A note on extreme norms on \mathbb{R}^{2}

Kichi-Suke Saito*, Ken-Ichi Mitani and Naoto Komuro

(Received January 13, 2011; Revised January 13, 2012)

Abstract

We denote by $A N_{2}$ the set of all absolute normalized norms on \mathbb{R}^{2}. It is known that the set $A N_{2}$ and the set of all continuous convex functions ψ on $[0,1]$ with $\max \{1-t, t\} \leq \psi(t) \leq 1$ for $t \in[0,1]$ (denoted by Ψ_{2}) are in a one to one correspondence under the equation $\psi(t)=\|(1-t, t)\|$. Recently, we characterized extreme points of $A N_{2}$ by considering Ψ_{2}. In this paper we give another proof of this result.

Key words: absolute normalized norm, extreme point.

1. Introduction and preliminaries

A norm $\|\cdot\|$ on \mathbb{R}^{2} is said to be absolute if $\left\|\left(x_{1}, x_{2}\right)\right\|=\left\|\left(\left|x_{1}\right|,\left|x_{2}\right|\right)\right\|$ for all $x_{1}, x_{2} \in \mathbb{R}$, and normalized if $\|(1,0)\|=\|(0,1)\|=1$. The ℓ_{p}-norms $\|\cdot\|_{p}$ $(1 \leq p \leq \infty)$ are basic examples:

$$
\left\|\left(x_{1}, x_{2}\right)\right\|_{p}=\left\{\begin{array}{lll}
\left(\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}\right)^{1 / p} & \text { if } & 1 \leq p<\infty \\
\max \left\{\left|x_{1}\right|,\left|x_{2}\right|\right\} & \text { if } & p=\infty
\end{array}\right.
$$

Let $A N_{2}$ be the family of all absolute normalized norms on \mathbb{R}^{2}.
Let Ψ_{2} be the set of all continuous convex functions on the interval $[0,1]$ satisfying $\max \{1-t, t\} \leq \psi(t) \leq 1$ for $t \in[0,1]$. Then by [1], $A N_{2}$ and Ψ_{2} are in a one-to-one correspondence with $\psi(t)=\|(1-t, t)\|$ for $t \in[0,1]$ and

$$
\left\|\left(x_{1}, x_{2}\right)\right\|_{\psi}= \begin{cases}\left(\left|x_{1}\right|+\left|x_{2}\right|\right) \psi\left(\frac{\left|x_{2}\right|}{\left|x_{1}\right|+\left|x_{2}\right|}\right) & \text { if } \quad\left(x_{1}, x_{2}\right) \neq(0,0) \\ 0 & \text { if } \quad\left(x_{1}, x_{2}\right)=(0,0)\end{cases}
$$

(see also [5], [7], [6]). For ℓ_{p}-norm $\|\cdot\|_{p}$, the corresponding convex function

[^0]ψ_{p} is
\[

\psi_{p}(t)= $$
\begin{cases}\left((1-t)^{p}+t^{p}\right)^{1 / p} & \text { if } \quad 1 \leq p<\infty \\ \max \{1-t, t\} & \text { if } \quad p=\infty\end{cases}
$$
\]

We consider the convex structure of the set $A N_{2}$ in the sense that

$$
\|\cdot\|,\|\cdot\|^{\prime} \in A N_{2}, \lambda \in[0,1] \Rightarrow(1-\lambda)\|\cdot\|+\lambda\|\cdot\|^{\prime} \in A N_{2} .
$$

Note that Ψ_{2} also has its own convex structure, and the correspondence $\psi \rightarrow\|\cdot\|_{\psi}$ preserves the operation to take a convex combination. A norm $\|\cdot\| \in A N_{2}$ is an extreme point of $A N_{2}$ if

$$
\|\cdot\|=\frac{1}{2}\left(\|\cdot\|^{\prime}+\|\cdot\|^{\prime \prime}\right),\|\cdot\|^{\prime},\|\cdot\|^{\prime \prime} \in A N_{2} \Rightarrow\|\cdot\|^{\prime}=\|\cdot\|^{\prime \prime}
$$

The definition of extreme point of Ψ_{2} is similar to that of $A N_{2}$. It is easy to see that ψ is an extreme point of Ψ_{2} if and only if $\|\cdot\|_{\psi}$ is an extreme point of $A N_{2}$ (see [4]).

