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Isometric and CR pluriharmonic immersions

of three dimensional CR manifolds in Euclidean spaces
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Abstract. Using a bigraded differential complex depending on the CR and pseudo-

hermitian structure, we give a characterization of three-dimensional strongly pseudo-

convex pseudo-hermitian CR manifolds isometrically immersed in Euclidean space Rn

in terms of an integral representation of Weierstraß type. Restricting to the case of

immersions in R4, we study harmonicity conditions for such immersions and give a

complete classification of CR-pluriharmonic immersions.
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Introduction

The relationship between complex analysis and conformal geometry has
been studied for a long time. Historically, one of the first results is due to
Weierstraß, who gave the well-known characterization of minimal surfaces
in R3 in the following way. Given a pair (h, g) consisting of a holomorphic
and a meromorphic function, the formula

f(x, y) = <
∫ [

(1− g2(z))h(z), (1 + g2(z))h(z), 2g(z)h(z)
]
dz, (∗)

with z = x+ iy some complex coordinate, gives a local parametrization of a
minimal surface in Euclidean three-space. Conversely every minimal surface
can be parametrized in this way with respect to isothermal coordinates.
Equivalently, a minimal surface is an integral of the real part of a C3-valued
1-form that is holomorphic and isotropic in the bilinear inner product of
C3, and the forms of this type can be parametrized by the pair of functions
(h, g).

Recently, this approach was generalized to immersions of higher-
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dimensional complex manifolds M2m into the Euclidean space Rn, con-
sidering pluriminimal immersions, which means that the restriction of the
immersion to any smooth complex curve is minimal in Rn (see for example
[E]). These pluriminimal submanifolds have many analogies with the case of
minimal surfaces. In particular they admit associated families of isometric
immersions and an integral representation of Weierstraß type as follows (see
[APS]). Let M2m be a complex manifold, and f : M2m → Rn an immersion
which is pluriconformal (i.e. it is conformal when restricted to any holo-
morphic curve). The Cn-valued (1, 0)-form ω = ∂f determines f up to a
constant, as we have that

f(x) =
∫ x

x0

<ω + f(x0), (∗∗)

for all x ∈ M , and it satisfies the condition ω · ω = 0, where “ · ” is the
bilinear symmetric product for Cn-valued forms. Conversely, every Cn-
valued (1, 0)-form ω, such that <ω is exact and ω · ω = 0, defines via (∗∗)
a pluriconformal map f : M → Rn. This map is pluriharmonic (and hence
defines a pluriminimal immersion, if it is of maximal rank) if and only if ω is
closed and holomorphic. Moreover, if it is an immersion then the pullback
metric on M is Kähler. In higher dimension however the parametrization of
closed holomorphic isotropic 1-forms in terms of a k-tuple of holomorphic
or meromorphic functions is not available.

Our aim is to generalize this construction to immersions of odd-
dimensional real manifolds with a strongly pseudoconvex CR structure of
hypersurface type. In the present paper we consider the lowest dimensional
case, namely three-dimensional CR manifolds immersed in Rn, with special
attention to the case of immersions in R4.

Strongly pseudoconvex CR manifolds admit a canonical family of met-
rics, the Webster metrics, parametrized by the choice of a pseudohermitian
structure, i.e. a contact form compatible with the CR structure. All these
metrics are conformally equivalent when restricted to the contact distribu-
tion. It is natural to replace the conformality condition of [APS] with the
condition that there exists a Webster metric for which the immersion is
isometric.

There is an extensive literature about CR immersions of CR manifolds
into complex spaces, with and without metric conditions (see e.g. [YK]). In
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contrast, we would like to emphasize that the immersions we consider are
real, and not complex. In particular these immersions are not required to
be CR maps. Later on we will restrict to immersions that are CR plurihar-
monic, i.e. real parts of CR maps.

In [Ru], M. Rumin defines a differential complex for contact manifolds
depending on the contact form θ. Using the complex structure on the sub-
bundle T 1,0M ⊂ TCM defining the CR structure, it is then possible to
introduce a bigrading of Rumin’s complex following Garfield and Lee [GL].
This yields a double complex, which generalizes the Dolbeault complex.
This construction, together with basics of CR geometry will be recalled in
Section 1. The condition of pseudo-convexity allows us to choose θ in such
a way that the Levi form is positive definite and can be associated to a Rie-
mannian metric (the Webster metric). Hence we can define formal adjoint
operators for the differentials of the Rumin complex and the Garfield-Lee
complex, as well as corresponding Laplacians ∆R and ∆GL.

In Section 2 we compute explicitly the differentials of these complexes
and their Laplacians for three dimensional strongly pseudoconvex pseudo-
hermitian CR manifolds in all bidegrees with respect to a pseudohermitian
local frame. This allows us to give the main result of Section 3: we find
an integral representation of Weierstraß type for isometric immersions of
such manifolds in the Euclidean space Rn, expressing the integrability, con-
formality and isometricity conditions in terms of properties of forms in the
Garfield-Lee complex.

With the aim of considering an analog of pluriminimal immersions for
odd dimensional manifolds, we consider in Section 4 CR pluriharmonic im-
mersions of three-dimensional CR manifolds into Rn. Such immersions are
not minimal, but satisfy a variant of a constant mean curvature condition.

For n = 4, it turns out that the situation is more restrictive than in
the classical case: in Section 5 we give a complete classification of isometric
CR pluriharmonic immersions of three-dimensional strongly pseudoconvex
pseudohermitian CR manifolds into R4, showing that the standard CR em-
beddings of the sphere and the cylinder in C2 are essentially the only two
examples.

For both these examples the shape operator commutes with the par-
tial complex structure on M . This property is an analog of “isotropic” or
“circular” immersions of Kähler manifolds.

We would like to thank the anonymous referee for informing us about
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the existing literature on this topic (see e.g. [DO, Ch. 16] and references
therein), as well as for several helpful remarks.

1. CR manifolds and pseudohermitian structures

We recall the general definitions of CR manifolds, pseudohermitian
structures, the Webster metric, and the differential complexes of Rumin
and Garfield-Lee.

1.1. CR manifolds and pseudohermitian structures
Definition 1.1 A CR manifold is the datum of a smooth manifold M ,
and of a complex subbundle T 1,0M ⊂ TCM of the complexification TCM =
C⊗ TM of the tangent bundle of M , such that

T 1,0M ∩ T 1,0M = 0,
[
Γ(T 1,0M),Γ(T 1,0M)

] ⊂ Γ(T 1,0M).

We denote T 0,1M = T 1,0M .
The CR dimension of M is CR-dim M = rkC T 1,0M , and the CR codi-

mension of M is CR-codim M = dimRM − 2CR-dim M .
A CR manifold of codimension one is said to be of hypersurface type.

Real manifold are in a natural way CR manifolds of CR dimension zero,
and complex manifolds are CR manifolds of CR codimension zero.

Definition 1.2 A CR map between two CR manifolds (M, T 1,0M) and
(N, T 1,0N) is a smooth map f : M → N such that f∗(T 1,0M) ⊂ T 1,0N .

A CR function on a CR manifold (M, T 1,0M) is a CR map from M to
C. Equivalently, a smooth function f : M → C is CR if and only if Z̄f = 0
for all Z ∈ T 1,0M .

