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Some inequalities related to the Lorentz spaces
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Abstract. In this paper we introduce three types of inequalities related to the
Lorentz spaces on a measure space (M, m).

Key words: rearrangement of function, Lorentz space, Besov space, interpolation in-
equality.

1. Introduction

In this paper we introduce some inequalities related to rearrangements
for measurable functions on a measure space. In Section 2, we improve
multilinear integral inequalities for products of functions and their rear-
rangements (Theorems 2 and 5). The proof is reduced to the associated
discretized inequalities (Lemmas 3 and 8). In Section 3, we introduce an
interpolation inequality in the Lorentz space (Theorem 11). Although the
result of this type may be proved by an abstract interpolation theorem,
we give a direct proof which makes the dependence of constant term on
integrability exponents much more precise. In Section 4, we introduce an
interpolation inequality in the Besov space built over the Lorentz space on
R™ (Theorem 13). This result may be regarded as the Lorentz type refine-
ment of the interpolation inequality in [10], see also [3], [4], [5], [6], [9], [11],
[12], [13]. For general information on function spaces, we refer the reader to

[, [2], [8], [14], [16].

2. Definition for the rearrangement of functions

We consider measurable functions f on a measure space (M,m). To
define the Lorentz space later, we introduce the rearrangement f* for f.

Definition 1 For any measurable function f on a measure space (M, m),
the distribution function Ay : (0,00) — [0,00], the rearrangement f* :
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(0,00) — (0,00), and its average function f** : (0,00) — (0,00) are de-
fined respectively by

Ap(s) =m({z e M :|f(x)| > s}), s>0,
f(t) =inf{s > 0: A¢(s) < t}, t>0,

£ () = % /0 £ (s)ds, £ 0.

We give our first result.

Theorem 2  For any measurable subset E C M with m(E) < oo, the
following inequalities hold

/O £ (H)g" (m(E) — ydt

< /E F(@)g(a) dm(x) < / F(t)g" (W)t (2.1)

for any f,g € L*(E).

We remark that the last inequality is well known and holds even in the
case m(E) = oo, see for instance [8] or Theorem 5 below.
For the proof of Theorem 2 we introduce the following lemma.

Lemma 3 Letag <as <---<a, and by <by <---<b,. Then

n n n
D aibnsiog <Y ajbogy < asb; (2.2)
j=1 j=1 j=1

for any bijection o : {1,2,...,n} — {1,2,...,n}.

Proof. We prove the lemma by induction on n. For that purpose we use
the following inequality: If @ < a’ and b < ¥, then ab’ +a’b < ab+a'b’. The
case n = 2 follows by setting a = a1, @’ = as, b = by, b/ = by. Let n > 3
and assume that for any nondecreasing sequences {a;;1 < j < n — 1} and
{b;;1 < j <n—1} and any bijection o : {1,...,n—1} — {1,...,n—1} the
inequalities
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1 n—1 n—1
Z ajbn,j < Z Cljba(j) < Z ajbj
j=1 j=1

n
j=1

hold. We prove that for any nondecreasing sequences {a; : 1 < j < n}
and {b; : 1 < j < n} and any bijection o : {1,...,n} — {1,...,n} the
inequalities

Zajbnﬂ,j S Zajbg(j) S Zajbj (23)
j=1 j=1 j=1

hold. If ¢(1) = n, then a1b,(;) = a1b, and the induction assumption implies
the first inequality in (2.3). If o(1) < n — 1, then there exists a unique
k €{2,...,n} such that o(k) = n. We have

a1bg (1) + arbo k) = a1by + arby(1) (2.4)

since a1 < ag and by (1) < by = by (). We define 6(j) = o(j+1) for j # k-1
and 6(k—1) =0(1). Then s :{1,...,n—1} — {1,...,n—1} is a bijection.
By (2.4) and the induction assumption, we have

Y aibeiy = D asbos) + arbor) + arbog)
i=1 J#Lk

> Z a;bs(jy + a1bn, + arby (1)
ALk

= Z a;bz(j—1) + aibn

=2

> Zajbn—(j—l) +aib, = Zajbn+1fja
j=2

j=1

which is precisely the first inequality in (2.3).