As in [4], we determined the set of all extreme points of $A N_{2}$ by considering the set Ψ_{2}. After that, the authors were informed by Professor P. N. Dowling about the result of R. Grzaślewicz [2], which solved a problem posed by Professor A. Pietsch at the Winter School on Functional Analysis in January 1978 (cf. [8]). The method in [4] is different from that of R. Grzaślewicz [2].

The main results are stated as follows. Let $\psi_{L}^{\prime}(1 / 2)\left(\right.$ resp. $\left.\psi_{R}^{\prime}(1 / 2)\right)$ be the left (resp. the right) derivative of ψ at $t=1 / 2$.

Theorem 1 Let $\psi \in \Psi_{2}$. We define a function φ as $\varphi=2 \psi-\psi_{\infty}$.
(i) If $\psi_{R}^{\prime}(1 / 2) \geq \psi_{L}^{\prime}(1 / 2)+1$, then $\varphi \in \Psi_{2}$ and

$$
\psi=\frac{\varphi+\psi_{\infty}}{2}
$$

(ii) Let $\psi_{R}^{\prime}(1 / 2)<\psi_{L}^{\prime}(1 / 2)+1$. Then $\varphi \notin \Psi_{2}$. However, we can find a function $\varphi_{0} \in \Psi_{2}$ with

$$
\varphi_{0}(t)= \begin{cases}\varphi(t) & \text { if } t \in\left[0, s_{0}\right] \cup\left[t_{0}, 1\right], \\ \frac{\varphi\left(t_{0}\right)-\varphi\left(s_{0}\right)}{t_{0}-s_{0}} t+\frac{\varphi\left(s_{0}\right) t_{0}-\varphi\left(t_{0}\right) s_{0}}{t_{0}-s_{0}} & \text { if } t \in\left[s_{0}, t_{0}\right]\end{cases}
$$

for some $s_{0} \in[0,1 / 2]$ and $t_{0} \in(1 / 2,1]$. Moreover, putting a function $\varphi_{\max }=2 \psi-\varphi_{0}$ we have $\varphi_{\max } \in \Psi_{2}$ and

$$
\psi=\frac{\varphi_{0}+\varphi_{\max }}{2}
$$

For $0 \leq \alpha \leq \frac{1}{2} \leq \beta \leq 1$ and for the case $(\alpha, \beta) \neq\left(\frac{1}{2}, \frac{1}{2}\right)$ we define

$$
\psi_{\alpha, \beta}(t)= \begin{cases}1-t & \text { if } 0 \leq t \leq \alpha \\ \frac{\alpha+\beta-1}{\beta-\alpha} t+\frac{\beta-2 \alpha \beta}{\beta-\alpha} & \text { if } \alpha \leq t \leq \beta \\ t & \text { if } \beta \leq t \leq 1\end{cases}
$$

For the case $(\alpha, \beta)=\left(\frac{1}{2}, \frac{1}{2}\right)$ we put $\psi_{1 / 2,1 / 2}=\psi_{\infty}$. We clearly have $\psi_{\alpha, \beta} \in$ Ψ_{2} for all α, β with $0 \leq \alpha \leq \frac{1}{2} \leq \beta \leq 1$ and the corresponding norm is

$$
\left\|\left(x_{1}, x_{2}\right)\right\|_{\psi_{\alpha, \beta}}= \begin{cases}\left|x_{1}\right| & \text { if }\left|x_{2}\right| \leq \frac{\alpha}{1-\alpha}\left|x_{1}\right|, \\ \frac{\beta(1-2 \alpha)}{\beta-\alpha}\left|x_{1}\right|+\frac{(2 \beta-1)(1-\alpha)}{\beta-\alpha}\left|x_{2}\right| \\ & \text { if } \frac{\alpha}{1-\alpha}\left|x_{1}\right|<\left|x_{2}\right|, \frac{1-\beta}{\beta}\left|x_{2}\right|<\left|x_{1}\right|, \\ \left|x_{2}\right| & \text { if }\left|x_{1}\right| \leq \frac{1-\beta}{\beta}\left|x_{2}\right| .\end{cases}
$$