A CR pluriharmonic function on a CR manifold (M, T 1,0M) is a smooth
function f : M → R that is locally the real part of a CR function.

Vector valued CR and CR pluriharmonic functions are defined in the
natural way.

Definition 1.3 A pseudohermitian structure on a CR manifold (M,

T 1,0M) of hypersurface type is a nowhere vanishing real 1-form θ such that
ker θ = T 1,0M ⊕ T 0,1M .

A CR manifold with a pseudohermitian structure is a pseudohermitian
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CR manifold.

Notice that any two pseudohermitian structures θ, θ′ are related by
θ′ = λθ for some nonvanishing smooth function λ.

Definition 1.4 Let (M, T 1,0M) be a CR manifold of hypersurface type,
and θ a pseudohermitian structure on M . The Levi form associated to θ is
the hermitian symmetric form on T 1,0M :

Lθ : T 1,0M × T 1,0M −→ C

(Z, W ) 7−→ Lθ(Z, W ) = idθ(Z, W̄ ).

If x is a point of M and the Levi form at x is nondegenerate (resp. definite),
then M is said to be Levi nondegenerate at x (resp. strongly pseudoconvex
at x). A CR manifold is Levi nondegenerate (resp. strongly pseudoconvex )
if it is Levi nondegenerate (resp. strongly pseudoconvex) at every point.

Remark 1.5 A pseudohermitian structure is a (nondegenerate) contact
form on M if and only if the Levi form is nondegenerate.

Remark 1.6 Levi nondegeneracy and strong pseudoconvexity are inde-
pendent from the choice of the pseudohermitian structure. Moreover, by
replacing θ by −θ if needed, we can assume that a strongly pseudoconvex
manifold has a positive definite Levi form.

Definition 1.7 Let (M, T 1,0M) be a Levi nondegenerate CR manifold of
hypersurface type, and θ a pseudohermitian structure on M . The unique
vector field T on M such that

θ(T ) = 1, iT (dθ) = 0

is the Reeb vector field.

Definition 1.8 Let M be a Levi nondegenerate CR manifold of hypersur-
face type, and θ a pseudohermitian structure on M . The Webster pseudo-
Riemannian metric associated to θ is the symmetric nondegenerate bilinear
form

gθ : TM × TM −→ R
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defined by

gθ(X, Y ) = <Lθ(Z,W ), gθ(X, T ) = 0, gθ(T, T ) = 1

where

X =
Z + Z̄√

2
, Y =

W + W̄√
2

, Z, W ∈ T 1,0M

and T is the Reeb vector field.
If M is strongly pseudoconvex and θ is chosen so that Lθ is positive

definite, then the Webster pseudo-Riemannian metric is positive definite
and is called the Webster metric.

Notation 1.9 We will denote by

〈 · . · 〉θ : TCM × TCM → C,

the bilinear symmetric extension of the Webster metric gθ to TCM and by

( · . · )θ : TCM × TCM → C,

the hermitian symmetric one. We adopt the convention that ( · . · )θ is linear
in the first variable and antilinear in the second one. Finally we set:

‖ · ‖2θ = ( · . · )θ.

We will omit the subscript θ when the choice of the pseudohermitian struc-
ture is clear from the context.

Definition 1.10 If λ > 0 is a constant and θ′ = λθ then the corresponding
Webster metrics gθ and gθ′ are pseudo-homothetic. More generally, a CR
map φ : M → M ′ between two pseudohermitian CR manifolds (M, T 1,0M, θ)
and (M ′, T 1,0M ′, θ′) is a pseudo-homothety if φ is a CR diffeomorphism and
φ∗(θ′) = λθ for a constant λ.

1.2. The Rumin and Garfield-Lee complexes
Following Rumin [Ru] and Garfield and Lee [GL], we define a single

and a double complex on M . We refer to those papers for the proof of the
statements in this section.
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Let (M, T 1,0M) be a (2n+1)-dimensional CR manifold of hypersurface
type with nondegenerate Levi form and θ a pseudohermitian structure on M .
Denote by Ω(M) =

∑
k Ωk(M) the exterior algebra of complex differential

forms on M , by I ⊂ Ω(M) the ideal generated by θ and dθ, and define the
annihilator of I

I⊥ = {α ∈ Ω(M) | α ∧ ω = 0 ∀ω ∈ I}

and, for k ∈ N, the complex vector bundles

Ek = Ωk(M)/(I ∩ Ωk(M)), F k = I⊥ ∩ Ωk(M).

Notice that

Ek = 0, k > n, F k = 0, k ≤ n.

The ideal I satisfies dI ⊂ I. It follows that the exterior derivative
d: Ω(M) → Ω(M) defines operators

d : Ek → Ek+1, d : F k → F k+1.

We define an operator D : En → Fn+1 as follows. For ω ∈ Ωn(M),
there exists α ∈ Ωn−1(M) such that d(ω + θ ∧ α) ∈ Fn+1. We set

D[ω] := d(ω + θ ∧ α).

The operator D is a second order differential operator.

Definition 1.11 The Rumin complex of (M, θ) is the complex

0 → E0 d→ E1 d→ · · · d→ En D→ Fn+1 d→ · · · d→ F 2n+1 → 0.

Remark 1.12 In [Ru] it is proved that the sequence

0 → R ↪→ E0 d→ E1 d→ · · · d→ En D→ Fn+1 d→ · · · d→ F 2n+1 → 0,

is locally exact.

Remark 1.13 The Rumin complex only depends on the (possibly degen-
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erate) contact form θ, and not on the CR structure of M . Moreover, if
θ is replaced, via a pseudo-homothety, by a constant multiple, the Rumin
complex remains the same.

Notation 1.14 For the Rumin complex we will also use the notation Rk

for the nonzero bundle Ek or F k.

It is possible to introduce a bigrading on the Rumin complex in the
following way: consider the complexified Rumin bundles

Ek = Ek ⊗ C, Fk = F k ⊗ C,

and define

Ep,q :=
{
[ω] ∈ Ep+q|α|T 1,0M⊕T 0,1M is of type (p, q) for some α ∈ [ω]

}

F p,q :=
{

ω ∈ Fp+q

∣∣∣∣
iX(ω)|T 1,0M⊕T 0,1M is of type (p− 1, q)

for any X /∈ T 1,0M ⊕ T 0,1M

}
.

where a form on T 1,0M ⊕ T 0,1M is said to be of type (p, q) if it vanishes
when applied to more than p vectors in T 1,0M or to more than q vectors in
T 0,1M .

For the Garfield-Lee complex too we will denote by Rp,q the nonzero
bundle Ep,q or F p,q. Then we have

Ek =
⊕

p+q=k

Ep,q, Fk =
⊕

p+q=k

F p,q,

d : Ep,q −→ Ep,q+1 ⊕ Ep+1,q,

d : F p,q −→ F p,q+1 ⊕ F p+1,q,

D : Ep,q −→ F p,q+1 ⊕ F p+1,q ⊕ F p+2,q−1.

and we define, for 0 ≤ p, q ≤ 2n + 1, by projection on the subbundles, the
operators

d′ := πp+1,q ◦ d : Rp,q −→ Rp+1,q,

d′′ := πp,q+1 ◦ d : Rp,q −→ Rp,q+1,
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if p + q 6= n and

D′ := πp+1,q ◦D : Ep,q −→ F p+1,q,

D′′ := πp,q+1 ◦D : Ep,q −→ F p,q+1,

D+ := πp+2,q−1 ◦D : Ep,q −→ F p+2,q−1.

if p + q = n.