If o(n) = n, then a,by(n) = anby, and the induction assumption implies
the last inequality in (2.3). If o(n) < n — 1, then there exists a unique
ke{l,...,n— 1} such that o(k) = n. We have
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akbo (k) + anbo(n) < akbo(n) + anbg k) (2.5)
since ax < an and by () < by = by (). We define 6(j) = o(j) for j # k and

(k) = o(n). Then é : {1,...,n—1} — {1,...,n — 1} is a bijection. By
(2.5) and the induction assumption, we have

D aiboy = D ajbogy) + arbor) + anbon)
j=1 j#k.n

< Z a;bg(j) + arbs(n) + anbo (k)
j#kn

n—1
=D a;bs(j) + anbn

j=1
n—1 n

< Z ajbj + anbn = Zajbj,
i=1 j=1

as required. O

Proof for Theorem 2. We may assume f and g are positive functions, see
Remark 4 below. First we prove (2.1) for f and g as simple functions of the
form

N L
F=> cixe, g9=>_ dixs, (2.6)
j=1 i=1
where ¢y > -+ >cny >0,dy >--->dp >0,
N L
E;NE,=0, F;nF.=0ifj#k |JE =JF =E,
j=1 i=1

and g is the characteristic function of a measurable set F'. Then fg is also
a simple function and its integral is calculated as

N
/E f@)g(@ydm(z) = 33 ¢jdi m(E; 0 Fy).

j=11i=1
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On the other hand, we have

(c1, 0<t< m(El),

) =L¢, S im(Ey) <t<Xi_ m(E), j=2,...

07 t > Zk::l m(Ek)a
di, 0<t< m(Fl),

g () = 4 dje gy m(Fr) <t < Xh_ m(F), j=2....

07 t Z Zé:l m(Fk)7

and then
m(E)
/ FrOg (0)dt = ¢;di| I,
0 i
m(E)
[ rogm(E) - i X sl
0
where | - | is the Lebesgue measure on R and

i—1

251

L, = {t : im(Ek) <t< Zm(Ek), Zm(Fk) <t< Zm(Fk)},
k=1

k=1 k=1 k=1

Jij = {t : im(Ek) <t< Zm(Ek), Zi:m(Fk) < m(E) —t< Zz:m(Fk)}
k=1

k=1 k=1 k=1

We may assume each m(E; N F;) is a rational number, j = 1,...

7N’Z:

1,...,L and so |I;j],]J;;| are also rational. Then the estimate (2.1) for (2.6)

is just a consequence of Lemma 3.

Next we treat general functions 0 < f,g € L?(E). We can provide the
sequence of simple functions which satisfy the above argument and pointwise

relations

fn(l‘) < fn+1(x) < f(x)v gn(x) < gn+1(l‘) < g(l‘)

We have already shown
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A £2 (095 (m(E) — t)dt

sﬁjmmmwmwsé f2(D)gr (bt (2.7)

for any n. We observe that the middle term of (2.7) converges to the middle
term of (2.1) as n — oo by the dominated convergence theorem. We estimate

A () — F2(0) e

m(E) m(E)
—A wwmawm@ﬁw—zj P02 ()t

0

f;éUﬂ@\+uum|Mmu»—zé IO
=/ﬂﬂ@?ﬂh@ﬁ%ﬂwﬁ&
E

where we have used the equality [;" m(E )| t)2dt = [, |u(z)|*dm(z) for
general u. We also have g — g¢* in L?(0, m(E)) Therefore we observe that
the left and right terms of (2.7) converge to the left and right terms of (2.1),
respectively, as n — oo. O

Remark 4 The motivation for the assumption of f and g being positive

is as follows. Let E’ be the support of the product function fg, fo def Ixprs

and fy def fx - Using these notations, the formula (2.1) becomes

m(E") m(E")
/ fo (£)g5 (m(E")—t)dt S/ | fo(@)go(z)|dm(z) S/ fo (t)go (t)dt.
0 E’ 0

We generalize the upper bound estimate.

Theorem 5 Let E be a measurable subset in M. Let n be a positive
integer. Then

/E\ﬁ(:v)fz(év)--'fn(x)dm(:v) S/O fi@f2 (@) fa®dt (2.8)
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forany f1, fa,..., fn € L™(E).

