive parameter.

Note that the function <|x|>™!* does not belong to L*(R") if 0<x<1/2.
We also introduce another function space X in which we will look for
solutions of the nonlinear wave equation of (0.1):

X={u(r, )eCRY) ; r’u(r, ) C**(R?), r'u.r, t)€C*(R?

for 0<j=<m+1 and |lul|/<oo}, -9

where

||| = 2 (sggRjD?,tu(r, B >™ 7|+ [t < | =2 "

lal=sl (»
m+1 . . X X

+ > sup (#’Dit?u(r, t)|+|r’Di**Da(r, t)))
i=0 (r, t)ER?

XLy v+ 7| — | ¢]D*

(1. 4)

with the same parameter x as in (1.2), and C*°(R?) stands for the set of
continuous functions #(7, ) on R? such that Dju(r, t) are continuous on
R? for 0sj<k. We also write Xu={uEX; ||u||£d}.

In (1.4) if j=1, we interpret #’Di**u(r, t) for »=0 as a linear combi-
nation of Df**(r*u(r, t)) for k=0, 1, ..., j, because
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v’ Dit*u(r, t)=kZi‘,0CkD?+2(rku(r, t)) for #»=+0,
so that »’Di*?u(r, t) is continuous on RZ
Now, for the Cauchy problem (1.1) we have

Theorem 1.1 Let {f, g} Es. Then (1.1) admits a unique solution u(7, t)
which belongs to X NC* R*) and is even in r. Moreover

ru(y, t)eC*4(R?) if 1£j<m+1 (1.5)
and for (7, t)ER? we have
lu(r, )< CII{F, gHlor>~ ™7 |+ 21>~ K| —|2]>7*, (1.6)

|Dgu(r, OIS CIE gHlokr> ™ K7 =1t>*" if 1=|a|<2  (1.7)

and
|71%=2 D2 u(7, t)|

< Clitf ocr>mra =5l ~lth=1 if 3slelsm+s, &Y

wherve C is a constant depending only on n and x.

Remark. Employing the methods in Kubo [9], we find that the conclusions
of [Theorem 1.1 are still valid for a wider class of initial data, say, E¢:
The set of {f, g} such that f, g are continuous even functions on R,
r™ 1 f(r)eC™¥(R), r"'g(r)= C™*R) and ||{f, g}lls< o, where

I{f, g}llo =_sup_[£(r)I<romet+

m+2 ) )
+ 2 _sup (DI () +IDE (g (#)IKr >t

Next consider the nonlinear wave equation (0.1). Let po(m) be the
positive root of the quadratic equation

®&(m, p) = (m+1)pP—(m+2)p—1

n—=1, ntl, . _ (1.9)
5 D 2 p—1 =0.

Then we impose the following three conditions (H),, (H). and (H)s on the
nonlinear term F in (0.1):

(H) F(A)=F(A, 4, A&)EC"*R?
and there exist positive numbers p and A satisfying
po(m)<p<m+3 (1.10)

and
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|IDFA)|<A|AP' i a|<p, |e|lEm+2 and |AI<1. (1.11)
(H): F(A, As, As3) is even in As.

(H)s D™?F is locally Holder continuous, namely, for |¢|=m+2 and
|Al, |7)]=1 we have
|D?F(A)—D*F(X)| £ BlA— 1), (1.12)

where B, ¢ are positive numbers depending only on F, » such that 6=
p—(m+2) if m+2<p<m+3 and J is an arbitrary positive number satisfy-
ing 0<o0=1 if p=m+2.

Examples. If m=1, then
F()=2ai

satisfies (H):, (H). and (H)s, where a, are constants. If m=0, then
F()= 2 b1

satisfies (H),, (H). and (H)s provided p;>1++ 2, where b; are constants.
Indeed, we take p=min{3, p1, ps, D).

We also impose the following condition on the positive parameter x in
(1.2) and (1.4):

- m—1<xsq, (1.13)
where g=gq(m, p) is a positive number defined by
‘ =ﬂ§—)@ﬂ= (m+1)p—(m+2) (1.14)

with the ®(m, p) in (1.9).
We are now in a position to state the main theorem in this paper.

Theorem 1.2 Let u-(r, t) be the solution of the Cauchy problem (1.1)
with {f, g}€ Eo. Assume conditions (H),, (H)2, (H)s and (1.13) hold.
Then there are positive constants €0, d having the following property, where
o depends only on F, n and x, and d only on F and n: If||{f gllle<e=
€o, then there exists uniquely a solution u(v, t) of the nonlinear wave equa-
tion (0.1) which belongs to XaNC*R?), is even in v and has the follow-
ing asymptotic behavior

|D-(ee(r, t)—ur, ) +|De(ulr, t)—u(r, t))l

S CillullP<r> ™K r| =t K]|r|—t>7* (1.15)
for (r, t)ER?,
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wherve Ci is a constant depending only on F and n. Moreover we have

|l2e]| =2])2e-|| £ Coe, (1.16)

lu(t)—u-(lle= CllullP<t>™* for t=0, (1.17)
where

o 172
loOlle ={ [ (Do, OF+1Dw(r, D7) ar}
lu(7, t)—u-(7, t)léCgllu||”<7’>_’”_<|7’|-f-Iz‘I)‘1 (1.18)
XL r|=t>* for (v, t)ER?

and

lre+*2DEDHu(r, 1)—u(7, t))|

< Callue||P<rd>=m e 83w | — |t DK #| — £ 7" (1.19)
for (r, t)ER? 2=a+B=m+3 and 0=F=2,

where Ci, Cs and Ci are constants depending only on F, n and Co is a
constant depending only on n and x.

Furthermove there exists uniquely a solution u.(v, t) of the linear wave
equation (0. 2) which belongs to X N CHR?) and has the asymptotic behav-
jors (1.15), (1.17), (1.18) and (1.19) with u-(7 t), {|r|—t>* and “for
t=0” replaced by u.(r, t), |r|+t>* and “for t=0", respectively. Besides
we have

e+ ()I[e—[ae-(0)I[2

:2[:41'1,‘ lmF(u, us, ur)(7, ulr, t)r*'dr. (1.20)

Remarks. 1) Let E be the closure of E, with respect to the energy norm
ll#—(0)|l. Then the “scattering operator”: {f, g} — {u+(7,0), (Dau+)(7,0)}
is shown to be exist on a dense set of a neighborhood of 0 in E.

2) Condition (1.2) on the decay rate of initial data can be somewhat
relaxed, provided the number p in (H), is large, say, p>(m+3)/(m+1).
For the details see Appendix below.

3) To prove the uniqueness of such a solution of (0.1) as in
1.2, we will show that the solution satisfies a certain integral equation
(see in §5) and that a solution of the integral equation is
unique in X. (see [Proposition 5. 4).

4) For the last factor in (1.15), (1.18) and (1.19), we note that
r|=t>*=L|r|+]|t]>~* for t=0.
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5) In [15] where m=0, Pecher takes the parameter in (1.4) as x=
q(0, p)=p—2.
6) Consider the following Cauchy problem

utt—Au=|u|‘° in RnX[O,OO), n=2, p>1,

u(x,0)=0, u:x,0)=g(x) for xER" (1.21)

Let po(n) be the positive root of (1.9). Then it is necessary for (1.21) to
admit global (in time) solutions that »> po(n) if =2, 3, and p= po(n) if
n=24. (For the details see John E, Glassey [5], Sideris and
Schaeffer [17]). Therefore the first half of condition (1. 10), 7. e., p>
po(m) is almost necessary to obtain [Theorem 1. 2.

7) Let p>pon). Then it is necessary for (1.21) to admit global
radial solutions that the parameter x in (1.2) satisfies x +m+1=22/(p—1),
where x is a real number and m=(n—2)/2 if #n is even. (For the details
see Asakura [2], Agemi and Takamura [1], Tsutaya and Takamura
[20]). Therefore the first half of condition (1.13) is almost necessary to
obtain [Theorem 1. 2.

The plan of this paper is as follows. In the next section we summa-
rize some known results concerning the fundamental solution for the
Cauchy problem (1.1). In §3 we prove [Theorem 1.1, by employing the
results in § 2. In § 4 we establish a priori estimates for the nonlinear term
in (0.1). In §5 we prove [Theorem 1.2, by employing the results in §§ 2
through 4. Finally in the Appendix we relax condition (1.2) on the decay
rate of the initial data in (1.1), when p>(m+3)/(m+1).

2. Preliminaries

In this section we shall summarize some known results concerning the
fundamental solution for the Cauchy problem (1.1). We start with

Lemma 2.1 Let H(o)ECXR) and set
u(r,t)= [ H(t+7r0)1-0%)"do, 2.1)

where m=(n—3)/2. Then u(r, t) belongs to CR? and is even in 7.
Moreover u(r, t) satisfies the linear wave equation (0.2), where r‘u,(7, t)
1S interpreted as

1
%ur(r, t)=/0. wurr(¥A, t)dA.