Definition 1.15 The Garfield-Lee complex of a pseudohermitian CR man-
ifold (M, T 1,0M, θ) is given by the spaces Ep,q and F p,q and by the differ-
ential operators d′, d′′, D′, D′′, and D+.

The Garfield-Lee complex is a complex in the following sense:

d′d′ = 0, d′′d′′ = 0, d′d′′ + d′′d′ = 0,

d′′D′′ = 0, D′′d′′ = 0, D′d′′ + D′′d′ = 0, d′D′′ + d′′D′ = 0,

d′D+ = 0, D+d′ = 0, D′d′ + D+d′′ = 0, d′D′ + d′′D+ = 0.

Remark 1.16 The subcomplexes of the Garfield-Lee complex given by
d′′ and D′′ are complexes in the usual sense, and they are locally exact at
all positions Rp,q with q ≥ 1.

Remark 1.17 The Garfield-Lee complex is invariant under a change of
the pseudohermitian structure by pseudo-homothety.

2. Three dimensional CR manifolds

Let (M, T 1,0M, θ) be a three-dimensional Levi nondegenerate pseudo-
hermitian CR manifold. Notice that in the three-dimensional case Levi
nondegeneracy is equivalent to strong pseudoconvexity. We always assume
that the pseudohermitian structure is chosen in such a way that the Levi
form is positive definite.

The bundle T 1,0M is one-dimensional, hence locally there exists a com-
plex vector field Z generating T 1,0M at every point. Its complex conjugate
Z̄ generates T 0,1M .

The Levi form Lθ is completely determined by the value

Lθ(Z,Z) = idθ(Z, Z̄).
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By the pseudoconvexity condition, Lθ(Z, Z) is everywhere positive. Upon
replacing Z with a scalar multiple we can assume that Lθ(Z, Z) = 1.

Definition 2.1 A pseudohermitian local frame on a three-dimensional
strongly pseudoconvex pseudohermitian CR manifold (M, T 1,0M, θ) is a
local frame (Z, Z̄, T ) with Lθ(Z, Z) = 1 and T equal to the Reeb vector
field.

Remark 2.2 A pseudohermitian local frame (Z, Z̄, T ) is an orthonormal
frame of TCM with respect to ( · . · )θ, and Z, Z̄ satisfy 〈Z,Z〉θ = 〈Z̄, Z̄〉θ =
0. The real vectors

X =
Z + Z√

2
, Y =

i(Z − Z)√
2

together with T are an orthonormal frame for gθ.

Notation 2.3 If (Z, Z̄, T ) is a pseudohermitian local frame of M , we
denote by (ζ, ζ̄, θ) the local frame of T ∗CM dual to (Z, Z̄, T ) and we define
three complex valued smooth functions a, b, and c on M by:

i[Z, Z̄] = T + aZ + āZ̄, a = iζ[Z, Z̄],

[Z, T ] = bZ + c̄Z̄, b = ζ[Z, T ], (2.1)

[Z̄, T ] = cZ + b̄Z̄, c = ζ[Z̄, T ].

We also denote by vol the volume form ζ ∧ ζ̄ ∧ θ.

Straightforward computations yield:

dθ = i ζ ∧ ζ̄,

dζ = ia ζ ∧ ζ̄ − b ζ ∧ θ − c ζ̄ ∧ θ, (2.2)

dζ̄ = iā ζ ∧ ζ̄ − c̄ ζ ∧ θ − b̄ ζ̄ ∧ θ.

Moreover, from the Jacobi identity for Z, Z̄ and T we have

b + b̄ = 0, iZc− iZ̄b + Ta− ab− āc = 0. (2.3)

Remark 2.4 If (Z, Z̄, T ) is a pseudohermitian local frame of M , then any
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other pseudohermitian local frame (Z ′, Z̄ ′, T ′) can be locally obtained from
(Z, Z̄, T ) as:

Z ′ = e−ivZ, Z̄ ′ = eivZ̄, T ′ = T,

ζ̄ ′ = e−iv ζ̄, ζ ′ = eivζ, θ′ = θ.

for some real valued function v on M . The functions a, b, and c in the new
frame are then

a′ = eiv(a− Z̄v), b′ = b + iTv, c′ = e2ivc.

Definition 2.5 A change of frame as described in Remark 2.4 is called a
pseudohermitian change of frame.

Remark 2.6 On any Levi nondegenerate pseudohermitian CR manifolds,
there is a naturally defined linear connection ∇θ, called the Tanaka-Webster
connection. In this paper we will not use it, however we notice that the
functions a, b, and c are related to ∇θ and to its torsion T θ by the following
equations:

∇θ
ZZ = −iāZ, ∇θ

Z̄Z = iaZ, ∇θ
T Z = −bZ, T θ(T, Z̄) = cZ.

Remark 2.7 A strongly pseudoconvex pseudohermitian CR manifold is
in a natural way a contact metric manifold. In the three dimensional case
the converse is also true, since every almost CR structure is integrable.
We recall that a contact metric manifold is Sasakian if the contact metric
structure is normal (see e.g. [DT]). This is equivalent to the vanishing of the
pseudohermitian torsion τ = T θ(T, ·). With our notation, M is a Sasakian
manifold if and only if c vanishes identically.

2.1. The Rumin and Garfield-Lee complexes
We describe now in detail the Rumin and Garfield-Lee complexes in the

three-dimensional case. Let (M, T 1,0M, θ) be a three-dimensional strongly
pseudoconvex pseudohermitian CR manifold. We have dθ = iζ ∧ ζ̄, and

I = 〈θ, ζ ∧ ζ̄, θ ∧ ζ, θ ∧ ζ̄, vol〉, I⊥ = 〈ζ ∧ θ, ζ̄ ∧ θ, vol〉,

and consequently the spaces occurring in the Rumin complex are
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E0 = Ω0(M) = C, E1 = Ω1(M)/〈θ〉 ' 〈ζ, ζ̄〉,
F 2 = 〈ζ ∧ θ, ζ̄ ∧ θ〉, F 3 = Ω3(M) = 〈vol〉,

and in the Garfield-Lee complex

E0,0 = E0 = C,

E1,0 = 〈ζ, θ〉/〈θ〉 ' 〈ζ〉, E0,1 = 〈ζ̄, θ〉/〈θ〉 ' 〈ζ̄〉,
F 2,0 = 〈ζ ∧ θ〉, F 1,1 = 〈ζ̄ ∧ θ〉,

F 2,1 = F 3 = 〈vol〉,

all other terms being 0.

Proposition 2.8 Let (M, T 1,0M, θ) be a three-dimensional Levi nonde-
generate pseudohermitian CR manifold and f : M → R a smooth function.
Then:

f is CR pluriharmonic ⇐⇒ Dd′f = 0 ⇐⇒ D′d′f = 0 ⇐⇒ D′′d′f = 0.