Theorem 2 ([3], [4]) Let $\psi \in \Psi_{2}$. Then the following are equivalent:
(i) ψ is an extreme point of Ψ_{2},
(ii) $\|\cdot\|_{\psi}$ is an extreme point of $A N_{2}$,
(iii) There exist α, β with $0 \leq \alpha \leq 1 / 2 \leq \beta \leq 1$ such that $\psi=\psi_{\alpha, \beta}$ (resp. $\left.\|\cdot\|_{\psi}=\|\cdot\|_{\psi_{\alpha, \beta}}\right)$.
Note that the equivalence of (ii) and (iii) in Theorem 2 is essentially the same as the next result given by R. Grzaślewicz [2].
Corollary 3 ([2]) Let $\|\cdot\| \in A N_{2}$. Then $\|\cdot\|$ is an extreme point of $A N_{2}$ if and only if all extreme points of the unit ball of $\left(\mathbb{R}^{2},\|\cdot\|\right)$ are contained in the unit sphere of $\left(\mathbb{R}^{2},\|\cdot\|_{\infty}\right)$.

2. Proof of Theorem 1

Note that

$$
\varphi(t)= \begin{cases}2 \psi(t)-1+t & \text { if } 0 \leq t \leq 1 / 2 \\ 2 \psi(t)-t & \text { if } 1 / 2 \leq t \leq 1\end{cases}
$$

It is clear that φ is a convex function on $[0,1 / 2]$ (resp. [1/2, 1]). For each $t \in(0,1]$, we denote by $\varphi_{L}^{\prime}(t)\left(\right.$ resp. $\left.\psi_{L}^{\prime}(t)\right)$ the left derivative of φ (resp. of ψ) at t. Similarly, for each $t \in[0,1)$, we denote by $\varphi_{R}^{\prime}(t)\left(\right.$ resp. $\left.\psi_{R}^{\prime}(t)\right)$ the right derivative of φ (resp. of ψ) at t. Since $\varphi(0)=1$ and $\varphi(t) \geq \psi_{\infty}(t)=1-t$ for $t \in[0,1 / 2]$, we have

$$
\varphi_{R}^{\prime}(0)=\lim _{t \rightarrow+0} \frac{\varphi(t)-\varphi(0)}{t} \geq \lim _{t \rightarrow+0} \frac{1-t-1}{t}=-1
$$

Since $\varphi(1)=1$ and $\varphi(t) \geq \psi_{\infty}(t) \geq t$ for all $t \in[1 / 2,1]$, we also have

$$
\varphi_{L}^{\prime}(1)=\lim _{t \rightarrow-0} \frac{\varphi(1+t)-\varphi(1)}{t} \leq \lim _{t \rightarrow-0} \frac{1+t-1}{t}=1
$$

Hence, if $0<s<t<1 / 2$, then

$$
-1 \leq \varphi_{R}^{\prime}(0) \leq \varphi_{R}^{\prime}(s) \leq \varphi_{L}^{\prime}(t) \leq \varphi_{R}^{\prime}(t) \leq \varphi_{L}^{\prime}(1 / 2)=2 \psi_{L}^{\prime}(1 / 2)+1
$$

and if $1 / 2<s<t<1$, then

$$
2 \psi_{R}^{\prime}(1 / 2)-1=\varphi_{R}^{\prime}(1 / 2) \leq \varphi_{R}^{\prime}(s) \leq \varphi_{L}^{\prime}(t) \leq \varphi_{R}^{\prime}(t) \leq \varphi_{L}^{\prime}(1) \leq 1
$$