For the proof see for example Courant and Hilbert [4], p. 700 or Kubo
[9], §2. For the Cauchy problem (1.1) we have
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Lemma 2.2 Let f(r), g(r)ECYR) be functions satisfying r™ ' f(r)E
C™3R) and r""'g(r)€C™*R). Then r*f(r)EC*%R) and r*g(r)E
C**'(R) for 0Sk<m. Moreover set.

H,(r) = @md) (52 (21 9(r)). (2.2)
Then H.r)ECYR) and H,(r)=CR). Furthermore put

ulr, )= [ Hy(t+ro)(1—o*)"do -
+D. [ H{t+r0)(1—o*)"do. '

If f, g are even functions, we have
u(r, 0)=1(r), ur, 0)=g(r). (2.4)
Besides if f=0 then u(r, t) is odd in t
For the proof see Kubo , § 2. From this lemma we have easily

Corollary 2.3 Let g(v)=C%R) be an even function such that r™g(v)E
C™*R). Let Ho(7) be defined by (2.2). Then

[ Hy(ro)a—o?)do = 0
and
/:Hé(m)(l—o‘z)"’dd = g(7).

For the inhomogeneous wave equation

n=l ., —G(r.t) in R (2.5)

Utt — Urr —

we have

Lemma 2.4 Let G(7, t)ECYR? and r™G(r, t)EC™2(R?). Set

H(r, =@m ) (55)" (7" GG, 1)

and
w(7, t)=£tdr[iH(t—r+ vo, t)(1—0%)"do,

where s is an arbitrary real number. Then H(7, t)€ C*(R?) and w(r, t)
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is even in v. Moveover suppose G(r, t) is even in v. Then
t 1
Daur, )= [dr [ DH(t—+ 70, D)1 o)"do (2.6)

Furthermore w(r, t) belongs to C*(R) and satisfies (2.5) with the zero ini-
tial data w(r, s)=0 and w:(r, s)=0.

For the proof see e.g. [9], the proof of Proposition 3. 4. The follow-
ing lemma shows that the function u(7, ¢) given by (2.1) does gain regu-
larity by multiplying 7.

Lemma 2.5 Let u(r, t) be defined by (2.1), where H(p)€C(R). Let ¢,
B be nonnegative integers such that 0=a+pB=m. Then

(Der V(DY ulr, )= [ H(t+70)dasl0)do (2.7)
where

boslo)=(—-LY (-6 L) (1)
and (Dyv)u=D,(ru). Moreover if a+pB=m we have

(DY (Do, )= [ Ht+70) =L gas(0)do
+H(t+7)¢as(1)—H(t—7)dap(—1)

(2. 8),

and

(DY ulr, D= [ H(t+70) = 0L ) gmol0)do
+H(t+7)mo(1)+ H(t —7) Pmo(—1).

(2.8):

For the proof see @, the proof of Proposition 2. 5.
Corollary 2.6 Let H(p, 1) C*(R?), where [ is a positive integer. Set

1
ve(7, t, r)zr"le(H-m, )(1—06%)"do,

where k is an integer such that 0=k=m+1. Then

DiDivi(7, t, 1)E C(R?) (2.9)
for nonnegative integers a, B such that 0=a+pB=k+1.
Proof. 1t suffices to prove (2.9) when k<a+pB8=k+/. Since

DEDH(r* o7, 1, 7)) = 2 CA(Der P(Drr Yo
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with some constants C, such that C,=1, by we get

1 ~
DEDXr* (7, t, r))=/:1H(t+ra, ) ¢as(0)do
+ CaH(t+7, 1)+ CasH(t—7, 7)
for 0<a+B8<m+1, where ¢.s(0) is a polynomial and Ca,s, Ca,ps are con-
stants. Therefore we obtain (2.9) for @, 8 such that k<ae+B=k+/.

The proof is complete.
We will need also another representation for the solution of (1.1).

Lemma 2.7 Let g(7), Ho(r) and u(r, t) be as in Lemma 2.2 with f=0.
Assume g is an even function. Then

u(7, t)=/|;t::g(p)K(p, v, t)do if r>0, t=0, (2.10)

where K(p, v, t)=27) 0 if m=0, and
_ (=" <L 2m+l<i L)m m

Ko, 7, ) =5 (2) " (& 55 ) #"(0. 7. 0 (2.11)
with ¢(p, 7, t) = r*—(t—p)® if m=1. Moreover we have

K(—p, 7 t)=—K(p, 7, t) (2.12)
and

K(o, —7,t) = —K(po, 7, t). (2.13)

For the proof see @, the proof of Lemma 2.3. For the above func-
tion K(p, »,t) and the polynomial ¢™(p, 7, t), we will need the follwing
three lemmas which have been obtained in [9], section 4. In what follows
we denote constants independent of p,» and ¢ by Ci, C. and so on.
Besides, e=(a, @) and 8=(f, B2) stand for multi-indices of nonnegative
integers such that |e|+|8|<2m+4.

Lemma 2.8 Let =0, t=20 and |t—7r|<p<t+7r. Then

|D?cd™ (o, v, IS Cir*™ ' for 0=|a|<2m+4, (2.14)
where Ci1=0 unless 0=|a|<2m, and

|D?cd™(0, 7, )| Coar™o™ ' for 0=Z|a|=m. (2.15)
Lemma 2.9 Let »=20 and t=0. Then

|D%, (D7 ™ (0, 7, t)lo=exr)|
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where C3=0 unless m=|a|+|8|=<2m. Moreover suppose »=t. Then

ng,t(Dg,tﬁbm(P, 7, t)|p=r—t)|

<Co™(r—t)" 8 for 0ol +]8lSm 2.17)
and
|D?.e(D?.e¢™(0, 7, E)lo=r—2)| (2.17)
< Csr®™ 1978 for  m+1<|al+]8]<2m+3, T
where Cs=0 if |a|+|B|=2m+1.
Lemma 2.10 Let »=1, t20 and |t —7v|So=t+7r. Then
|D?:K(p, 7, )| S Cor ™ 'xalp0) for 0=[a|Sm+4, (2.18)
where
<p>™*! if |al=0,
xa(0)=1<>™ + 77 p>"™*! if lal=1, (2.19)
O™ M+ Kod™+r Kpd™ i |a|22.
Moreover we have
|Dg,t(D£,tK(p, 7’, t)|.0=tir)| (2 20)
SCir ™ xas(t 7)) for 0=Z|a|+|BlEm+3. ’
Furthermore suppose v =2t. Then
a B8
lDr,t(Dr,tK(p, 7, t)lp=7‘—t)| (2' 21)

SCsr ™ xars(r—1t) for 0=|a|+pB|Em+3.

3. The linear wave equation

The purpose of this section is to prove [Theorem 1.1. We start with

Lemma 3.1 Let f(7), g(»)ECYR) be even functions. Suppose r™ 'f(r)
eC™3R) and r™'g(r)EC™*R). Then theve exists a unique solution
u(r, 1)E CAR?) of the Cauchy problem (1.1). Moreover the solution u(7, t)
is given by (2.3), even in r and satisfies

r*u(y, t)€C***(R?) for 0=k=m+1. (3.1)

Proof. Let u(r,t) be given by (2.3) with (2.2). Then it follows from
Lemmas 2.1 and that u(7, t) belongs to C*(R?), is even in » and
satisfies (1.1). Moreover by Lemma 2.2 and [Corollary 2. § with H(p, )=
HXp)+ H,(p) we obtain (3.1). Since the C*-solution of (1.1) is unique,
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we complete the proof.

Now, to prove [[heorem 1.1 we have only to establish the estimates
(1.6), (1.7) and (1, 8), because of Lemma 3. 1.

In what follows we suppose {f, g} Eo and set e=||{, g}|lo.

First we shall deal with the case where |7| is small.

Lemma 3.2 Let |7|£1. Then (1.6), (1.7) and (1.8) hold.
Proof. From (2.2) and (2.3) we have

ulr, £)= f iH(t + 7)1 6d)"ds, (3.2)

where

H(p)=HHp)+ Hy(p)

—af (o) + B0 (@, (0) + big o) (89
with some constants ax, b, Moreover (1.2) yields
|HY(0)| £ C; eo>™* 1 for j=0,1,2. (3.4)
First we shall derive
|Dfcu(r, £)| S Celtd* ! for 0=|e|<2, (3.5)

which implies (1. 6) and (1. 7) for |7|<1, since <¢t>'< 27|+t for |r|=1.
Let 0=|a|<2. Then (3.2) and (3.4) imply

1

D2y, )< Ce [ <t+r05~*do.