Proof. First we show that the last three conditions are equivalent, for a
smooth real function f on M . Decomposing Dd′f into its (1, 1) and (2, 0)
components we see that Dd′f = 0 if and only if both D′d′f and D′′d′f are
zero. Moreover Ddf = 0 and hence, taking the (1, 1) component we get
0 = (Ddf)1,1 = D′′d′f + D′d′′f . Since f is real, we also have d′′f = d′f and
D′d′′f = D′d′f . It follows that D′′d′f = −D′d′f and that D′d′f = 0 if and
only if D′′d′f = 0.

Let now f be CR pluriharmonic. Since CR pluriharmonicity is a local
property, we can assume that there is a CR function g : M → C with f =
g + ḡ. Then d′f = d′g + d′ḡ = d′g = dg and Dd′f = Ddg = 0.

Finally assume that f is a real function with Dd′f = 0. By exactness
of the (complexification of) Rumin complex, locally there exists a complex
smooth function g with dg = d′f , i.e. d′g = d′f and d′′g = 0. The latter
condition implies that g is a CR function, and we have d(g+ḡ) = d′g+d′′ḡ =
d′f+d′′f = df , hence (g+ḡ)−f is a real constant, and f is CR pluriharmonic.

¤

We explicitly compute the differentials in all degrees (p, q) of the
Garfield-Lee complex, with respect to a pseudohermitian local frame.
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(p, q) = (0, 0). Let f ∈ E0,0. Then df = Zf ζ + Z̄f ζ̄ + Tf θ and

d′f = [Zf ζ], d′′f = [Z̄f ζ̄]. (2.4)

(p, q) = (1, 0). Let [α] = [gζ] ∈ E1,0. Then D([α]) = D([gζ]) = d(gζ + hθ)
for a function h such that d(gζ + hθ) ∈ F 2. From

d(gζ + hθ) = Z̄g ζ̄ ∧ ζ + Tg θ ∧ ζ + g dζ + Zh ζ ∧ θ + Z̄h ζ̄ ∧ θ + h dθ

= (−Z̄g + iag + ih) ζ ∧ ζ̄ + (−Tg − bg + Zh) ζ ∧ θ

+ (−cg + Z̄h) ζ̄ ∧ θ.

we get (−Z̄g + iag + ih) = 0 and consequently

Zh = −iZZ̄g − Z(ag), Z̄h = −iZ̄2g − Z̄(ag),

finally giving

D′([gζ]) = −(
Tg + bg + iZ(Z̄g − iag)

)
ζ ∧ θ,

D′′([gζ]) = −(
cg + iZ̄(Z̄g − iag)

)
ζ̄ ∧ θ.

(2.5)

(p, q) = (0, 1). A similar calculation, for a form [α] = [ḡζ̄] ∈ E0,1 leads to

D′([ḡζ̄]
)

= −(
T ḡ + b̄ḡ − iZ̄(Zḡ + iāḡ)

)
ζ̄ ∧ θ

D+
(
[ḡζ̄]

)
= −(

c̄ḡ − iZ(Zḡ + iāḡ)
)
ζ ∧ θ.

(2.6)

(p, q) = (2, 0). Let α = g ζ ∧ θ ∈ F 2,0. We have then

d′′(g ζ ∧ θ) = Z̄g ζ̄ ∧ ζ ∧ θ + g dζ ∧ θ − g ζ ∧ dθ

and consequently

d′′(g ζ ∧ θ) = −(Z̄g − iag) vol . (2.7)

(p, q) = (1, 1). Similarly, for α = ḡ ζ̄ ∧ θ ∈ F 1,1 we obtain

d′
(
ḡ ζ̄ ∧ θ

)
= (Zḡ + iāḡ) vol . (2.8)
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Corollary 2.9 Let (M, T 1,0M, θ) be a three-dimensional Levi nondegener-
ate pseudohermitian CR manifold, (Z, Z̄, T ) a pseudohermitian frame, and
f : M → R a smooth function. The following are equivalent :

(1) f is CR pluriharmonic,
(2) TZf + bZf + iZ(Z̄Zf − iaZf) = 0,
(3) cZf + iZ̄(Z̄Zf − iaZf) = 0.

2.2. Laplacians
The Webster metric on a strongly pseudoconvex CR manifold M allows

to construct an operator on the Garfield-Lee and Rumin complexes analo-
gous to the Hodge ∗-operator. More details can be found in [GL]. If M is a
strongly pseudoconvex pseudohermitian CR manifold of dimension 3, the ∗
operator is explicitly given, for a form α ∈ Ep,q, (0 ≤ p + q ≤ 1) by:

( i ) if α = f ∈ E0,0, then ∗α = f vol ∈ F 2,1,
( ii ) if α = [gζ] ∈ E1,0, then ∗α = g ζ ∧ θ ∈ F 2,0,
(iii) if α = [ḡζ̄] ∈ E0,1, then ∗α = ḡ ζ̄ ∧ θ ∈ F 1,1,

and for a form α ∈ F p,q, (2 ≤ p + q ≤ 3) by:

( i ) if α = f vol ∈ F 2,1, then ∗α = f ∈ E0,0,
( ii ) if α = g ζ ∧ θ ∈ F 2,0, then ∗α = [gζ] ∈ E1,0,
(iii) if α = ḡ ζ̄ ∧ θ ∈ F 1,1, then ∗α = [ḡζ̄] ∈ E0,1.

Then ∗ is a linear isomorphism and ∗2 = Id.
Let ∗̄ be ∗ followed by complex conjugation. The formal adjoint oper-

ators of the differentials d, d′, d′′ (and of D, D′, D′′ in the middle degrees)
are:

δ := d∗ = (−1)p+q ∗ d∗,
δ′ := d′∗ = (−1)p+q ∗ d′′∗ = (−1)p+q∗̄d′∗̄,
δ′′ := d′′∗ = (−1)p+q ∗ d′∗ = (−1)p+q∗̄d′′∗̄.

Definition 2.10 The Garfield-Lee Laplacian on the Garfield-Lee complex
of a Levi nondegenerate pseudohermitian CR manifold M of dimension 2n+1
is defined, on each space Rp,q, by:
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∆GL =





d′′δ′′ + δ′′d′′ if p + q 6= n, n + 1,

(d′′δ′′)2 + D′′∗D′′ if p + q = n,

D′′D′′∗ + (δ′′d′′)2 if p + q = n + 1.

Definition 2.11 The Rumin Laplacian on the Rumin complex of a Levi
nondegenerate pseudohermitian CR manifold M of dimension 2n + 1 is de-
fined, on each space Rk, by:

∆R :=





dδ + δd if k 6= n, n + 1,

(dδ)2 + D∗D if k = n,

DD∗ + (δd)2 if k = n + 1.