We define a mapping G from $[0,1]$ into the subsets of \mathbb{R} as

$$
G(t)= \begin{cases}{\left[-1, \varphi_{R}^{\prime}(0)\right]} & \text { if } t=0, \\ {\left[\varphi_{L}^{\prime}(t), \varphi_{R}^{\prime}(t)\right]} & \text { if } 0<t<1 / 2,1 / 2<t<1, \\ \left\{\varphi_{L}^{\prime}(1 / 2)\right\} & \text { if } t=1 / 2, \\ {\left[\varphi_{L}^{\prime}(1), 1\right]} & \text { if } t=1 .\end{cases}
$$

Let us give a necessary and sufficient condition of ψ that φ is convex on $[0,1]$. Note that φ is convex on $[0,1]$ if and only if $\varphi_{L}^{\prime}(1 / 2) \leq \varphi_{R}^{\prime}(1 / 2)$.

Therefore we clearly have the following lemma.
Lemma 4φ is convex on $[0,1]$ if and only if $\psi_{R}^{\prime}(1 / 2) \geq \psi_{L}^{\prime}(1 / 2)+1$.
We consider the case $\psi_{R}^{\prime}(1 / 2) \geq \psi_{L}^{\prime}(1 / 2)+1$. Since φ is convex on $[0,1]$ and $\varphi(0)=\varphi(1)=1$, we have $\varphi(t) \leq 1$ for all $t \in[0,1]$. Moreover, we have $\varphi=2 \psi-\psi_{\infty} \geq \psi_{\infty}$ by $\psi \geq \psi_{\infty}$. Thus $\varphi \in \Psi_{2}$.

We next suppose that $\psi_{R}^{\prime}(1 / 2)<\psi_{L}^{\prime}(1 / 2)+1$. By Lemma $4, \varphi$ is not convex on $[0,1]$ and hence $\varphi \notin \Psi_{2}$. From $\varphi_{L}^{\prime}(1 / 2)>\varphi_{R}^{\prime}(1 / 2)$, there exists a real number $a \in(1 / 2,1]$ such that

$$
\begin{equation*}
\varphi_{L}^{\prime}(1 / 2)>\frac{\varphi(a)-\varphi(1 / 2)}{a-1 / 2} \tag{2.1}
\end{equation*}
$$

The following lemma is easy and so the proof is omitted.
Lemma 5 (i) Let $0 \leq t_{1}<t_{2} \leq 1 / 2$. If $\lambda_{1} \in G\left(t_{1}\right)$ and $\lambda_{2} \in G\left(t_{2}\right)$, then $\lambda_{1} \leq \lambda_{2}$.
(ii) Let $0<s_{0}<1 / 2$ and let $\lambda_{n} \in G\left(s_{n}\right)$ for each n. Then $\lambda_{n} \nearrow \varphi_{L}^{\prime}\left(s_{0}\right)$ if $s_{n} \nearrow s_{0}$, and $\lambda_{n} \searrow \varphi_{R}^{\prime}\left(s_{0}\right)$ if $s_{n} \searrow s_{0}$.
Put $A=\{(s, \lambda): 0 \leq s \leq 1 / 2, \lambda \in G(s)\}$. Then we have
Lemma 6 The set A is a compact connected subset of $[0,1 / 2] \times$ $\left[-1, \varphi_{L}^{\prime}(1 / 2)\right]$.

Proof. By Lemma 5(ii) A is closed, which implies that A is compact. To prove that A is connected, it is enough to show that A is homeomorphic to the closed interval $I=\left[-1,1 / 2+\varphi_{L}^{\prime}(1 / 2)\right]$. Define a mapping f from A into I as $f(s, \lambda)=s+\lambda$ for $(s, \lambda) \in A$. Then f is injective by Lemma $5(\mathrm{i})$. We show that f is surjective. For each $t \in I$, put

$$
s_{t}=\sup \{s \in[0,1 / 2]: s+\lambda \leq t \text { for some } \lambda \in G(s)\} .
$$

Then it follows from Lemma 5 (ii) that $\min G\left(s_{t}\right) \leq t-s_{t} \leq \max G\left(s_{t}\right)$, and so $t-s_{t} \in G\left(s_{t}\right)$. Putting $\lambda_{t}=t-s_{t}$, we have $t=s_{t}+\lambda_{t}$ and $\left(s_{t}, \lambda_{t}\right) \in A$. Hence f is surjective. Since f is one to one continuous and A is compact, f is a homeomorphism from A onto I. Thus A is homeomorphic to the closed interval I, which completes the proof.