Since <{t+r0>"'<2{¢>7"! for |r0|<1, we obtain (3.5).
Next we shall prove

|71*2D¢ cu(r, t)|< Celt>*' for 3=|a|<m+3. (3.6)
Let a=(a, @) and 3<|a|<m+3. Write as

2D D& y(y, ¢t)

= 2 2 CﬂJD;,t(Dtr)ﬂz(Drr)ﬂlu(ry t)s

irI=218ls|al-2

where Cg,, are constants. Since it follows from (3.2) and that

(D) (Do ulr, £)= / iH(t-i—m) J4(0)do
+CeH(t+7)+ CoH(t—7),
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where ¢4(0) is a polynomial and Cs C; are constants, we obtain (3.6)
according to (3.4), as before. The proof is complete.

The rest of this section will be devoted to prove (1.6), (1.7) and (1.8)
for |7|=1. Since u(—7, t)=u(r,t), one can assume »=1. We may also
assume ¢ =0, since the first term or the second one on the right hand side
of (2.3) is odd or even in ¢, respectively.

We shall first deal with the case where /7 is large.

Lemma 3.3 Let t=237 and r=1. Then (1.6), (1.7) and (1.8) hold.

Proof. We claim that the function H(p) given by (3.3) can be represent-
ed as

H(o)=$,DiF (o), (3.7
where F; belongs to C’**(R) and satisfies

|DSF{(0)| = Ciaelo>™ ™17 for 0=a=j+2,0=57=m. (3.8)

Indeed, from (3.3) we have
H (p)=aof(p)+J§)a$~+1D£(p“‘f’(p))+J2_0b}D£(p"“g(p))
with other constants ar and b;. Hence, setting

Fi(p)=0"" (@i (0)+big(p)) for 1=j=m

and

Fo(p)=aof(p)+o(aif (o) + big(p)),

we see that F;€ C7*R) and (3.8) holds, because {f, g}< F..
Next, changing a variable in (3.2) by p=¢+70, we have

t+r
u(r, t)=r‘2”’“£_r H(p)$™(p, 7, t)dp,

where ¢(p, 7, t)=r>—(t—p)? is the same function as in (2.11). Note that
D::¢™(p, 7, t)=0 for po=ttr, 0<|al<m—1.

Therefore, using (3.7) and integrating by parts, we obtain
m t+r .
u(r, t)=r“2'"“j§)ft_r Fi(o)Dig" (o, 7, t)dp. (3.9)

We are now in a position to prove (1.6), (1.7) and (1.8) for #=37.
It follows from (2.14), (3.8) and (3.9) that
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m . t+71r .
lu(r, )= CeX r"“‘f Loy~ ™ 1*+dp.
J=0 t-r
Since t—7=(¢t+7)/2 for t=237, and

t+7r X ,
[ oy dp < 2 <=y,

we have

lu(7, t)|§Cer‘”’ér’"‘%t-#r)’”’”""‘l
<(m+1)Cer ™t +¥> ",
which implies (1.6). Next suppose 1=|e|<m+3. Then, using (2.16)

also, we get

|D? cu(r, t)| = Ceg{r‘j"""lf:r<p>"’”’1"‘+jdp
+ K gy
which implies (1.7) and (1.8). Thus we prove the lemma.
. Next we shall treat the case where ¢/7 is bounded.
Lemma 3.4 Let 02t<37 and r=1. Then (1.6), (1.7) and (1.8) hold.

Proof. By virtue of (2.3) and we get
t+r t+r
u(r, 0= [ 9K (o, 7, Ddo+D: [ f(0)K(p, 7, H)dp,

where K(p, 7, t) is the function given by (2.11). Moreover we have from
(1.2)

|7(0)| = Cep>~m 17"
and

|F9 ()| +]gV(p)| £ Cep>™™ 2% for 0=j=m++2.
Therefore by [Lemma 2. 10l we obtain

l(7, t)léCsr‘m“<ft+r<p>‘”‘ldp+<t—r>"‘>
t—71
< Cer ™ Wt—r>*,

since 7 pY is bounded for 0=<p=<4r,»=1. Therefore (1.6) follows,
because »=(t+7)/4 for 0<t<3». Similarly we obtain (1.7) and (1.8).
The proof is complete.
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Proof of [Theorem 1.1. All conclusions of the theorem follows immediately
from Lemmas B.1, B.2, B.3 and B.4. Thus we prove [Theorem 1.1l

4. The nonlinear wave equation

As will be seen, a solution of (0.1), which belongs to XN C*R?), is
even in » and has the asymptotic behavior (1.15), satisfies the following
integral equation

u(r, =u(r, )+ L)(r, 1), (4.1)
where u- is the solution of (1.1),

L(u)(r, = [ dr [ H(t—t+70, )1~ ")"ds, (4.2)

Hp, 2)=(2m) (5% (7 Gp, 7) (1.3)
and

Glo, 1)=F(ulp, 7), ulp, 7), ur(p, 7)) (4.4)

with F the function in (0.1). (See in the next section).

The purpose of this section is to establish basic a priori estimates for
the integral operator L. Throughout the present section, by L, H and G
we mean the operator or functions defined by (4.2), (4.3) and (4. 4),
respectively. By C we also denote various constants depending only on F
and #, unless stated otherwise.

We shall start with estimating G.

Lemma 4.1 Assume condition (H), holds. Let u(r, t)EX. Then
0*G(p, 1) C***(R?) for O=<k=m+1. (4.5)
Moreover suppose |u|<1. Then

|1DiG(p, D)= Clul*<e>~ <ol +|z[>~#< ol =[[>~*

for lolz1, 0Sj<m+2 (4.6)

and

|0*DiG(p, T)|= Cllu||<z>~##*

for |p|£1,0=57<k+1 and 0=k=m+1, 4.7

where p is the number in (H).

For the proof see e.g. Kubo [9], the proof of Lemma 3.2. Next we
shall estimate H(p, 7).
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Lemma 4.2 Assume condition (H): holds. Let u(r, t)€X. Then
H(p, 1) C**(R?). Moreover, setting

w7, L r)=rk/:iH(t—r+ ro, )(1—o*)™do, (4.8)

where k is an integer such that 0Sk=m+1, we have
De w7, t, )ECYUR®) for 0=|a|<k+2. (4.9)
Furthermore suppose |ul|<1. Then

IDiH (o, 7)< Clluel?<oy*= "ol +|r>~#<| o] ~[z]>=* (4.10)
for j=0,1,2
and
|D& (7, t, )| Cllu|P<r*ed ™0 89t for 0Z|a|<k+2, (4.11)
where q is the positive number defined by (1.14).

Proof. From (4.3) we have
H(p, 1)=3,C:DL0'G(p, 7)) (4.12)

with some constants C;. Therefore (4.5) yields H(p, )& C**(R? and
hence by [Corollary 2.6 we get (4.9). Next let |«|<1. If |o|=<1, the esti-
mate (4.10) follows from (4.7) and (4. 12), since <> '<2{|p|+|z|>! for
lo|<1. If |p|=1, by (4.6) we have

\DiH (o, T)|= Cllul?<e>™ =< o] +|z[>~*<| o = |25,

which implies (4. 10), because mp=qg—p+m+2 according to (1.14).
Finally, (4.11) is a direct consequence of (4.8) and (4.10) provided 0=|a|
<2. If 3=|e|£k+2, we refer to the proof of [Corollary 2.6. Then we
obtain (4.11), as above. The proof is complete.

For the operator L we have

Lemma 4.3  Assume condition (H): holds. Let u(r, t)€X. Then
L(u)(r, t) is even in v and satisfies

r*L(u)(7, t)EC***(R?) for 0=k=m+1. (4.13)

Moreover assume G(p, t) is even in p. Then

D.L(u)r, )= [ Dau(r, 4, 7)dr, (4.14)
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wheve wo is given by (4.8). Furthermore L(u) belongs to CHR? and
satisfies the inhomogeneous wave equation (2.5). Besides we have

r*D.L(u)(7,t)E C*"(R?) for 0=<k<m+1. (4.15)
Proof. Define wx(7, t, ) by (4.8). Then (4.2) implies

L(w)r, )= [ wilr, 1, o). (4.16)

Hence (4.13) follows from (4.9) and (4.11), because p>1 and ¢+1>1.
Besides, wo(7, ¢, r) is even in » hence so is L(u)(7, t).

Next suppose G(p, r) is even in po. Then H(p, 7) is odd in o hence
wo(7, t, r)=0 for r=¢. Therefore by (4.11) and (4.16) we get (4.14),
because H(p, )€ C**(R?) according to the preceding lemma. Moreover
by (4.9) we have L(«)€ CHR?. Furthermore

(Dt D210, ) L(u)(r, 1

¢ -
:DtWO(r, ¢, T)|r=t+/: (D%_D%_ nrl r>7/U0(7’, t, Z')dZ'
:tho(ry ty T)l":t

where the last equality follows from [Lemma 2.1. Since Corollary 2.3
yields

Dawo(r, t, 1)=G(r,t) for r=t, (4.17)

we thus see that L(u) satisfies (2.5). Now, (4.15) follows from (4.14)
and Lemma 4. 2. The proof is complete.