Corollary 6 For the Lebesque measure space (R™,dx), for any points
ai,...,ar € R™ and any orthogonal transformations A; : R® — R", j =
1,2,...,k, the following inequality holds

/Rn |fi(ar — Ayz) folag — Ag) - fr(ap — Agz)|da
< [T roso- g @9
0

fOT any flvf??"‘7fk € Lk(E)

Remark 7 In [7] Guliyev and Nazirova claimed the following inequality:
For any a € R™ and any nonzero real numbers 61,65 ..., 0,

[ 1= 0000 o= 020) -+ il — )|

< ¢y / T ROBW - f0d (2.10)

where Cy = |0y - - - 0| ™. However this claim seems to need further assump-
tions on 01,05 ...,0;. In fact, by setting n = 1,k = 2 and

1, O0<z <1, 1, O0<z <2,
f1($)={ fz(fﬂ):{

0, otherwise, 0, otherwise,

we have f{(t) = f1(t), f5(t) = fa(t) for t > 0 and fooo fi@) fs(t)dt = 1. For
a =0, 8 = —1 we have

/ £1(2) fol o) = 1
R

for any —2 < 5 < 0, which implies Cy = |f2|~! and (2.10) fails for —2 <
02 < —1.

Proof for Corollary 6 from Theorem 5. By changing the variable z =
—Aj_l(y —aj), we have
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Afi(a;—Aye)(8) = m({x € R 1 | fi(a; — Ajx)| > s})

= / ldx = / 1|Aj_1]dy
{z€R™:|f;(a;—A;z)[>s} {yeR™:|f; (y)[>s}
=m({y e R" : |fi(y)] > s}) = Ay (s),
and so (fj(a; — Ajx))*(t) = (fj(x))*(t). Therefore (2.9) follows from (2.8).
O

For the proof of Theorem 5, by using the discretization as in the above
proof, it is sufficient to show the following lemma.

Lemma 8 Letoga’igaég--'gai 1=1,2,...m. Then

n’

1 2 m 1 2
doajad, gy am gy < > aza; - -af (2.11)
i=1 i=1

for any bijections oy, : {1,2,...,n} —{1,2,....,n}, k=2,...,m.
We will give two kinds of proof for Lemma 8.

Proof of Lemma 8. The case m = 2 is the same as the latter half of Lemma
3. We prove the case m = 3 by induction on n. For that purpose we use the
following inequality again: If a < a’ and b < V', then ab’ + a’b < ab + a'V’.
In the case n = 2, the inequality takes the form:

105, (1) Agy (1) + A105,(2) 05, (2) < ajaial + aya3a;. (2.12)
If 02(j) = o03(j) = 7, then (2.12) holds as an identity. If o2(j) = j and
o3(j) # j, then (2.12) is written as

1.2 3 1.2 3 1.2 3 1.2 3
ajajay + axazay < ajajaj + axasasy,

which follows from ala? < ala3 and a3 < a3. If 02(j) # j and o3(j) = 7,

then (2.12) is written as
1,23 1,2 3 1.2 3 1.2 3
aja3a] + axaiay < ajajal + ayasasy,

which follows from ala} < ala3 and a? < a3. If 01(j) = 02(j) # j, then
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(2.12) is written as

123, 123 1,23, 123
ayaxa; + azajay < ajajaj + azasas,

which follows from a?a$ < a3a3 and a} < al.

Let n > 3 and assume that for any nondecreasing nonnegative sequences
{aé;l <j<mn-—1},1<j <3 and any bijections o; : {1,...,n — 1} —
{1,...,n =1}, 2 < i < 3, the inequality

n—1 n—1

1 2 3 1 .23
D ajad,;)as,g) < Y ajaia)
7j=1 j=1

holds. We prove that for any nondecreasing nonnegative sequences {a}; 1<
j <n},1<j<3and any bijections 0; : {1,...,n} — {1,...,n}, 2 <i <3,
the inequality

n

Za 2(J)a03(3) = Za a?a? (2'13)

j=1
holds. If o5(1) = 03(1) = 1, we have from the induction assumption
n
1.2 3
D 0% (5) Baa(y) = QT4+ Z%%z(a)%s(y) = Z“
j=1 Jj=2

If 05(1) =1, 03(1) # 1, we set j; as 03(j1) = 1 and estimate

2 3 3
Z%%gm%m alal%g(l)+%1%2<m%3u1)+ Z %%z(w%am
j=1 J#1,51

1.2 3 1 2 3 1.2 3
< ajajay + @j,80,(51)%3(1) + Z ajGs,(5)%s(5)
J#Lj1

1.2 .3 2 3 1,23
lalal—i-é aa]aj g a] 75,

where the first inequality follows from ala? < a} a?