The following is a key lemma to prove Theorem 1.
Lemma 7 There exist $s_{0} \in[0,1 / 2]$ and $t_{0} \in[a, 1]$ such that

$$
\lambda_{0}=\frac{\varphi\left(t_{0}\right)-\varphi\left(s_{0}\right)}{t_{0}-s_{0}} \in G\left(s_{0}\right) \cap G\left(t_{0}\right)
$$

Proof. Let $\Omega=A \times[a, 1]$. Then Ω is compact and connected by Lemma 6 . For any $(s, \lambda, t) \in \Omega$, we define $F(s, \lambda, t)=\varphi(t)-\varphi(s)-\lambda(t-s)$. For any $t \in$ $[a, 1]$ we have $(0,-1, t) \in \Omega$ and $F(0,-1, t)>0$. Also, $\left(1 / 2, \varphi_{L}^{\prime}(1 / 2), a\right) \in$ Ω and $F\left(1 / 2, \varphi_{L}^{\prime}(1 / 2), a\right)<0$ by (2.1). Since Ω is connected and F is continuous on Ω, there exists an element $(s, \lambda, t) \in \Omega$ with $F(s, \lambda, t)=0$. Put $C=\{(s, \lambda, t) \in \Omega: F(s, \lambda, t)=0\}$. Since C is compact, we put $s_{0}=\min \{s:(s, \lambda, t) \in C\}, \lambda_{0}=\min \left\{\lambda:\left(s_{0}, \lambda, t\right) \in C\right\}$ and $t_{0}=\min \{t:$ $\left.\left(s_{0}, \lambda_{0}, t\right) \in C\right\}$, respectively. Note

$$
\lambda_{0}=\frac{\varphi\left(t_{0}\right)-\varphi\left(s_{0}\right)}{t_{0}-s_{0}} \in G\left(s_{0}\right)
$$

We show $F\left(s_{0}, \lambda_{0}, t\right) \geq 0$ for all $t \in[a, 1]$. Let $t_{1} \in[a, 1]$. Let $s_{0}>$ 0 and $0<s_{1}<s_{0}$. Put $A_{0}=\left\{(s, \lambda): 0 \leq s \leq s_{1}, \lambda \in G(s)\right\}$ and $B_{0}=\left\{(s, \lambda) \in A_{0}: F\left(s, \lambda, t_{1}\right)>0\right\}$. As in the proof of Lemma $6, A_{0}$ is connected. By the definition of $s_{0}, F\left(s, \lambda, t_{1}\right) \neq 0$ for all $(s, \lambda) \in A_{0}$. Hence B_{0} is an open and closed set of A_{0}. Also, $B_{0} \neq \emptyset$ by $F\left(0,-1, t_{1}\right)>0$. Hence B_{0} coincides with A_{0}. Thus $F\left(s, \lambda, t_{1}\right)>0$ for all $(s, \lambda) \in A_{0}$. Let $s_{n} \nearrow s_{0}$ and let $\lambda_{n} \in G\left(s_{n}\right)$. By Lemma $5($ ii $)$ we have $\lambda_{n} \nearrow \varphi_{L}^{\prime}\left(s_{0}\right)$ and so $F\left(s_{0}, \varphi_{L}^{\prime}\left(s_{0}\right), t_{1}\right) \geq 0$. If $\varphi_{L}^{\prime}\left(s_{0}\right)=\lambda_{0}$, then $F\left(s_{0}, \lambda_{0}, t_{1}\right) \geq 0$. If $\varphi_{L}^{\prime}\left(s_{0}\right)<\lambda_{0}$, then $F\left(s_{0}, \varphi_{L}^{\prime}\left(s_{0}\right), t_{1}\right)>0$ by the definition of λ_{0}. Assume $F\left(s_{0}, \lambda_{0}, t_{1}\right)<0$. Then $F\left(s_{0}, \lambda, t_{1}\right)=0$ for some λ with $\varphi_{L}^{\prime}\left(s_{0}\right)<\lambda<\lambda_{0}$, which contradicts the definition of λ_{0}. Hence $F\left(s_{0}, \lambda_{0}, t_{1}\right) \geq 0$. Let $s_{0}=0$. Assume $F\left(0, \lambda_{0}, t_{1}\right)<0$. By $F\left(0,-1, t_{1}\right)>0$ there exists $\lambda_{0}^{\prime} \in\left(-1, \lambda_{0}\right)$ such that $F\left(0, \lambda_{0}^{\prime}, t_{1}\right)=0$, which is a contradiction. Hence $F\left(0, \lambda_{0}, t_{1}\right) \geq 0$. Thus $F\left(s_{0}, \lambda_{0}, t\right) \geq 0$ for all $t \in[a, 1]$.