We shall now state the main resut of this section.

Proposition 4.4  Assume conditions (H),, (H): and (1.13) hold. Sup-
pose u(r, t) is even in r and belongs to Xi={uc€X:|u|£1}. Then
L(u)(r, t) belongs to X and is even in v. Moveover for (v, t)ER? we
have

|L(2)(7, )| = Cllul?<r>= ™ 7|+t K|r|—t>7* if |r|=1, (4.18)

|DIDFL(u)(7, )| < Clul?<r> ™ K|r|— |t K|r|—t>* (4.19)
if 7|21, 1Se+B<m+3 and 0SB<2,

|DEDFL(u)(7, )| ClulP<t>7*t if |7|£1, 0Sa+B8=2 (4. 20)

and
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|7+ * 72 DEDFL(u)(7, )| = Clul<t>~! 4.21)
if |7|=£1, 3fa+B<m+3 and 0<B=<2.

Proof. By (H), and (4.4) we see that G(p, 7) is even in p. Therefore it
follows from that L(«)(7, t) belongs to C* R?) and is even in
r. Moreover ' L(u)(r, t)€C’**°(R?) and #’D.L(u)(7, t)€ C’**°(R?) for
1=j=<m+1. Consequently we find from (1.3) that L(zx)E X if |L(w)|< oo,
which follows from (4.18) through (4.21). Thus we must only to prove
these estimates. In doing so, one can assume #» 20, since L(u)(7,¢) is

even in . From now on we suppose the hypotheses of the proposition are
fulfilled.
We shall first deal with the case where 8=0.

Lemma 4.5 Let 0=r=<1. Then (4. 20) and (4.21) hold for B3=0.

The proof will be given later. In what follows we assume » =1 to
prove (4.18) and (4.19). Then we adopt another representation for the

operator L. Let wo(7, ¢, r) be given by (4.8). Then from we
have

wo(7, t, 7) Z/IZ:G(p, 0)K (o, , t—1)dp, (4.22)
where p:=t—rxr and K(p, r, t) is given by (2.11). We also regard

L(u) as » ™ Y(»™L(u)).
We start with

Lemma 4.6 Let =1 and 0=a=<m+3. Then we have
|DEHr™  L(u)(7, )|< Collul?(fe+ L+ L+ 1). (4.23)
Heve L=L=L=0 if a=0, and

t P+
ho = [ dr [ <oy Ko+ |2y o=l el>dp, (4.24)
where p+=t—tx v and q is the positive number given by (1. 14),

¢ .
L. =7’"111,o-l-f_wdr |:l<p>”""2<p+|z'|>“"<p—Izr|>”""a’p (4.25)

if l=sa=m+3,

t
L :/_.m<0+>p_q_l<0++|Z'|>_p<10+_'|z'l>_pxdz', (4. 26)

L= [ <oy o | +eh o~ ey (4.27)
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and
L ={r—1tyr% (4.28)
Proof. 1t follows from (2. 18), (4.6), (4.7) and (4.22) that

lwo(7, t, 7)|< CIIu||"r"”‘1/|;:+<p>"’“’”"’<p+|r|>“’<p—|r|>“”‘dp.

Therefore by (4.16) we get (4.23) for a=0, since m+1—mp=p—q—1
according to (1.14).
Next suppose 1<e<m+3. From (4.11) and (4.16) we have

D L(r )7, )= DI welr, t, D)dr. (4.29)

If |t—7—7|=1, we have |o-|=1 hence by Lemma 2.10, (4.6) and (4.22)
we obtain

|D2(r™ wo(7, ¢, 7))
éCa||u||p{fp+(7’_l<p>"‘q‘1+<p>p—q—z)
lo-I
x<o+|rh o —|el>"dp
R I L e i e
+<p5P"9 K o]+ 2]>2<| o] _|T|>_px}.

(4. 30)

If 0<|o-|=1, we write as

1 O+
w7, t, r)=ﬁ_iG(p, 7)K(p, 7, t—r)dp+_/: G(o, 1)K (o, 7, t —1)dp
=wo(r, t, r)+we(r, t, 7).

For the second term w; we get an estimate analogous to (4.30). Consider
the first term wo. From (2.11) we have

m . .
K(p, 7, t)=r'2”“1§ij’“Di¢’”(p, 7, t)
with some constants Cj, so that
m 1 . .
™y, t, T)=r" 2R G ; |p”‘G(p, r)Di¢™(p, 7, t —1)dp.
J: -

Therefore it follows from Lemmas 2.8, and (4.7) that
IDHr™ w7, t, D))= Clul* <>~ < Cllal*<t = r>707%,

since <) '=2(t—»>' for |t—r—7|£1. Thus by (4.29) and (4.30) we
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obtain (4.23). The proof is complete.

From now on we shall estimate the quantities given by (4.24) through
(4.27). Notice that condition p>po(m) is equivalent to

p>1 and q>p—_2_—1——m—1, (4.31)
since (1.9) and (1.14) imply

(-1 g -2 +m+1) = @(m, 1)

p—1
Moreover (1.13) yields
0<x<g=(m+1)p—(m+2) (4. 32)
and
px+qg>x+1. (4. 33)

We will often employ the following two lemmas also.

Lemma 4.7 Let a, b be real numbers such that a=0, b=0 and a+b>1.
Then

[Ceor<a+yytaesC for veR, (4.34)
where C is a constant depending only on a+b.
Proof.  Since

D™ K+ y> =>4 x+ >0,

we have easily (4. 34).
Lemma 4.8 Suppose (4.31), (4. 32) and (4. 33) hold. Then

[Co ity de=Cy™ for vER, (4.35)

[Cr—m -2y de=CO™ for vER (4. 36)
and

[Fx—yyr e —yy tdeS CEE for 20, (4.37)

where C is a constant independent of y.

Proof. First consider (4.35). By I(y) we denote the left hand side of the
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inequality. If y=0, we write

()= f e e+ > de+ f :/2<x>"’"<x+ v>~9dx
=I(y)+ L(y).
Then

() S f Tt yyd,

Since x—px<0, ¢=0 and x—px—qg<—1, by (4. 34) we get (4. 35) for I.
Next

I(y) =y f :2<x>"’"<x+ Yy

Since x —¢ =0, we obtain (4.35) for y=0, as above. If y=0, changing the
variable by x +y=2z, we have

I(y)= f “Cat Iy,

Therefore we get (4.35) analogously to the preceding case.
Next consider (4.36). Setting y—2x=2z, we have

[y =2y rrae= - [ ">

Hence (4. 36) follows from (4. 35).
Finally we shall prove (4.37). Since

/w<x—y>"“’"1<2x—y>‘pdx§/;w<x—y>'q"dx for y=0 and ¢>0,
y

we get (4.37) easily if px—x—1=0. Now, suppose px—x—1<0. Since
2x—y=y for x=y, we have

Q2x—yd P yyPE I — yy P prrRAL
for x=y=0. Noting that px+p>x+1, we get therefore
/w<x-—y>"“"*1<2x~y>“’dx
y

é<y>"""“1/y-w<x-—y>‘q“"‘+"dx for y=0.
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By (4.33) we thus obtain (4.37). The proof is complete.

29

We are now in a position to estimate (4.24) through (4.27). In what

follows we assume (4. 31), (4.32) and (4.33) hold.
First we shall deal with (4. 24).

Lemma 4.9 Let »=20. Then
Lor, ) SEClr—1t>7*

and
Lolr, )SCrir+|th™ " if |t|=37r.

Proof. We shall divide I, into two parts as follows:
Lo=I+ It

where
Io(7, t) =£t+drﬁp:<p>"‘q‘l<p+ > " p—1>""dp,
£ e
Iio(7, t) 2.[00 dz'_/|;_]<0>p_q‘l<p—2'>_p<p+z'>“”‘a’p

and t.=max{t, 0}, t_=min{¢, 0}, so that Ii«(r, t)=0 for ¢t=0.

introducing characteristic coordinates by
§=p+tr, 1=p—71,

we have
. __1_ t+r Zp
Lir, ) = [ <&>rds

X/E <—$———2tl>"“q"l<77>_p"d77 for ¢>0,
r—t

L(r, £) = [ <e>-reae
> —/I:O <E_‘£’_77_>p—q—1<77>—pd77.

ax{|t-7|,4}

First consider Ii%. Let ¢t>0. Since p>1, we have
t+7r oo
Li(r, ) C [ ey de [<e+mrcnyran,
=7l e
By (4.35) we get therefore

t+7r
Iio(r 1)< C f (&1 gE.
[t—7]

(4.38)

(4. 39)

(4. 40)

Moreover,

(4. 41)

(4.42)+

(4. 42)-
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Hence (4.38) and (4.39) follows for Ii, because ¢t —» =(t+7)/2 for t =37 =0.
Next consider I7p. From (4. 42)_ we have
— ® —-DK ® -g-1
Iilr, DS C [~ <oy dg [7 e+ ran,
<C [ o+t —riyde.