3 3
31 %, () and a7 < @y (1)
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and the second inequality follows form the induction assumption. The case
o2(1) # 1, o3(1) = 1 follows similarly. Next we consider the case oo(1) # 1,
o3(1) # 1. We set j1 as 03(j1) = 1 and jp as 02(j2) = 1. If ji = jo,
we define 7;(j) = o04(j) for j # j; and &;(j2) = 0:(1), i = 2,3. Then
g;:{2,...,n} = {2,...,n}, i = 2,3, are bijections. We estimate

n

1 2 3 1 2 3 1 .2 3 1 2 3
Z%‘am(j)%s(a‘) = 105, (1)0gy(1) T 05,0101 + Z A5 Qqy(5)Yos(5)
j=1 §#11

1.2 3 1 2 3 1.2 3
< a101ay +aj,a5, (1) 05,1y T Z 5oy (5)Las(4)

J#Lj1
1.2 3
= aafal + ) ajag, ;a3
Jj=2
n n
1.2 3 1.2 3 _ 1.2 3
< ajajaj + E aja;a; = E ajajaj,
Jj=2 Jj=1

where the first inequality follows from afa} < a2 »(1) Py (1) and al < a; )
the last mequahty follows from the induction assumption. If j1 # jo and

2.3

< <
a]2a1a03(g ) < o a? < ajlao 1) since a3 < a 5(ja)" We

define 62(j) = 02(j) for j # ja, 02(j2) = 02(1), 3(]) = 03(j) for j # j1, ja,
5’3(j1) = Jg(jg), 5’3(]2) == 0'3(1). Then 5’2 : {2, NN ,n} — {2, PN ,’I’L}, 1= 2,3,
are bijections. We estimate

al
aja;, (J )a1 then a}

1.2 3
Z%%(a‘)aos(j)
j=1
1 2
= ajag,yah,q) + aj, a5, al Faj,aial, g+ D ajag,gyad, g
J#1,71,72
3
< ajal,oyah,q) T aj,aial +ajad, a0 T D a5as,)a0,0)
J#1,91,52
1 2.3
< ajajay + anaoz(l)aUS(l) + aJ1a02(Jl)a03(J2) + Z ‘72(J)a03(J)
J#1,91,52

n

_ 1.2 3 1.2 3

= ajafa} + ) ajag, a3,
i=2
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ata2ad 2,3 — 1.2 3
ajaiaj + E al ja;a5 = aja;a;,

2
J2 02(] ) o3(j2)’

the second inequality follows from a?a3 < %2(1)a 5(1) and al < aJQ, and

the last 1nequahty follows from the induction assumption. If ]1 % jo and
1 3

a; a@(jl)al < a alaos( 2y then a al < aj s (i 72 (1) We

deﬁne G2(j) = ‘72( ) for j # ju, ja, 02(]1) = 02(1), 62(j2) = 02(j1), 5(4) =

o3(j) for j # ji, 63(j1) = 03(1). Then G, : {2,...,n} —{2,...,n}, 1 =2,3,

are bijections. We estimate

where the first inequality follows from a} a? < a a and a} < a?

a since @1 < a?
2 )

n

1 3
Za %(a)%(y)

j=1

1.2 3 3 1.2 3
—alam(l)aos(l)*a mnaﬁa a1a03(32)+ Z 5%y (5) Y05 (j)
]761aj17j2

1.2 3 1 2 3 1 2 3 1.2 3
= 185, (1)%5(1) +aj atay + Ujy Coy (51) Yo (52) + Z @y (5)%os(4)
J#1,51,72

1.2 3 1.2 3
< ajafa} + aj,al,)ad, o) 44,050,006 T D 05a5,;)a5,0)

]761aj17j2
n
_ 1.2 3 1.2 3
= arafal + 3 aj03, )05, ()
=2
n n
1.2 3 1.2 3 _ 1.2 3
< ajajaj + E ajaja; = E ajajajy,
< 3 <
where the first inequality follows from aJ a1 < a 2y () AN a? < a(72 (1)

the second inequality follows from a%a3 < aa (1)@ 3 (1) and al < aal(] ) the
third inequality follows from the induction assumption. This proves the case
m = 3.