Finally we show $\lambda_{0} \in G\left(t_{0}\right)$. Let $t \in[a, 1]$. By $F\left(s_{0}, \lambda_{0}, t\right) \geq$ $F\left(s_{0}, \lambda_{0}, t_{0}\right)$ we obtain $\varphi(t)-\varphi\left(t_{0}\right)-\lambda_{0}\left(t-t_{0}\right) \geq 0$. This implies $\varphi_{L}^{\prime}\left(t_{0}\right) \leq$ $\lambda_{0} \leq \varphi_{R}^{\prime}\left(t_{0}\right)$ and thus $\lambda_{0} \in G\left(t_{0}\right)$, which completes the proof.

For s_{0} and t_{0} given in Lemma 7 , we define a function φ_{0} on $[0,1]$ as

$$
\varphi_{0}(t)= \begin{cases}\varphi(t) & \text { if } t \in\left[0, s_{0}\right] \cup\left[t_{0}, 1\right], \\ \frac{\varphi\left(t_{0}\right)-\varphi\left(s_{0}\right)}{t_{0}-s_{0}} t+\frac{\varphi\left(s_{0}\right) t_{0}-\varphi\left(t_{0}\right) s_{0}}{t_{0}-s_{0}} & \text { if } t \in\left[s_{0}, t_{0}\right] .\end{cases}
$$

Let us show that φ_{0} is convex on $[0,1]$. Note that φ_{0} is convex on $[0,1]$ if and only if $\left(\varphi_{0}\right)_{L}^{\prime}(t) \leq\left(\varphi_{0}\right)_{R}^{\prime}(t)$ for $t=s_{0}, t_{0}$. By Lemma 7,

$$
\left(\varphi_{0}\right)_{L}^{\prime}\left(s_{0}\right)=\varphi_{L}^{\prime}\left(s_{0}\right) \leq \lambda_{0}=\left(\varphi_{0}\right)_{R}^{\prime}\left(s_{0}\right)
$$

and

$$
\left(\varphi_{0}\right)_{L}^{\prime}\left(t_{0}\right)=\lambda_{0} \leq \varphi_{R}^{\prime}\left(t_{0}\right)=\left(\varphi_{0}\right)_{R}^{\prime}\left(t_{0}\right) .
$$

Hence φ_{0} is convex on $[0,1]$ and so $\varphi_{0} \in \Psi_{2}$. If $s_{0}=1 / 2$, then since φ is convex on $[1 / 2,1]$ and from $\varphi_{L}^{\prime}\left(t_{0}\right) \leq \lambda_{0}$, we have $\varphi(t)=\varphi_{0}(t)$ for $t \in\left[1 / 2, t_{0}\right]$, which is a contradiction. Thus $s_{0} \neq 1 / 2$. Putting $\varphi_{\max }(t)=$ $2 \psi(t)-\varphi_{0}(t)$, we have

$$
\varphi_{\max }(t)= \begin{cases}\psi_{\infty}(t) & \text { if } t \in\left[0, s_{0}\right] \cup\left[t_{0}, 1\right], \\ 2 \psi(t)-\varphi_{0}(t) & \text { if } t \in\left[s_{0}, t_{0}\right] .\end{cases}
$$