Hence by (4. 35) we obtain (4. 38) for Iio.
Finally we shall prove (4.39) for Ii. Let |t|=37. Note that |t 7|2
(|¢|[+7)/2. If px=x+1, we have from (4. 42)_

t+7r oo
Iio(7, t) < C(Itl-f—r)“”‘/ dgf (E+ 7> dy.
t—1r —co
Hence (4.39) follows. If px<x+1, we have
t+r o
Il_,O(V, t)é C/:_: <5>_K_ld‘§£w<$+77>_q_px+xd77,

since
<77>—p§<$>P/c—/c-1<77>—p—PK+"+l for 77%5—2—0

Therefore by (4. 33) we get
t+7r
Iio(7, t)= C<|t|+r>"“1ft_r dg,

which implies (4.39) for I1o. The proof is complete.
Next we shall deal with (4. 25).
Lemma 4.10 Let »=21. Then
La(r, )SCr=>"" for 1=as=m+3. (4. 45)

Proof. Since the first term on the right hand side of (4.25) is dominated
by C<r+|t]>"Xr—1t>"* according to the preceding lemma, we have only
to estimate the second term. For convenience set

t +
J(7, t)=f dr/p X2~ o+ ||y P o—|z|> P dp
- Jio-|
and divide J into two parts, analogously to (4.40):

J(r, t)=f_:dr+[+drsf_+]+.

Then we have estimates similar to (4. 42). :
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(-]

J-lr, ) = [ cerrae EELyomarpyoray,

max{|t—r{,&}
-—_1_ e -p ¢ _5_'_"_77 p—-q-2 —bK
Jir 6 = [Tceyrde [T STy,
where J.(r, t)=0 if 0.
First consider /-. We have
T, )5 Cit—r>t 7 cerrag [T <+
t—1 |t—r|
SC=—r [T (& e+t =770 dE.
Therefore by (4.35) we obtain
J-(r, t)SC<r—t>717",
Next we shall prove

Jolr, ) SClr—t>71* if t>0.
Setting

1) =< [ ETyrpyray,
we have from (4. 46).

ACRIEY S (CY -2 (G

t—7|

3

(4. 46)-

(4. 46)+

(4. 47)-

(4. 47)+

First consider the second term on the right hand side. If £22|t—7|, we

have
1(©)s Ce—lt— D [ e+ ny2ny
hence by (4.33) and (4.34) we obtain
[ 1§)de = cct—ryet
Next consider the first term. Let |t —7|<£<2|t—7|. Then

—§/2
IO=Ce [ 7 (e+mr iy

(4. 48)
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+ Oy f e >y
—£/2
E[l(f)‘i-lz(f).
By we have
L(E)S CEY™ 2,

Moreover

hte)= C<E>_l_n[:-n<5+ Iy
S e TR

Therefore
2lt—r| -
-/I;—rl ](5)d5§ C(t—7>_1_K/:m<$_|t_rl)x—q—p,cdé
” —-K—-2
+Cf|t_,|<5> de.
Hence by (4. 33) we obtain

f| T @) dEs C -yt

t—r]|

This and (4.48) imply (4.47).. Now (4. 45) follows from (4.47).. Thus
we prove [Lemma 4. 10.

Thirdly we shall treat (4. 26).
Lemma 4.11 Let »=0. Then
L(r, ) SC<r+t)NKr—1)*, (4. 49)

Proof. We divide (4.26) into two parts as follows:
t-
H(r, )= [ Kt r— o+ r =205+ > Pdr

+ Ot+<l‘+7’—Z'>p_q_1<t—|-r>_p<t—r_22->—mdz. (4. 50)
=L (7, t)+ 1 (7, 1),

where {-=min{¢, 0}, t-=max{¢, 0}, so that I5(», #)=0 if +=<0.
First consider the second term L. Let #>0. Since p>1 and t++=
t+r—r=20for 0=r<¢, we have

E(r, t)§<t+r>-1fot<t+r—f>-q<t+r—2r>-mdr.

Hence by (4. 36) we get
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(7, S Ct+ vy,
which implies (4. 49) for I5.
Next consider the first term 5. If =0, we have
E(r, =<+ 757 [ Gt r =0y ldr
SCt+ry P9,
Hence by (4.33) we get
L(r, )SCg+rd> "
which implies (4.49) for I; and t=0.
Now let £<0. Then
L (7, t)é(r—ltl>“”‘/:<r—|t|+r>”""1<2r—|t|+r>"’dr.

First suppose |¢t|=37. We have

E(r, S tl=r>7 [ o=t 4+ rP= =t + 7577 dr.

Hence by (4.37) with y=|¢t|—» we get
L(r, )SCt|l—r>",
which implies (4.49), since |¢|—7»=(|t|+7)/2 for |¢t|=37.-
Finally suppose 0=|¢|<3». We have
EGr, S Gr=th [ "=t +ry-dr
SCr =t w7
Since » 2(»+|t[)/4 for [¢t|<37 and 0<x=<gq, we get
Ii (7, )< C<r +[t>~* < r — |ty 0",
Therefore by (4.33) we obtain (4.49). The proof is complete.
Fourthly we shall deal with (4. 27).
Lemma 4. 12 Let »=0. Then
L(r, )= Cr—t>™*1,
Proof. We shall divide (4.27) into two parts, as follows :
L(r, t)=Li(r, t)+ L7, t),

where

33

(4.51)

(4.52)
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La(7, t)=[:r<t—r—2‘>"“"1<t—r—r+|rl>"’
X{t—r—r—|7|>7? dr (4.53)

and

La(7, t)=£jr<z’+r—t>""’“l<r+r—t+|r|>‘p
X<{r+r—t—|r|>~Pdr. (4.54)
First consider (4.53). If —co<t=<7, we have
t—r
La(7, t):L,, —r—P Kt —r =200t —r> Pdr
==t [ Ge—r Qe+ 1570
Hence by (4.37) with y=»—1¢ we get (4.51) for L,. If t>»=0, we have
0
La(7, t)=_/_. —r—P Kt —r =200 Kt —r)Pdr
t—r
+/0 (b= TP — > Pt — 7 — 20> dr
EI:«;,1+I:;:1
For the first term we have
, 0
La(7, t)é(t—r)‘p"_/: {t—r—1> 7 'dr
SCLt—ry P9,
Hence by (4.33) we obtain (4.51) for L. For the second term we have

I:;:I(T, t)é(t_r>_l'/o‘t—r<t—r——z->"q<t_r_22->—!’ltdz..

Therefore by (4.36) we get (4.51) for I5.. Thus (4.51) holds for L,.
Next consider (4.54). If =7 =0, we have

Laor, t)S<t— r>“”‘/:;<r—— t+ 7P~ 2r—t+ > Pdr.

Hence by (4.37) we get (4.51) for Lz Now suppose —o<t¢<7. Then
we divide (4.54) into two parts, as follows:

La(r,0)= [ Gotr =99 =1y Qe v — >z

+ftt<2'+r—t)"""1<2r+r—t)“’(r—t)'p"df
=[s(7, t)+ Lor, t),
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where t-=min{¢, 0}, so that La(7, t)=0 for t<0. For the first term we
have

0
[3’,2(7’, t)§<7_t>—1[_r<r+7_t>_q<22'+7’—l‘>_p"dz',

Hence by (4.36) we get (4.51) for L. For the second term, assuming
t >0, we have

L7, t)é(r—t>‘p"£t<r+r—t>“"1dr
< CCr =ty

Therefore by (4.33) we get (4.51) for K% Thus (4.51) holds for L. In
view of (4.52) we complete the proof.

Finally we shall prove which is a consequence of
4.11 or 4.12.

Proof of [Lemma 4. 5. First we shall prove (4.20) for 3=0. Let 0<7r=<1
and 0=a=<2. It follows from (4.2), (4.8) and (4.11) that

t
D#L(u)(r, t)=_[ Diwo(r, t, r)dr.
Moreover by (4.10) we have

1
|DEwo(7, ¢, r)léClIulI"'[lQ‘—H— yoyP=9-1
XL\t =+ ro|+| >t — t+ ro| — | 7> **do.

Since t—r—1=t—r+ro<t—r+1 for |r0|<1, we get therefore
t
IDELG)(r, S C [ b= 97Kt — |2yt — o~ |ely*dr.

Noting that the integral on the right hand coincides with (4.26) for »=0,
by Lemma 4. 11 we obtain (4.20) for 8=0.
Next we shall prove (4.21) for 3=0. Let 3<e<m+3. Note that

a-—2
v DEL(u)(r, t)= %C,-D?D’}(r"L(u)(r, t))
with some constants C;, Hence by (4.8) and (4.11) we have

rDiL(u)(r, )= C; [ Di*ui(r, t, 0)dr.