We now prove the lemma for all m with m > 4 by induction on m.
Let m > 4. We assume that for any nondecreasing nonnegative sequences
{aé;l < j<n} 1<i<m-—1, and any bijections o; : {1,...,n} —
{1,...,n}, 2 <i<m—1, the inequality
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IN

n n
1 2 m 1 2 m
Z%’%z(j) o (5) Z%‘ aj---aj;

j=1 j=1

holds. Now let {a;'-; 1 < j < n} be any nondecreasing nonnegative sequences
with 1 <7 < m and let o; : {1 n} — {1,...,n} be any bijections with
2 < i < m. We define b; = a a A7) 1 < 57 < n. Then there exists a
bijection o¢ : {1,...,n} — {1,.. n} such that {bs,(;);1 < j < n} forms a
nondecreasing nonnegative sequence. We define c¢; = b, (;) to have

1 2 _ 3
Doaja,gyag gy = Y biag,gy Al )
=1 =1

J— 3 m
= Z Dog (k) Ty (oo (k) " Vo (00 ()

k=1
n
— 3
= Z cka(o’goao)(k) L a?;_moo_o)(k). (214)
k=1

Since {cx;1 < k < n} is a nondecreasing nonnegative sequence and o; o gy
are bijections, 3 < i < m, we apply the induction assumption to (2.14) to
obtain

n
Yoajad,gy - am gy < ch“k (2.15)
j=1

Now let d; = a? ---aj". Then {d;j;1 < j < n} is a nondecreasing nonnegative
sequence and

n

3 m o__ 1 2
chak”.ak - Zdjaao(j)a(azoao)(j)' (2'16)
k=1 j=1

Since we have proved the lemma with m = 3,

n

1 1.2 1 2 m
Y 4Gy () Urso00) () < Zd aja} =Yy ajai---a}" (2.17)
=1

— ]:1

<

By (2.15), (2.16) and (2.17), the proof is completed. O
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For the alternative proof of Lemma 8, we use the following Hardy’s
lemma:

Lemma 9 (Hardy) Let a pair of sequences {b;},{c;} satisfy

ib]’ § iCj (218)
j=1 j=1

for any n. Let {a;} be a positive nonincreasing sequence. Then

n n

ijaj S ZCJ‘CL]‘ (219)

j=1 j=1
for any n.

Proof of Lemma 9. We prove the conclusion of the lemma by the induction
on n. The case n = 1 is obvious. We assume the case n — 1 with n > 2, and
then

n n n—1
> cjaj =Y bia; =Y (¢; —bj)a; + (cn — bn)an
j=1 j=1 j=1

= Z(Cj —b;)(a; —an) + Y _(c; = bj)an.

The second term on the right hand side of the last equality is positive since

(2.18) and a, > 0. If we set a; = a; — ay, then the sequence {a;} is
positive and nonincreasing. So the first term is also positive by the induction
hypothesis. O

Alternative proof of Lemma 8. We argue by induction on m. The case
m = 1 is obvious. We assume the case m — 1 with m > 2, that is, for any n,

1 2 m—1
Z o ()2 (5) " Qo1 ()
j=1

n n
1.2 m—1 __ 1 2 m—1
<D agaial T =) an an e aryl
Jj=1 Jj=1
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for any bijections o7 : {1,2,...,n} — {1,2,...,n},l=1,...,m — 1. Then,
since the sequence {a]’, ;_ j }}"‘:1 is positive and nonincreasing, we use Lemma
9 to obtain the case m. g
3. Definition and interpolation inequality for the Lorentz space

We define the Lorentz space by giving norms.

Definition 10 The Lorentz space L(p,q) is the collection of all f such
that || f||; , < oo, where

) * 1
Kl —{(Zfo (/7 £ (0)]74) 7 0 < p <00, 0< g <,
" supt>0t1/1’f*(t), 0<p<oo, ¢g=oc0.

Now we give an interpolation inequality in the Lorentz space.