Note that $\varphi_{\max }$ is convex if and only if $\left(\varphi_{\max }\right)_{L}^{\prime}(t) \leq\left(\varphi_{\max }\right)_{R}^{\prime}(t)$ for $t=$ s_{0}, t_{0}. By Lemma 7,

$$
\begin{aligned}
\left(\varphi_{\max }\right)_{L}^{\prime}\left(s_{0}\right) & =\left(\psi_{\infty}\right)_{L}^{\prime}\left(s_{0}\right)=-1 \leq \varphi_{R}^{\prime}\left(s_{0}\right)-\lambda_{0}-1 \\
& =2 \psi_{R}^{\prime}\left(s_{0}\right)-\lambda_{0}=\left(\varphi_{\max }\right)_{R}^{\prime}\left(s_{0}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\varphi_{\max }\right)_{L}^{\prime}\left(t_{0}\right) & =2 \psi_{L}^{\prime}\left(t_{0}\right)-\lambda_{0}=\varphi_{L}^{\prime}\left(t_{0}\right)+1-\lambda_{0} \leq 1 \\
& =\left(\psi_{\infty}\right)_{R}^{\prime}\left(t_{0}\right)=\left(\varphi_{\max }\right)_{R}^{\prime}\left(t_{0}\right)
\end{aligned}
$$

Hence $\varphi_{\max }$ is convex on $[0,1]$ and so $\varphi_{\max } \in \Psi_{2}$. Thus this completes the proof of Theorem 1.

Example 8 We consider the case $\psi=\psi_{2}$. It is clear that $\left(\psi_{2}\right)_{L}^{\prime}(1 / 2)=$ $\left(\psi_{2}\right)_{R}^{\prime}(1 / 2)$. Hence it follows from Lemma 4 that $\varphi\left(=2 \psi_{2}-\psi_{\infty}\right)$ is not convex. Put $s_{0}=\frac{1}{2}-\frac{\sqrt{7}}{14}$ and $t_{0}\left(=1-s_{0}\right)=\frac{1}{2}+\frac{\sqrt{7}}{14}$. Note that since φ
is symmetric to $t=1 / 2$, we have $\varphi\left(s_{0}\right)=\varphi\left(t_{0}\right)$. Easy calculation shows that φ has local minimums at $t=s_{0}, t_{0}$ and hence $\lambda_{0}=\frac{\varphi\left(s_{0}\right)-\varphi\left(t_{0}\right)}{s_{0}-t_{0}}=0 \in$ $G\left(s_{0}\right) \cap G\left(t_{0}\right)$. For s_{0}, t_{0} and λ_{0}, two functions φ_{0} and $\varphi_{\max }$ are the following:

$$
\varphi_{0}(t)= \begin{cases}2\left((1-t)^{2}+t^{2}\right)^{1 / 2}-1+t & \text { if } 0 \leq t \leq \frac{1}{2}-\frac{\sqrt{7}}{14} \\ -\frac{1}{2}+\frac{\sqrt{7}}{2} & \text { if } \frac{1}{2}-\frac{\sqrt{7}}{14} \leq t \leq \frac{1}{2}+\frac{\sqrt{7}}{14} \\ 2\left((1-t)^{2}+t^{2}\right)^{1 / 2}-t & \text { if } \frac{1}{2}+\frac{\sqrt{7}}{14} \leq t \leq 1\end{cases}
$$

and

$$
\varphi_{\max }(t)= \begin{cases}1-t & \text { if } 0 \leq t \leq \frac{1}{2}-\frac{\sqrt{7}}{14} \\ 2\left((1-t)^{2}+t^{2}\right)^{1 / 2}+\frac{1}{2}-\frac{\sqrt{7}}{2} & \text { if } \frac{1}{2}-\frac{\sqrt{7}}{14} \leq t \leq \frac{1}{2}+\frac{\sqrt{7}}{14} \\ t & \text { if } \frac{1}{2}+\frac{\sqrt{7}}{14} \leq t \leq 1\end{cases}
$$