In view of the proof of |Corollary 2. 6 we have therefore
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re2DEL(u)(r, D= C [[_{ [ (D3Rt~ 2+ 70, Dldo
H(D3H)t— o+ 7, DI+ (DEED(t— 27, D) de.

Thus by (4.10) and Lemma 4.11 we obtain (4.21) for =0, as before.
The proof is complete.

End of Proof of [Proposition 4.4. As we remarked at the openning of the
proof, we have only to prove (4.18) through (4.21) for »=0. If £=0,
these estimate follows immediately from Lemmas 4. 5, and Lemmas
4.9 through 4.12. If B8=1 or B=2, we shall employ (4.14) instead of
(4.16). Then it follows from (4.11) and (4.17) that

t
DiL(u)(r, )= [ Diw(r, t, dr+G(r, ).
Therefore, except for G(r,t), we obtain (4.19), (4.20) and (4.21) for
B=1, 2 analogously to the case 8=0. Thus it suffices to prove

|DFG(r, B)| = Cllul[P<r> ™ K +[¢>7*! (4. 55)
for =21, 0=sas=m+1,
because p>1 hence (4.7) implies

|7°DEG(7, )| Cllul|P<t>** for 0=r=1,0=Za<m+1.
First suppose |#|=37 and »=1. Then from (4.6) we have for 0=a<m+1

|IDEG(7, t)|< Cllu||P<r>~ ™y +|t|>~P**
< Cllu||P<yy—(mrDprrtl=PE p | 371K,

Moreover (4.32) implies
—(m+1Dp+x+1=<—m—1.

Hence we get (4.55). Next suppose |#|{<37 and »=1. Then (4.6) implies
|DEG(7, £)| = Cllu||P<r>~ ™2 < Cl| | |P<r +[¢[>~ ™27,

since (m+1)p=g+m+2 and <r>'S4Lr+|t]>7* for |t|£3». Therefore by
(4.32) we obtain (4.55). Thus we prove [Proposition 4. 4.

5. Proof of Theorem 1.2

In this section we shall prove the main theorem (:. e., [Theorem 1.72),
by employing the results in the previous sections. The plan is as follows.
First we show that the integral equation (4.1) is uniquely solvable in the
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function space X. (See [Proposition 5.4). Then the solution satisfies the
nonlinear wave equation (0.1) according to Lemma 4.3 In order to
prove the uniqueness of such a solution of (0.1) as in the theorem, we
next show that a solution of (0.1) having appropriate asymptotic behav-
iors satisfies (4.1). (See Lemma 5.5). Finally we prove the statements
about the solution %+ of (0. 2).

First of all we state

Lemma 5.1 The function space X defined by (1.3) is a Banach space.

Proof. Introduce another norm ||| for u€ X by

lull'= 2 sup_ |Dfcu(r, )Kr>™|r|+[tH<|7| =]t

lals1l (r, t)ER

m+1 . .
+2 (S})IDR{|D§+2(7’M+1M(7’, tN DI D(r ™ ulr, 1))}
Jj= 7, t)ER?

XLy K|+t | ="

Then we find that the two norms are equivalent and (1.3) can be rewrit-
ten as

X={u(r, )EC(R?); r"ulr, )& C"*(R?),
r™ (v, t)EC™*(R?) and ||u||’<co}.

(See Kubo [9], and its proof).
Now we shall introduce an auxiliary Banach space Y by

Y={v(r, )e C(R>)NC"**(R?);
Da(r, )eC™?*(R*) and ||v||y<oo},

where

lolly= 2 sup |Df.o(r, )Kr> Kr|+[t<|r|—]t)*

lal=1 (r, )ER
+'§: (EB&Z(ID’;*"’U(% | +|Di' Da(r, t)|)
XLy 7|+ <| | =2~
Let Yn be a closed subspace of Y given by

Yo={v(r, )€Y ; Div(0,#)=0 and
DiDw(0,t)=0 for 0<j<m).

Then for v< Y» we have

o(r, ) =(ml)1ym+ f 1= )™(Dr1) (A, £)dA
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and
1
07, £) = (m))~Lym! ﬁ (1= D™D Dw)(7A, £)dA

Therefore, setting
ulr, )=r"(r, t) for vVE Yn,
we have ©u< X, because

|Dg, u(r, t)ISsup (DFDE,v(p, t))| for |7|£1, |a|=£1

and
||| < Clloll .

Conversely, setting v(7, t)=»"""u(r, t) for u€X, we have v(r, t)E Yn,
because

llolly= Cllall".

Since Y» is a Banach space, we conclude that X is also a Banach space.
The proof is complete.

Next from [Proposition 4. 4 we have easily

Lemma 5.2 Let the hypotheses of Proposition 4.4 be fulfilled. Then
L(u)(7, t) belongs to X and is even in v. Moreover we have

IL(w)l|= G

(5.1)
where Ci is a constant depending only on F and n.
In order to show that (4.1) is solvable in X, we shall introduce an

auxiliary norm |||«||| for #€ X by

«|]|= 2 sup. |D?culr, <™ v+t <]r|—[2]>*

lalsl (r, ¢t
+Z}o Sup, (|7 Di*u(r, )|+ D' Dau(r, t)|}
XLy Y™K ||| v | — ¢~
Then we see from (1.4) that
ull|=]lu|] for uEX, (5. 2)
since |7|<<»>. Moreover we have

Lemma 5.3 Assume conditions (H),, (H):, (H)s and (1.13) hold. Let
u(r, t), v(r, )EX, be even in v. Then
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1 Z(2)— L)l = Callle — olICll2ll[*=* + [ w][177) (5.3)

and
|L(2) — L(v)l| = Csf| e — vl (|| ae] [P +[[0]|*7) (5.4)
+ Calllze = oll[°(lleel [P~ + [0l P7),

where O is the number in (1.12) and Ci, Cs and Ci ave positive constants
depending only on F and n.

Proof. By H(u), G(u) we denote the functions defined by (4.3), (4.4)
respectively. Then (4.2) implies

L(u)(7, )= L(v)(7, t)
:Iidf/:i(ﬂ(u)_ﬂ(v))(t—r+ o, T)(1— 6®)"do

with
(H ()~ H) o, 1) =m) (52 ) 1" (G (w)= G(w)(o, 2).

Moreover, analogously to (4.6) and (4.7), by (H): we get

| DA G(u)— G(v))(p, 7)|
=< Cllze = olll(lllzell[P~* + [ wll|P~< 0>~ ™
X< pl+|zI>7 2 ol— 2> for |p|Z1,0=<;<m+1

and

|0*DYG(u)— G(v))(o, )| < Clllwe—oll|([[[2l||”~* + || o|l|P~ )< >~ #
for |o|£1,0</<k and 0<k<m+1.

(For the details see e.g. Kubo [9], §3). Therefore, analogously to Prop-
osition 4. 4, we obtain (5.3). Furthermore, employing condition (H)s also,
we get

|DI**(G(u)— G(v))p, 7)|
< Clllee —ol|({l 2P+ 0l +ll2e = vl 22l 2 4 | 0] *2)}
x> ™| o| +]z[># <] o] =|z[>7* for |p|=1

and

|0*D5*(G(u) — G(v))(p, )]
< Cllae—oll(l2l?~* +lol*=*) + o — wll|°(lf2el "2 + [[w]| " +2)}
XLyP7P for |p|£1 and 0=Zk<m+1.

Therefore we obtain (5.4), as before. The proof is complete.

We are now in a position to solve the integral equation (4. 1).
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Proposition 5.4 Let the hypostheses of Theorem 1.2 be fulfilled. Then
there arve positive numbers e, and d having the following property, where &
depends only on F, n and x and d only on F and n: If
{7, glllo=e<eo, there exists umiquely a solution u(r, t) of (4.1) which
belongs to Xa and is even in v. Moreover u< C*R? and we have (1.15)
through (1. 19).

Proof. First of all we set
d=min{1, (4 C;)~"»-1}, (5.7)
where C: is the constant in (5.3). From (5.2) and (5.3) we have then

L)~ LSHllu—olll for u, vE Xe. (5.8)

We now define a sequence of functions . (£=0,1,2, -**) by uo=u_ and
ur=uo+L(us-1) for k1.

It follows from [Theorem 1.1 that wo(7, ¢) belongs to X, is even in » and
satisfies

|uol| £ Coe  for any e>0, (5.9)

where C, is a constant dependign only on # and x. Let & be the maxi-
mum of positive numbers ¢ satisfying the following three consitions

2Ce=d <1, (5.10)

2°Ci(Coe)P <1, (5.10)2
and

271 Cy(Coe)P 15, (5.10)s

where Co, Ci and Cs are the constants in (5.9), (5.1) and (5.4) respective-
ly and d is the number given by (5. 7).

In what follows we suppose 0<e=<e. Then by induction it follows
from Lemma 5.2, (5.9), (5.10): and (5. 10), that u.< X, for £=0 and

luel| <2||2o]| for £=1. (5.11)

Moreover (5.8) implies
1 kR
letns=all < () Meer = alll - for k0.