Remark 2.12 For functions on a three-dimensional CR manifold we have

∆GLf = δ′′d′′f + d′′δ′′f = δ′′d′′f = − ∗ d′ ∗ d′′f = − ∗ d′ ∗ (Z̄f ζ̄)

= − ∗ d′(Z̄f ζ̄ ∧ θ) = − ∗ (
(ZZ̄f + iāZ̄f) vol

)

giving the explicit description:

∆GLf = −(ZZ̄ + iāZ̄)f, (2.9)

∆Rf = −ZZ̄f − iāZ̄f − Z̄Zf + iaZf. (2.10)

From (2.3) and (2.10) we obtain:

∆Rf = ∆GLf + ∆̄GLf = 2∆GLf − iTf, (2.11)

∆GLf =
1
2
(∆Rf + iTf). (2.12)

A straightforward computation shows:

Lemma 2.13 If the pseudohermitian structure θ is changed via a pseudo-
homothety to a constant multiple θ′ = λθ, then the Rumin and Garfield-Lee
Laplacians change as:

∆′
R = λ−2∆R, ∆′

GL = λ−2∆GL.
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3. Integral Weierstraß representation, integrability and iso-
metricity conditions

The object of our study are isometric immersions of a three-dimensional
CR manifold into an n-dimensional real Euclidean space. We will consider
more extensively immersions in the 4-dimensional space.

Notation 3.1 Consistently with Notation 1.9, we will denote by

〈 · , · 〉 : Cn × Cn → C,

the standard bilinear symmetric inner product of Cn and by

( · , · ) : TCM × TCM → C,

the hermitian symmetric one, with the convention that ( · , · ) is linear in the
first variable and antilinear in the second one. We also set:

‖ · ‖2θ = ( · , · )θ.

In analogy with [APS, Theorem 1.1] we give an integral represen-
tation of Weierstraß type, similar to (∗∗), for isometric and for CR-
pluriharmonic immersions. We characterize isometric immersions f : M →
Rn of a three-dimensional strongly pseudoconvex pseudohermitan CR man-
ifold (M, T 1,0M, θ) in terms of the forms ω = d′f ∈ E1,0 ⊗ Rn.

First we give conditions for the integrability of a form ω ∈ E1,0. We
have:

Proposition 3.2 Let ω be a form in E1,0. Locally there exists a real
valued f ∈ E0,0 such that d′f = ω if and only if the following equivalent
conditions hold true:

D(ω + ω̄) = 0 ⇐⇒ D′ω = −D+ω̄ ⇐⇒ D′′ω = −D′ω̄ (3.1)

Proof. From Ddf = 0, separating the terms according to their bidegrees,
we get (3.1). The converse follows from the local exactness of the Rumin
complex. ¤

Remark 3.3 By (2.5) and (2.7), if there exists a nonzero form ω ∈ E1,0

that is D-closed and δ-closed then the pseudohermitian structure on M is



Isometric pluriharmonic immersions of CR manifolds 225

Sasakian.

We can now give the characterizations of isometric immersions and of
CR pluriharmonic isometric immersions

Theorem 3.4 Let (M, T 1,0M, θ) be a three-dimensional strongly pseudo-
convex pseudohermitan CR manifold. There is a bijective correspondence,
given by ω = d′f , between local isometric immersions f : M → Rn, up to
translation, and forms ω ∈ E1,0 ⊗C Cn satisfying the conditions:

(1) D′′ω = −D′ω̄,
(2) 〈ω, ω〉 = 0,
(3) ‖ω‖2 = 1,
(4) ‖δ(ω − ω̄)‖2 = 1,
(5) δω̄ · ω = 0.

In condition (5) we use the following notation: if h =
∑

hi ⊗ ei ∈
E0,0 ⊗ Cn and α =

∑
αi ⊗ ei ∈ Ep,q ⊗ Cn, then h · α =

∑
hiαi ∈ Ep,q.

Remark 3.5 If (Z, Z̄, T ) is a pseudohermitian frame for M , and (ζ, ζ̄, θ)
the dual frame, setting ω = [ζ] ⊗ φ for a function φ : M → Cn, straightfor-
ward computations show that conditions (1)–(5) for ω are equivalent to the
following conditions (1’)–(5’) for φ.

(1’) −cφ + iZ̄(Z̄φ− iaφ) + T φ̄− bφ̄− iZ̄(Zφ̄ + iāφ̄) = 0,
(2’) 〈φ, φ〉 = 0,
(3’) ‖φ‖2 = 1,
(4’) ‖Z̄φ− iaφ‖2 = 1/2,
(5’) 〈Zφ̄ + iāφ̄, φ〉 = 0.

Proof of Theorem 3.4. Condition (1) and Proposition 3.2 ensure the exis-
tence of a map f : M → Rn satisfying d′f = ω.

Fix a pseudohermitian frame (Z, Z̄, T ) for M and let ω = φζ. Clearly
f is isometric if and only if all the following conditions hold true:





(Zf, Z̄f) = 0,

(Tf, Zf) = 0,

‖Tf‖2 = ‖Zf‖2 = 1.
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Conditions (2) and (3) are easily seen to be equivalent to

(Zf, Z̄f) = 0, ‖Zf‖2 = ‖Z̄f‖2 = 1.

Recall that, if ω = d′f , then Tf = iδ′d′f − iδ′′d′′f = iδ(ω − ω̄). Then
we have

‖Tf‖2 = 1, (Zf, Tf) = 0,

if and only if ‖δ(ω − ω̄)‖2 = 1 and δ(ω − ω̄) · ω = 0.
To complete the proof, we observe that δω · ω = −〈Z̄φ − iaφ, φ〉 = 0,

because 〈ω, ω〉 = 〈φ, φ〉 = 0. ¤

Corollary 3.6 With the same notation, there is a bijective correspondence
between CR pluriharmonic local isometric immersions f : M → Rn, up to
translation, and forms ω ∈ E1,0 ⊗ Cn satisfying the conditions (2), (3), (5)
of Theorem 3.4 and :

(1) Dω = 0,
(4) ‖δω‖2 = 1.

Proof. Condition (1) is equivalent to CR pluriharmonicity by Proposition
2.8. With the notation as in the previous Remark, condition (1) can be
written as Z̄(Z̄φ − iaφ) = −icφ. Together with (2) and (5) this yields
〈δω, δω〉 = 0 and then condition (4) becomes equivalent to condition (4) in
Theorem 3.4. ¤

4. Harmonicity conditions

We want to characterize isometries from a three-dimensional strongly
pseudoconvex pseudohermitian CR manifold into Rn that satisfy an addi-
tional harmonicity condition. Reasoning as in the proof of Theorem 3.4, one
can see that the condition ∆Rf = 0 (known as pseudo-harmonicity in the
literature) is incompatible with an isometric immersion. It is natural then to
consider CR pluriharmonicity instead, which is analogous to the condition
that ∂f is a closed holomorphic form in [APS].

We recall that a map f : M → Rn is CR pluriharmonic if it is locally
the real part of a CR map into Cn, or equivalently if all the components
are CR pluriharmonic functions. From Proposition 2.8, Corollary 2.9, and
equation (2.9) we obtain:
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Proposition 4.1 For a map f : M → Rn the following conditions are
equivalent :

(1) f is CR pluriharmonic,
(2) Dd′f = 0,
(3) Z̄(∆GLf) = iT Z̄f − ibZ̄f ,
(4) Z(∆GLf) = ic̄Z̄f .

Let now f : M → Rn be an isometric immersion. We consider the
following conditions on f :

(1) f is CR pluriharmonic;
(2) 〈∆GLf,∆GLf〉 = 0;
(3) ∆Rf is orthogonal to TM and has constant length.

In the special case n = 4 we also consider the condition:

(4) ∆Rf is a parallel section of the normal bundle of M .