Theorem 11 Let 0 <p; <p<ps <ooand0<q<q, g <00, Let
0 <0 <1 satisfy

b1 D2

0 1-6

(3.1)

1
p
Then L(p1,q1) N L(p2, g2) — L(p,q) and for any f € L(p1,q1) N L(p2, 2)

£ 1150 < CULI, 4 U f 15 )" " (3.2)

where

L 1/q=1/a1 1/q—1/q2
C_<q>1/q[<pl>1/q ( _ 1) +<p2>1/qz<;_(]12> ]
B 11 1_ L '
p ¢ p1 P a2 p P2

This result can be found in [1] without specific dependence of indices
on C and the proof depends on a general interpolation argument. Here

Q=
2|

=

we give a direct proof of (3.2) with specific dependence of C' on exponents
P1,DP2,P:41,492,9.

Proof. For any R > 0 we have
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00 1/q
q 1/p px th>
(L[ s
1/q oo 1/r1 oo 1/q1
(q> [(/ ’tl/p—l/m‘ndt) (/ ‘tl/plf*(t)’(IlClt)
P R t R 13
R 1/72 R 1/q2
s dt ot
+ </ ‘tl/P 1/p2| 2t> </ \tl/mf (t)’q t) }
0 0

RY/p—1/m1 1 1/ .
(2) 10

(7”71 o ﬂ)l/Tl qT
RYP=Vp2  p NV
+ . )1/7“2 <> Hf”pg,qg

11154

IN

p

p1 p
( T2 q2
p P2

(\ 1%, )9‘1 1o
mma(M) Tk
P1,91

() e
fl%
#lieml (220 Py

T ro\1/7
G-p) e
1/q (ﬂ)l/ql (pi)l/qQ
q * " _
< () mfmUm+wfmlmpwmmmemfﬂ
(p p1) (pQ p)

where we choose R so that

Rl/Pl—l/P2 — HfH;h‘ll 1 — ﬁ + 1-0

1fl5w P PL P2

) p1 <p<pa2,

with

which means ¢q, ¢ > q. We remove 1 and ro as follows
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_ <1>””1
G- A G-
1 1\Yote 1
B (q - (11> (p% o %)1/q—1/q1’
L (1>””1
R TR Dl
1 1\Yete 1
- (q - Q2> (11) _ p%)l/q—l/qz'
We then have the desired inequality (3.2). 0

In the case ¢ = 1, ¢1 = g2 = o0, (3.2) reduces to

1 1
+

1 0 —0
150 < 5| + | 051500 (1515000
Pl P P2
By the relation || f[|; o < [|f[|; 5, (v > B), we have for any 1 < ¢,q1,q2 < o0

1
1

1 1
M, < [ oy
p o

1
p P P2

070,215,

Therefore we have the following two corresponding bounds on constants for
the inequality:

1 1\ a1/
(07" () (1)
1 1 ) 1 1 :
p q1 P p T p

It depends on the cases which is larger than another.

4. Besov space on R™

In this section we consider the Lebesgue measure on R"™: (M, m) =
(R™,dz). We define the Lorentz-Besov spaces which are the Besov spaces
built over the Lorentz spaces.
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Definition 12 Let 0 < p,q,7 < oo and s € R. The Lorentz-Besov space

By is the collection of all f modulo polynomials such that || f| By < 00,
where
sj e\ /T
e = {(zﬂ@ log # £l 7)< oo,
BT = .
m Sup,ez 2$J||90j * f”;,qﬂ T =00,

where x denotes the convolution in R” and the Fourier transformed functions
{¢;j} C CF° satisty Zjezcﬁj(g) = 1 for all £ € R"\{0}, 0 < ¢; < 1,
supp ¢; C {&2771 < | <271}, ¢;(8) = ¢o(279¢).

This space has been discussed in [15] for example. The Lorentz-Besov
space Bg:; is the interpolation of (usual) Lebesgue-Besov spaces B;jf’rj, j=
0,1. We refer to [1], [2], [16] for general information on the homogeneous
Lebesgue-Besov and the Triebel-Lizorkin spaces.