Using (5.4) and (5.10)s also we thus obtain
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ok
||uk+1_uk||§‘1_||uk_uk—1”+Cs L for k%l,
2 2

where
Cs = 232 Cy||l 21— wol|| ]| 200l | " +2.

Consequently we have

1 k 1 Sk
lower—= sl = () Nen— el + ot ()
for k21, since 0<6=1. Therefore the sequence u. (£=0,1,2,-*) conver-
es to a function # in X, because of Lemma 5.1. Besides it follows from
(5.9), (5.10); and (5.11) that = X, and

||| = 2||u-|| =2 Coe. (5.12)

Moreover we see from (5.2) and (5.8) that « is a unique solution of (4.1)
in Xu. Now (1.15) through (1.19) follows immediately form (5.12) and
[Proposition 4.4, since (1.17) is a direct consequence of (1.15). Thus we
prove [Proposition 5. 4.

In order to prove the uniqueness of a solution of the nonlinear wave
equation (0.1) which satisfies the asymptotic behavior (1.15), we need the
following.

Lemma 5.5 Assume conditions (H): and (H): hold. Let u_(7, t) be the
solution of the Cauchy problem (1.1) which is even in v and belongs to X
NC*R?). Let u(r, t) be a solution of (0.1) which belongs to X N C¥R?),
1S even n v and satisfies the following asymptotic behavior

\D(u(r, t)—u-(r, )|+IDe(ulr, t)—u(7, t))
SCLry MK

for (v, t)ER? such that t<0, where C, p ave constants independent of
v, t, and 0<u<l. Then u(r, t) satisties the integral equation (4.1).

(5.13)

Proof. Consider the following Cauchy probrem for (0.2):

n—1 .
th_Wrr_"—r—w'r:O in RX[s, ),

(5.14)
w(r, s)=f(7,s), wr,s)=g(r,s) for rER,
where s is a fixed negative number and
f(r,s)=u(r,s)—ur,s), (5.15)

9(7, s)=D(ul(r, t)~u(r, t))|e=s.
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Since u(7,t)—u_(r,t) belongs to X and is even in 7, it follows form
Lemmas and that (5.14) admits a unique solution w(r,t; s)E
C%(R?. Moreover the solution is given by

w(r, t:s)= f i(Dpr+Hg)(t—s+rd, $)(1— 6?)"do (5. 16)

for each s<0, where Hs(p,s), Ho(p, s) are defined by (2.2) with f(»)=
f(r,s), g(r)=g(r,s) respectively. Besides w(r, ¢ ;s) is even in 7.
Now set
t 1
(7, t;s)=u(r, t)+_£ dz'[lH(t-—H- vo, T)(1—o*)™do
+w(r, t;s),

(5.17)

where H(p, ) is given by (4.3) and (4.4). Then, since G(p, 7) is even in
o according to (H)s, it follows from (4.5) and that v(7, ¢;s)
belongs to C%R? and satisfies the inhomogeneous wave equation (2.5).
Moreover from (5.15) we have v(7, t;s)=u(r, t) and ve(7, t;s)=ur,t)
for t=s. Therefore by the uniqueness of solutions to (2.5) we obtain
o(r, t:s)=ul(r,t) for (r, t)ER? since u(r,t) is also a solution of (2.5)
with G(r, t)=F(u(r, t), u:r,t), u(r,t)) regarded as a given function.
In order to show that u(7,t) is a solution of (4.1) we thus have only to
prove

slir_r}o w(r, t;s)=0 for (r,t)ER? (5.18)

because of (5.17).

Let (7, t)ER? be fixed. Since each side of (4.1) is even in » and con-
tinuous according to (4.13), one can assume #>0. We find from the
proof of that the function D.H;+ H, in (5.16) is represented
as

(D.Hy+ H,)(p, S)=JZ=3OD£E(0, s),

where

Fi(po, s)=aof(p, s)+0(a1Dof (o, s)+ bog(p, 5)),
Fi(p, s)=p0"*"(a;+1Dof(p0, s)+ big(p, s)) for 1=j<m,

and ax, b; are constants. Moreover, since ¥—u-€X, we have Fip, s)e
C*2(R?) for 0<j<m hence D,Hs+ H,=C*(R?). For convenience set o
=¢—s+70. Then from (5.16) we get
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m 1
w(r, t;s)=2 [ \DiFi(p, s)}(1—0*)"do.
Since
DiFy(po, s)=r"DiFyp, s),
integrating by parts, we obtain
m 1
w(r, t;s)=2r" I Fio, s)(=Ds)(1—-0*)"do.
Furthermore (5.13) and (5. 15) yield
|Fi(o, s)|SC<s>7* for 0=<j<m,
because u —u-& X implies
lu(r, t)—u_(r, t)|< C<E>*

Thus we have
lw(r, t;s)|= C(s)‘”ér‘j

hence (5.18) follows. The proof is complete.

In order to complete the proof of [Theorem 1.2 we also need the fol-
lowing

Proposition 5.6 Let u(r, t)EX: be a solution of (4.1) which is even in
7, where u-(7, t)EC*R?) is a solution of (0.2). Suppose conditions (H),
(H): and (1.13) hold. Then there exists usiquely a solution u.(7, t), of the
linear wave equation (0. 2) which belongs to X NCXR?) and has the fol-
lowing asymptotic behaviors

lu(7, t)—us(r, IS Clull?<r> ™ 7|+t K|+ t>*

for (7, t)ER?, (5.19)
|DEDHu(r, £)—u(7, 1))
< CollullP<r> ™ K|r|— |t K|r|+t>7* (5. 20)

for 1=a+pB=2, (7, t)ER?

|re*22DEDX (7, £)—us(r, 1))
< Callul P <r>7m 273w | =t~ [+ 257" (5.21)
for 3=a+pB=m+3, 02852 and (7, t)ER?

and

lee(t)— us()S CLE>* for 20, (5.22)
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where C; are constants depending only on n and F.

Proof. Set
-] 1
ulr, )=ur, t)+_[mdr/:1H(t—r+ ro, 7)(1—0®)™ do,

where H(p, r) is the function given by (4.3) and (4.4). Then it follows
from Lemmasid. 2 and 2.1 that u. belongs to C*R?) and satisfies (0.2).
Moreover from (4.1) we have

u(r, t)—u(r, t)z—[wa’r/:H(t——r—l— ro, 1)(1—o0®)™do

o (5.23)
:L dr/:I H(—t—r+705, —)(1—¢%)"do,

since H(p, ) is odd in p. Therefore by virtue of [Proposition 4. 4 we have
u—u+&X hence u,€X. Furthermore from (4.18) through (4.21) we
obtain (5.19) through (5.22), since (5.20) implies (5. 22).

Next we shall show the uniqueness of such a solution . of (0.2).
Let v4(7, t) be another solution and set w(7, t)=wu.(r, t)—v.(r, ). Then
from (0.2) and (5.20) we have

lw(OIz = [w(I  for teR.

Moreover (5.22) implies that [|w(¢)|. tends to zero as ¢ — oo, since
lw(B)lle = loes(t) = u()e+l2(t) = v (2)]e.

Therefore we conclude that w(7, ¢) is constant. Hence w(7,t) vanishes
identically according to (5.19). The proof is complete.

Proof of Theorvem 1. 2. Let & and d be the same numbers as in Propo-
sition 5.4. Let |[{f, g}llo=e=<eo. Then there exists uniquely a solution
u(7, t) of (4.1) which is even in » and bebongs to Xs. Moreover it fol-
lows from that « belongs to C*R? and satisfies (0.1).
Furthermore we have (1.15) through (1.19).

Next we shall show the uniqueness of such a solution of (0.1). Let
u(7, t) be a solution of (0. 1) which is even in #, belongs to XzN C*R?)
and has the asymptotic behavior (1.15). Then we see from Lemma 5.5
that « satisfies (4.1). Moreover, a solution of (4.1) is unique in Xj
according to (5.8). Therefore such a solution of (0. 1) is unique.

Finally the statements for the u. follows from [Propositionb.6. It
remains only to prove (1.20). From (0.1) we have
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t [
Zﬁ a’rfo G(r, Dur, o)r*'dr =|ul)]i—«(0)[?,

where G(r, t) is given by (4. 4), because (1.7), (1.15) and (1.19) implies
IDE culr, IS CY ™ K|r|—tp™™" for 1=|a|=2.

Moreover by (5.22) we get
le()le — |20l  as ¢— oo

Therefore

zfowdrf’G(r, Dur, )" dr =|us(0)2— |« (0)|l3.

Analogously we have from (1.17)

2 dr [ GG, Dudlr, ) = L= -0l

Hence (1.20) follows. Thus we prove Theorem 1. 2.
Appendix

The purpose of this appendix is to show that one can relax condition
(1.2) on decay rate of the initial data in (1.1), provided the number p in
(H), is large, say, p>(m+3)/(m+1). In what follows we shall indicate
only the points different from the previous sections.