Proposition 4.2 Let M be a three-dimensional strongly pseudoconvex
pseudohermitian CR manifold, and f : M → Rn an isometric immersion.
Then we have

(1) =⇒ (2) =⇒ (3).

Proof. First we observe that for any isometric immersion, condition (5) in
Theorem 3.4 implies that ∆GLf is orthogonal to Zf and Z̄f :

〈∆GLf, Zf〉 = 0, 〈∆GLf, Z̄f〉 = 0

(1) =⇒ (2). We note that ∆GLf = δω, in the notation of Section 3. The
implication then follows directly from Corollary 3.6.

(2) =⇒ (3). Recall that ∆Rf = 2∆GLf − iTf . From (2) we get

0 = 4〈∆GLf,∆GLf〉 = (‖∆Rf‖2 − ‖Tf‖2) + 2i〈∆Rf, Tf〉

thus it follows that ∆Rf is orthogonal to Tf and that ‖∆Rf‖2 = ‖Tf‖2,
and hence ‖∆Rf‖ is constant for an isometric immersion. ¤

Lemma 4.3 Under the hypotheses of Proposition 4.2, if n = 4 then

(3) ⇐⇒ (4).
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Proof. If 〈∆GLf,∆GLf〉 = 0, then ∆Rf is a section of the normal bundle
of M , and it has constant length, i.e. it is parallel. ¤

Remark 4.4 We observe that the Laplacian ∆Rf is, for an isometric
immersion f , essentially the mean curvature restricted to the contact dis-
tribution T 1,0M + T 0,1M . CR pluriharmonic isometric immersions can be
then seen as special variants of constant mean curvature immersions.

We look now at conditions such that the reverse implications (3) ⇒ (2)
and (2) ⇒ (1) hold true.

Proposition 4.5 If f : M → Rn satisfies condition (3), then it satisfies
condition (2) if and only if ‖∆Rf‖ = 1.

Proof. The statement easily follows from the equation 4〈∆GLf,∆GLf〉 =
(‖∆Rf‖2−‖Tf‖2)+ 2i(∆Rf, Tf) and the fact that for an isometric immer-
sion ‖Tf‖ = 1. ¤

Proposition 4.6 Assume that (2) holds and n = 4. Then (1) holds if
and only if the image of ∆GL is a totally isotropic submanifold of C4 with
respect to the standard complex bilinear form, i.e.:

〈Z∆GLf, Z∆GLf〉 = 0,

〈Z∆GLf, Z̄∆GLf〉 = 0,

〈Z∆GLf, T∆GLf〉 = 0,

〈Z̄∆GLf, Z̄∆GLf〉 = 0,

〈Z̄∆GLf, T∆GLf〉 = 0,

〈T∆GLf, T∆GLf〉 = 0.

Proof. We use the fact that, if (2) holds, then {Zf, Z̄f, 21/2∆GLf,

21/2∆̄GLf} is an orthonormal basis of C4, and hence, for all vectors
v, w ∈ C4, we have:

(v, w) = (v, Zf)(w, Zf) + (v, Z̄f)(w, Z̄f)

+ 2(v, ∆GLf)(w, ∆GLf) + 2(v, ∆̄GLf)(w, ∆̄GLf).
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Thus we obtain:

〈Z∆GLf, Z∆GL〉 = 0,

〈Z∆GLf, Z̄∆GLf〉 = 〈Z∆GLf, Zf〉〈Z̄∆GLf, Z̄f〉,
〈Z∆GLf, T∆GLf〉 = 〈Z∆GLf, Zf〉〈T∆GLf, Z̄f〉,
〈Z̄∆GLf, Z̄∆GLf〉 = 4〈Z̄∆GLf, Z̄f〉,
〈Z̄∆GLf, T∆GLf〉 = 2〈T∆GLf, Z̄f〉+ 〈Z̄∆GLf, Z̄f〉〈T∆GLf, Zf〉,
〈T∆GLf, T∆GLf〉 = 2〈T∆GLf, Z̄f〉〈T∆GLf, Zf〉.

If (1) holds, then 〈Z̄∆GLf, Z̄f〉 = 0 and 〈T∆GLf, Z̄f〉 = 0, obtaining
immediately the conclusion.

Conversely, if 〈Z̄∆GLf, Z̄∆GLf〉 = 0 and 〈Z̄∆GLf, T∆GLf〉 = 0 then
〈Z̄∆GLf, Z̄f〉 = 0 and 〈T∆GLf, Z̄f〉 = 0. Then we have:

〈Z∆GLf − ic̄Z̄f, ∆̄GLf〉 = 0,

〈Z∆GLf − ic̄Z̄f,∆GLf〉 = 0,

〈Z∆GLf − ic̄Z̄f, Z̄f〉 = 〈Z∆GLf, Z̄f〉 = −〈∆GLf, ZZ̄f〉
= 〈∆GLf,∆GLf〉 = 0,

〈Z∆GLf − ic̄Z̄f, Zf〉 = ic̄− ic̄ = 0. ¤

5. A classification result

In the following we will keep the hypothesis that n = 4. We give a
complete classification for CR pluriharmonic isometric immersions of three-
dimensional strongly pseudoconvex pseudohermitian CR manifolds in the
Euclidean space R4.

Theorem 5.1 Let M be a three-dimensional strongly pseudo-convex pseu-
dohermitian CR manifold, and f : M → R4 an isometric CR pluriharmonic
immersion. Then one of the two following cases occurs:

1. there is a CR diffeomorphism ψ : M → U , where U is an open subset of
the cylinder M̃ = {(z, w) ∈ C2 | (<z)2 + (<w)2 = 1}, and an isometry
φ : C2 → R4, such that f = φ ◦ ψ;
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2. there is a CR diffeomorphism ψ : M → U , where U is an open subset
of the sphere M̃ = {(z, w) ∈ C2 | |z|2 + |w|2 = 2}, and an isometry
φ : C2 → R4, such that f = φ ◦ ψ.

Remark 5.2 In contrast with the result of [APS], stating that the induced
metric on M is always Kähler, in the present case the sphere is Sasakian,
but the cylinder is not.

A global result easily follows.

Corollary 5.3 Let M be a complete three-dimensional strongly pseudo-
convex pseudohermitian CR manifold, and f : M → R4 an isometric CR
pluriharmonic immersion. Then one of the two following cases occurs:

1. if M is not compact, there is a local CR diffeomorphism and covering
map ψ : M → M̃ , where M̃ = {(z, w) ∈ C2 | (<z)2 + (<w)2 = 1} is the
cylinder, and an isometry φ : C2 → R4, such that f = φ ◦ ψ;

2. if M is compact, there is a CR diffeomorphism ψ : M → M̃ , where M̃ =
{(z, w) ∈ C2 | |z|2+|w|2 = 2} is the sphere, and an isometry φ : C2 → R4,
such that f = φ ◦ ψ.

The rest of this section is devoted to the proof of Theorem 5.1.
Let us first summarize the properties of ∆GLf for a CR pluriharmonic

isometric immersion f : M → R4:

( i ) 〈∆GLf,∆GLf〉 = 0,
( ii ) ‖∆GLf‖2 = 1/2,
(iii) 〈X∆GLf, Y ∆GLf〉 = 0 for all X, Y ∈ TM .