Our interpolation result is following:

Theorem 13  Let A\, i, p,q € R satisfy 1 < p, ¢ < co and % —A< % — W
Then for any r with %—)\ <t < %—u, the embedding B;;gg HB(’;’&S — Bg’ll
holds and there exists a constant C independent of r,p, q, A\, u such that

1-60

T - T 0
1l ns < O3 (ol fll ) (ol i)™ (1)
forall f € B]’)\gg N B(‘;”&f, where
~1 ~1
1 1 1 1 P
Cpr=(14+-—- - —= e . -
nr ( ts p> (P 7"> p71||<¢00||(1+1/7'71/p) LD

1 1\ /1 1\ ¢ .
Cor = <1+r_q) (q_r> ﬁ”SOOHUH/T—l/q)*%l’

with @q is the same as in Definition 12, and 0 is the unique number satisfying

0<60<1and
9<A—"+n>+(1—9)<u—”+”>:0.
p o q T

Proof. By using the inequality (f + g)*(s +t) < f*(s) + g*(t), s,t > 0 in
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[8], we have (f 4+ g+ h)*(t) < f*(t/3) + ¢g*(t/3) + h*(t/3) and the triangle
inequality for Lorentz norm,

b= (2 [ e g nyrop®)”

g > 1/p( £* * * q@ 14
<(2[ 7 u<wm+g<wa+h<want)

(3 [Ceeremr) e G [Cenonrd)”

(2 umm<wa]f)”q

= 3211 £15.q + llglly.q + 1715.4),

|u+g+mmmzigﬂmu+g+mww

If +9+hl

< sup t'/? f* (t/3)+supt1/p *(t/3) + sup t/Ph*(t/3)
t>0 t>0

= 32 (e + 911+ 1211 0).

We estimate

j+1
1l g0 = D les i <3703 g x5 fllz - (4.2)
JEZ JEZ k=j—1

We introduce the general Young inequality by O’Neil [14]. The following
norm is used in that paper:

I (4.3)

_ {(fo”[t”pf**(t)]q‘?)”q, 0<p<oo, 0<q< oo,
p,q —
supt>0t1/17f**(t), 0<p<oo, g=00

For 1/py +1/p2 —1=1/r,1/q1 +1/q2 > s and 1/p; + 1/p2 > 1,

ILf*gllrs < CTHprMn ”g”pz,q27
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where the constant C' is independent of r, s, p1, g1, p2, g2. We have the fol-
lowing relations between two norms which are found in [8],

1/q
150 % (2) " Wla < 201

p,q°

(4.4)

We rewrite

1/r —1/q1 —1/q2
a1 42 b1 P2
<C = = . s
Hf*gH’rs — 7,.(7.‘> (p1> <p2> pl_1p2_1”pr1,(}1”9“1)24]2

We apply this inequality with s = ¢; = 1, g2 = 00, p2 = 7y to obtain

* —1/r D1 Y * *
ngk * Qg ok er,l < Crl Y pliilHQDkal,l pj* f”’y,oo7 (45)

— 15—

where 1/p; +1/y — 1 = 1/r. We evaluate ||k, ;- We denote rescaling

function u,(x) := u(ax) for a > 0. Since A\, (y) = a " A, (y) and so u}(t) =
u*(at), we have |lugll; , = a*"/p||uH;7q for 0 < p, ¢ < co. We obtain

lorlly, 1 = 2% lwo(252) 15, 1 = 27°* VP o5, o (4.6)

Fromnowonwesetp——1+ Eandl—l—l—f—%.Wetake'y:p,q
in (4.5) and put these with (4.6) into (4.2) to obtain

Fllpny < 0371710 (Cyp S 2= gy g

J=l

+Cyr Z o(n/q—n/r—m)j . 2MjH(pj % f”;m)

i<l
< gV (c S 2 /r=n /TN £ o

j=l

o 2 g

j<li
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< Cgl/rrlfl/r (Cp7r2(n/pfn/rf)\)leH

B}
+ Cg 2= f || g o)

— 031/7“7,171/7“ (2(n/p7n/r7)\)la179 + 2(n/qfn/r7,u)la79)
1 O e

where a = Cpr || fll gy e (Corl fllprze) ™" Let 0 = (A =n/p+n/r) — (u—
n/q+n/r) > 0 and let { be the largest integer that is less than or equal
to 0~ 'logya. Then, 2! < a'/? < 2.2, 0 = —(u—n/q+n/r)/o, 1 —0 =
(A—=n/p+n/r)/o, and therefore

2(n/pfn/r7>\)la179 < (afl/a)kfn/ern/ralfQ _ 1’

o(n/q=n/r=pwl,—0 < g(n/a=n/r—p)/of=b _ |

This proves the theorem. U
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