For §1, we first replace the number 1+x in (1.2) by g, so that
(1.2) changes into

17, gllo =_sup_|£(r)I<rdme

m+2 . ] (1 2),
=31 swp (F g™,
where 0<u<1. We also replace (1.4) by
lul= 22, sup, |D7.culr, DRI+t (1. 4y

lals1(r,t)ER
m+1 . . . . .
+ 3V sup (|7 Dit?u(r, )|+’ Di* Dau(r, t)]) <rd™ | r|+ |2,

J=0 (r,t)ER?

where u is the same number as in (1.2). Then, in [Theorem 1. 1], the esti-
mates (1.6), (1.7) and (1.8) change into

lu(r, I= CIF, gHlo<r> < r |+t (1. 6)
ID&u(r, OIZ CIF, gHor> ™ Kr|—=tp* if 1=|a|=2 (1.7)
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and
|72 Df s, )| < CII{f, gHloCr >~ 143 | —[2[>7* (L. 8Y
if 3=Z|a|=m+3. )
Next consider (0.1). We replace condition (1.10) by
m+3 ,
p> ml (1.10)

Note that (m+3)/(m+1)> po(m). Besides, if p>m—+3, we change condi-
tion (1.12) for

|D*F(A)—D°F(X)| < B|A=A|(|A|P~™3 4| X|P~m-3). (1.12)
We also replace condition (1.13) by

2 p<u<l, p>i (1.13)

=1 #<l, p>—. :

Then, in [Theorem 1.2, the estimates (1.15), (1.17), (1.18) and (1.19)
change into

IDr(u(r, £) = u-(r, )| +|Dulr, ) —u(r, 1))

< Cllulr> " Kr|—t>* for (r,t)ER? (1.15)
lu(t) = u-(le= CallulP<t>=#70if  p>(1/2), t=0, (1.17Y
(7, )=u-(r, 1= Cllul®<r>=™r|+|th™  for (r, HER®

(1.18)

and
|72 2 DEDH u(r, t)— u_(r, t))|
< CollullP <ry—mre+E=3 | — >~ (1.19)Y
for (r,t)ER? 2<a+B<m+3 and 0<B=2.

For the u.(7, t), we replace the factor <|»|—¢>7* in (1.15)" and (1.19) by
7|+ ¢>7*. Besides, (1.20) holds if #>1/2.

For § 3, we replace x+1 by u in the proofs of Lemmas[3. 2, and
B.4. Moreover, in the proof of Lemma 3. 4, we have

(7, t)|§Cer"”‘l(/ltt_+r7<p>‘”dp+<t+r>“">
S Cer ™ Kt+rit*

since p<1.
For § 4, we first replace (4.6), (4.7) and (4.10) by
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|DiG(p, T)|= CllulP<o>~™<|o| +]|z|>~#*

for |o|21, 0=Zj<m+2, (4.6)
|ka£G(40, T)|§C||u||p<z'>—p# (4.7)
for |p|£1, 0=<j<k+1 and 0=k=m+1 '
and
j < p¢ ,yP—a-1 —pu
|DiH (o, D)= ClulP<o>*~ 7ol +|z]> (4. 10)

for ;=0, 1, 2.

In Lemmasi. 2 and 4.3 we assume condition (1.13)" as well as the hypoth-
eses holds. Then (4.11) changes into

|DE cwe(7, t, T)| < Cllu||PCry* )y —min tpror+1}

for 0=|a|=k+2. (4.11)
In [Proposition 4. 4, the estimates (4.18) and (4.19) change into
|L(u)(7, = Cllul?<r>-"r|+]|tdP* if |r|=1 (4.18Y
and
8 e < DY N=m=1g| | ay-n
|DE D7 L(2)(7, t)|< Clul/<r>"|r|— 1> (4. 19)

if [7]=21, 1=a+B=m+3 and 0=p=2.

Besides, the factor <> *'in (4.20) and (4.21) changes into <¢>7*.

In Lemma 4. 6, the factors <o+|z|><o—|z[>™" and {|o:|+|7|>#<|0:|—
|z[>™% in (4.24) through (4.27) change into <o+|z|>~? and <|p:|+|z|>~?
respectively. Besides, the —p —px in (4.28) does into —pu. We also
replace conditions (4.32) and (4. 33) by

1/p< <1 (4. 32)
and
pu+q>p+op. (4.33)

Lemmas@.7 and are nOw unnecessary.
In we delete (4.38) and replace (4.39) by

[1,0(7’, t):C7’<7’+|l‘|>_‘u. (4. 39y

For the proof we chasge the factors <o+ 1> P o—1>™? and<po—1)>"*
<o+ > in (4.40) for <p+17r>~°* and {p— > ** respectively, hence
(4. 42)+ change into
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1 t+7r

Lar, ) = [ e mde [T XDy for 120 (4.42),

N 2 |t—1

and

—~ _ 1 [ ® E+ 7 p-qu —pu
Iio(7, t) = 2[_7 dg.[nax{lt-rl,e}< 5 YPmII > dy.

For (4.42)%, assuming ¢ >0 we have from (4. 33)’
It éC/l;t_:<§>—#d§/::<é+77>p—q—1—p#+#d77
t+r
<c [ e

t

(4. 42)-

Hence we obtain (4.39). For (4.42)., if either <0 or ¢t =37, we have

t+r o0
I éC(7’+‘t|>_”/; . dé[m<$+”>p—q—1—py+yd”.

If 0=¢t=<37, then

(=]

Iy = C_/:_t:rdf lt_r|<5+ pyP-9-1- Py
t+r
éC’/t‘_r (5+|t_7|>p—q—pyd5
2(t+r)
= C’/O‘ <E>‘°_q_p"d5_

Therefore by (4.32)" and (4.33)" we obtain (4. 39)".
In Lemma 4. 10 we replace (4.45) by

Leolr, ) SCr—t>* for 1<a<m+3.

For the proof we note that the J(#, ¢) changes into
t P+
I, 0= [ dr [ <oy p+Izl>*dp,
—o0 o-
where p:=t¢t—rX7». Moreover we have
lo-|+|z]=|r—t| for r=¢,
because
t—r—c+|r|l2r—t if r<t—r<=0
and

t+r—t+|r|zt—r if r=t—r20.

(4. 45)
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Hence by (4.33)" we get
J(r, t)§<r—t>‘”/:;dr |:l<p)"‘"‘2“”“+"‘a’,0
< CGr—ty7+ [Cpoyrriomngy
SCr—>7~
In Lemma 4. 11 we replace (4.49) by
L(r, )= C<r+th~"

For the proof we note that (4.26) changes into
t
Iz=[ (E+r—oP T Kt+r—r+|od~dr.

Moreover
t+r—c+|r|Zzr+|t| for ¢,
since —r2=|t| if #+<0. Hence by (4.26) we get

Iz§<r+|t|>"‘[w<t+r—r)p‘q'l‘p““‘dz'.

Therefore (4.33) yields (4. 49)".
In Lemma 4. 12 we replace (4.51) by

L(r, ) S C<r—t)*
For the proof we notice that (4.27) change into

t
Is=f_ G—r—oP K|t —r—1|+]|7|D>?dr.

Moreover we have
|t—r—rt|+|z|2|r—t] for r=<t¢,

as in the proof of Lemma 4.10. Hence by (4. 33)" we obtain

L=<{r— L‘>"‘/_'w<t— y—yPTITiTPer g
< Cr—t>,
In the proof of we have from (4. 10)
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(4. 49)

(4.26)

(4.51)

(4.27)

1
|Dfwo(7, ¢, r)léCllullp_/:1<t—r‘+7’6>"“’"1<lt~r+ ro|+|z|>**do

for 0=7=1and 0=e<2. Hence (4.20) with =0 and x+1=g follows, as
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before.

Finally we replace (4.55) by

|DEG(7, )= CllullP<r>~ ™ Kr +tH>~*

for r=21and 0sas=m+1, (4. 55)

which follows immediately from (4.6) and (4.33)’, since p>1 and

—mp—putp=p—q—putu—m—2<-—m—2.

Thus we prove [Proposition 4. 4.

For § 5, we replace the factor {|»|+[t[><|r|—|¢[>* in the auxiliary

norm |||«||| by <|7|+|¢[>*. Besides, if p>m+3, we take Ci=0 in (5.4).
In the proof of we replace the factor {|o|+|z]>#<|p|—|z|>~**
and <z>"? by <|p|+|r|>7* and {r>~%, respectively. Finally, in Proposi-
tion 5.6 we replace the factors <|7|+|t]>|7|+#>~* in (5.19) and (||
— 1t K| r|+>7* in (5.20), (5.21) by (|r|+¢>7*. Besides, if #>1/2, we
change the factor <t>~* in (5.22) by <#>~***»_ Thus we obtain an ana-
logue to [Theorem 1. 2.
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