We characterize the image of ∆GLf . Let N = {v ∈ C4 | 〈v, v〉 = 0,
‖v‖2 = 1/2}. The image of ∆GLf is then contained in N . Let v ∈ N . Then

TvN = {w ∈ C4 | 〈v, w〉 = 0, <(v, w) = 0}.

The cone of isotropic vectors in TvN is

T 0
v N = {w ∈ TvN | 〈w, w〉 = 0}

We decompose T 0
v N as follows. Let u ∈ C4 \ {0} be a vector such that

〈u, v〉 = 0, 〈u, v̄〉 = 0, 〈u, u〉 = 0. (5.1)
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Then T 0
v N is the union of two three-dimensional real subspaces of TvN :

T 0
v N = (Riv + Cu) ∪ (Riv + Cū).

This decomposition gives two smooth vector distributions D± on N . Let D+

be the distribution containing the vector e3 +ie4 ∈ T 0
e1+ie2

N and D− be the
distribution containing the vector e3 − ie4 ∈ T 0

e1+ie2
N . Their intersection is

the one-dimensional distribution (D+ ∩ D−)(v) = Riv.
They are both integrable, and the integral manifolds are 3-spheres. Fix

a point v ∈ N and a vector u ∈ D+(v) with ‖u‖2 = 1/2. The integral
manifolds through v are

S+ = {λv + µu | λ, µ ∈ C, |λ|2 + |µ|2 = 1},
S− = {λv + µū | λ, µ ∈ C, |λ|2 + |µ|2 = 1}.

Notice that both spheres S± are contained in a complex 2-plane.

The tangent cone to the image of ∆GLf is contained in T 0N .
If the rank of ∆GLf is at least 2, then the image of ∆GLf is locally

contained in a sphere S±. Since both Z∆GLf and Z̄∆GLf are orthogonal
to ∆GLf , it follows that Z∆GLf and Z̄∆GLf are linearly dependent over
C. If the rank of the differential of ∆GLf is 0 or 1, trivially Z∆GLf and
Z̄∆GLf are linearly dependent over C. From:

(Z∆GLf, Z̄∆GLf) = 〈Z∆GLf, Z∆̄GLf〉 = c̄〈Z̄f, ZTf〉 =
ic̄
2

we obtain that either c = 0, i.e. M is Sasakian, or Z̄∆GLf = Z̄f/2. We
consider those cases separately, additionally distinguishing the cases |c| =
1/2 and |c| 6= 1/2, completing the proof of the Theorem.

The case Z̄∆GLf = Z̄f/2, |c| 6= 1/2:
We will show that this case reduces in fact to the Sasaki case (i.e c = 0).

Assume for the moment that |c|2 6= 1/4. Let W = (1− 4|c|2)−1(Z − 2ic̄Z̄).
Then

W∆GLf = 0, W̄∆GLf =
Z̄f

2
, (W̄∆GLf, T∆GLf) = 0.
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Let

S = (1− 4|c|2)−1T, η = (1− 4|c|2)θ,

and complete {η} to a dual basis {ξ, ξ̄, η} of {W, W̄ , S}. Moreover, let
d̂, D̂, d̂′, d̂′′, etc. be the differential operators associated to this CR structure.

Denote by M ′ the manifold M with the pseudohermitian structure given
by η and T 1,0M ′ = CW . Then ∆̄GLf is a CR map and (up to a pseudo-
homothety) a local isometric diffeomorphism from M ′ to the sphere S±, and
hence M ′ is a Sasaki manifold with respect to η, and S is the Reeb vector
field on M ′.

The CR manifolds M and M ′ have the same contact distribution and
proportional Reeb vector fields. It follows that S is a constant multiple of
T , i.e. that |c| is constant. Up to a conformal transformation Z ′ = eivZ (see
Section 1), we can consequently assume that c is actually constant.

The pseudohermitian structure of M ′ is Sasakian, and then [W,S] is a
multiple of W . We have:

[W,S] = (1− 4|c|2)−2(b− 4i|c|2 + 4cT c̄ + 4b|c|2)W
+ (1− 4|c|2)−2(4ibc̄ + 4c̄|c|2 + c̄ + 2iT c̄)W̄ .

Taking in consideration that c is constant and nonzero we obtain

b = i(|c|2 + 1/4)

and

[W,S] =
i
4
W.

We also observe that, under the hypothesis that c is constant, we have:

i[W, W̄ ] = (1− 4|c|2)−1(T + aZ + āZ̄)

= S +
a− 2iāc

1− 4|c|2 W +
ā + 2iac̄

1− 4|c|2 W̄ .

The structure functions of the manifold M ′ are hence
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α =
a− 2iāc

1− 4|c|2 , β =
i
4
, γ = 0.

We want to prove that α = 0.
We first observe that, since W̄∆GLf = Z̄f/2, and d′′f = Z̄/2ζ̄, we have

D(W̄∆GLf ζ̄) = Dd′′f = 0,

because of the CR pluriharmonicity of f .
On the other hand, since W∆GLf = 0, we have 0 = D̂d̂(∆GLf) =

D̂(W̄∆GLf ξ̄). We note that D and D̂ are constant multiples of each other,
because η is a constant multiple of θ. As a consequence, since D depends
only on the contact structure θ (see Section 2), we obtain that

D̂(W̄∆GLf ζ̄) = 0, D̂(W̄∆GLfζ) = 0, and finally D̂(W̄∆GLfξ) = 0.

In particular:

D̂′(W̄∆GLfξ) = SW̄∆GLf +βW̄∆GLf +iW (W̄W̄∆GLf− iαW̄∆GLf) = 0.

Using the CR pluriharmonicity of f , and again the fact that W̄∆GLf =
Z̄f/2 and W∆GLf = 0, we first compute W̄W̄∆GLf − iαW∆GLf :

〈W̄W̄∆GLf − iαW̄∆GLf,∆GLf〉 = 0

〈W̄W̄∆GLf − iαW̄∆GLf, ∆̄GLf〉 = 0

〈W̄W̄∆GLf − iαW̄∆GLf, W̄∆GLf〉 = 0

〈W̄W̄∆GLf − iαW̄∆GLf,W ∆̄GLf〉 = −2iα〈W̄∆GLf,W ∆̄GLf〉

that is W̄W̄∆GLf − iαW̄∆GLf = −2iαW̄∆GLf . Then we compute

〈
SW̄∆GLf + βW̄∆GLf + iW (W̄W̄∆GLf − iαW̄∆GLf), ∆̄GLf

〉

=
〈
SW̄∆GLf + βW̄∆GLf + 2W (αW̄∆GLf), ∆̄GLf

〉

=
〈
2WαW̄∆GLf + 2αWW̄∆GLf, ∆̄GLf

〉

=
〈
2αWW̄∆GLf, ∆̄GLf〉 = −2α〈W̄∆GLf,W ∆̄GLf

〉
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thus proving that α = 0. Since |c| 6= 1/2, this shows that a = 0.

Let X = 2−1/2(Z + Z̄), Y = 2−1/2i(Z − Z̄). We can further assume up
to a conformal change (see Section 2.1) that c is purely imaginary. Then we
have:

X∆Rf = X∆GLf + X∆̄GLf

= 2−3/2(1− 2ic)(Zf + Z̄f) =
1− 2ic

2
Xf, (5.2)

Y ∆Rf = Y ∆GLf + Y ∆̄GLf

= 2−3/2i(1 + 2ic)(Z̄f − Zf) =
1 + 2ic

2
Y f. (5.3)

Furthermore, using the brackets (2.3), we get

〈T∆GLf, Zf〉 = 0,

〈T∆GLf, Z̄f〉 = 0,

〈T∆GLf,∆GLf〉 = 0,

〈T∆GLf, ∆̄GLf〉 = i〈ZZ̄∆GLf, ∆̄GLf〉 − i〈Z̄Z∆GLf, ∆̄GLf〉

= −i‖Z̄∆GLf‖2 + i‖Z∆GLf‖2 = − i
4
(1− 4|c|2),

which implies, using the fact that ‖∆GLf‖2 = 1/2 and equation (2.11)

T∆GLf = − i
2
(1− 4|c|2)∆GLf,

T∆Rf =
1− 4|c|2

2
Tf.

(5.4)

Then as ∆R is the unit normal vector, the directions defined by X, Y and
T are principal curvatures directions for f(M) and the principal curvatures
are constant and equal to:

1− 2ic
2

,
1 + 2ic

2
,

1 + 4c2

2
.

A result of B. Segre ([S], see also [C]) implies that either all the three
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curvatures are equal, or at least one is zero. The latter case contradicts the
condition |c| 6= 1/2. The former case corresponds to the condition c = 0,
which is analyzed below.

The case Z̄∆GLf = Z̄f/2, |c| = 1/2.
We can assume up to conformal changes (see Section 2.1) that c is

constant and equal to i/2. Let X = 2−1/2(Z + Z̄), Y = 2−1/2i(Z − Z̄).
Then:

Y ∆GLf = 0, X∆GLf = 2−1/2Z̄f.

Separating real and imaginary part of Y ∆GLf = 0, we obtain that Y ∆Rf =
0 and Y Tf = 0. We compute now that T∆GLf = 0. We have using (2.3)
and the CR pluriharmonicity:

〈T∆GLf, Zf〉 = 0,

〈T∆GLf, Z̄f〉 = 0,

〈T∆GLf,∆GLf〉 = 0,

〈T∆GLf, ∆̄GLf〉 = 〈iZZ̄∆GLf − iZ̄Z∆GLf, ∆̄GLf〉

=
i
2
〈ZZ̄f, ∆̄GLf〉+ c̄〈Z̄Z̄f, ∆̄GLf〉

= − i
4

+
i
4

= 0.

It follows that T∆Rf = 0 and TTf = 0. On the other hand we have [Y, T ] =
−i(b− c)X. Since X∆GLf = Xf/2− i(Y f/2) 6= 0 and [Y, T ]∆GLf = 0, we
obtain

[Y, T ] = 0, b = c =
i
2
, TY f = 0. (5.5)

The distribution generated by Y and T is integrable, and hence determines a
foliation F of M . Y , T are orthogonal and commute and this gives a system
of local coordinates, so that the leaves of F are locally isometric to R2. On
each leave F of F the vector fields T and Y are parallel, and Tf , ∆Rf are
constant. It follows that the image f(F ) of every leave F is contained in the
three-dimensional affine plane orthogonal to ∆Rf at any point of f(F ).
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First we observe that [X, Y ] = −T −2−1/2(a+ ā)X−2−1/2i(a− ā)Y . As
〈Y Y f, Y f〉 = 〈Y Y f,∆GLf〉 = 〈Y Y f, Tf〉 = 0, the norm of Y Y f is given
by

‖Y Y f‖2 = 〈Y Y f, Xf〉2 = 〈Y f, [X, Y ]f〉2 = − (a− ā)2

2
(5.6)

and T‖Y Y f‖ = 0, yielding T (a − ā) = 0. As b and c are constant equal
to i/2, we obtain from (2.3) the condition Ta − ab − āc = 0 and finally
T (a + ā) = 0 and T (a− ā) = i(a + ā). Comparing these conditions we have

a + ā = 0, Ta = 0, [X, Y ] = −T − 21/2iaY.

We compute now the derivatives of f of the form Xkf . We use that
[X, T ] = Y and X∆Rf = Xf . We have

(XXf,Xf) = 0 (XXf, Y f) = −(Xf, [X, Y ]f) = 0

(XXf, Tf) = 0 (XXf, ∆Rf) = −(Xf, X∆Rf) = −1

and then

XXf = −∆Rf, XXXf = −Xf, X4f = ∆Rf. (5.7)

Hence the integral lines of Xf have vanishing higher order curvatures, and
are (arcs of) circles of radius 1 in the affine plane spanned by Xf and ∆Rf .
The planes generated by Y f , Tf are thus constant along X, and also along
T , and consequently along Y = [X, T ]. In other words the leaves of F are
affine planes.

We can conclude now that f(M) is, up to rigid motions of R4, equal
to (an open subset of) the tube {x2

1 + x2
4 = 1}. The CR structure on M is

given by the restriction to f(M) of the complex structure of R4 defined by
Je1 = e2, Je3 = e4 (or the conjugate one).

The Sasakian case (c = 0):
In this case we have Z∆GLf = 0 and Z̄∆GLf = iZ̄Tf . We obtain,

using ‖∆GLf‖2 = 1/2:

‖Z̄∆GLf‖2 = 〈Z̄∆GLf, Zf〉〈Z̄f, Z∆̄GLf〉 = ‖∆GLf‖4 =
1
4
,
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(Z̄∆GLf, T∆GLf) = 〈Z̄∆GLf, Zf〉〈Z̄f, T ∆̄GLf〉+ 〈Z̄∆GLf, Z̄f〉〈Zf, T ∆̄GLf〉
+ 2〈Z̄∆GLf,∆GLf〉〈∆̄GLf, T ∆̄GLf〉
+ 2〈Z̄∆GLf, ∆̄GLf〉〈∆GLf, T ∆̄GLf〉 = 0,

‖T∆GLf‖2 = 2〈T∆GLf, ∆̄GLf〉〈T ∆̄GLf,∆GLf〉
= 2〈iZZ̄∆GLf, ∆̄GLf〉〈∆GLf,−iZ̄Z∆̄GLf〉

= 2‖Z̄∆GLf‖4 =
1
8
.

It follows that 23/2∆̄GLf is a CR map and an isometric immersion of M in
a standard sphere of radius 2 in C2.

Moreover

〈Z̄∆GLf, Zf〉 = ‖∆GLf‖2 = 1/2, 〈Z̄∆GLf, Z̄f〉 = 0

〈Z̄∆GLf,∆GLf〉 = 0, 〈Z̄∆GLf, ∆̄GLf〉 = 0.

hence Z̄∆GLf = Z̄f/2. Together with Z̄∆̄GLf = 0 this gives Z̄(∆Rf −
f/2) = 0. Since ∆Rf − f/2 is real, it must be constant, i.e.

f = 2∆Rf + const (5.8)

and f is the standard embedding of a sphere of radius 2.

References

[APS] Arezzo C., Pirola G. P. and Solci M., The Weierstrass representation for

pluriminimal submanifolds. Hokkaido Math. J. 33(2) (2004), 357–367.
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