3. Proof of Theorem 2

The equivalence of (i) and (ii) is clear (see [4]). (i) \Rightarrow (iii). Suppose that ψ is an extreme point of Ψ_{2}. If $\psi_{R}^{\prime}(1 / 2) \geq \psi_{L}^{\prime}(1 / 2)+1$, then we have by Theorem $1, \psi=\frac{\varphi+\psi_{\infty}}{2}$ and $\psi=\varphi=\psi_{\infty}=\psi_{1 / 2,1 / 2}$. If $\psi_{R}^{\prime}(1 / 2)<\psi_{L}^{\prime}(1 / 2)+$ 1 , then we have by Theorem $1, \psi=\left(\varphi_{0}+\varphi_{\max }\right) / 2$ and so $\psi=\varphi_{\max }=\varphi_{0}$. This implies that $\psi=\psi_{s_{0}, t_{0}}$. We may put $\alpha=s_{0}$ and $\beta=t_{0}$, respectively.
(iii) \Rightarrow (i). Suppose that $\psi=\psi_{\alpha, \beta}$ for some α, β. If $\psi_{\alpha, \beta}=\frac{1}{2}\left(\varphi_{1}+\varphi_{2}\right)$ where $\varphi_{1}, \varphi_{2} \in \Psi_{2}$, then $\psi_{\alpha, \beta}=\varphi_{1}=\varphi_{2}$ on $[0, \alpha] \cup[\beta, 1]$. For each $t \in$ $[\alpha, \beta], \psi_{\alpha, \beta}(t)=\frac{1}{2}\left(\varphi_{1}(t)+\varphi_{2}(t)\right)$. Since φ_{1} and φ_{2} are convex, we have $\psi_{\alpha, \beta}=\varphi_{1}=\varphi_{2}$. Thus $\psi_{\alpha, \beta}$ is an extreme point of Ψ_{2}. This completes the proof.

Acknowledgement. The authors would like to thank the referees for their helpful comments and careful reading in this paper.

References

[1] Bonsall F. F., Duncan J., Numerical Ranges II. London Math. Soc. Lecture Note Series, Vol. 10, 1973.
[2] Grzaślewicz R., Extreme symmetric norms on \mathbb{R}^{2}. Colloq. Math. 56 (1988), 147-151.
[3] Komuro N., Saito K.-S. and Mitani K.-I., Extremal structure of absolute normalized norms on \mathbb{R}^{2}. Proceedings of Asian Conference on Nonlinear Analysis and Optimization (Matsue, Japan, 2008), 185-191.
[4] Komuro N., Saito K.-S. and Mitani K.-I., Extremal structure of the set of absolute norms on \mathbb{R}^{2} and the von Neumann-Jordan constant. J. Math. Anal. Appl. 370 (2010), 101-106.
[5] Mitani K.-I. and Saito K.-S., The James constant of absolute norms on \mathbb{R}^{2}. J. Nonlinear Convex Anal. 4 (2003), 399-410.
[6] Saito K.-S., Kato M. and Takahashi Y., Von Neumann-Jordan constant of absolute normalized norms on \mathbb{C}^{2}. J. Math. Anal. Appl. 244 (2000), 515-532.
[7] Saito K.-S., Kato M. and Takahashi Y., Absolute norms on \mathbb{C}^{n}. J. Math. Anal. Appl. 252 (2000), 879-905.
[8] Tomczak-Jaegermann N., Problems on Banach spaces. Colloq. Math. 45 (1981), 45-47.

Kichi-Suke Saito
Department of Mathematics
Faculty of Science
Niigata University
Niigata 950-2181, Japan
E-mail: saito@math.sc.niigata-u.ac.jp
Ken-Ichi Mitani
Department of Systems Engineering
Okayama Prefectural University
Soja 719-1197, Japan
E-mail: mitani@cse.oka-pu.ac.jp
Naoto Komuro
Department of Mathematics
Hokkaido University of Education
Asahikawa Campus
Asahikawa 070-8621, Japan
E-mail: komuro@asa.hokkyodai.ac.jp

[^0]: 2000 Mathematics Subject Classification : 46B20, 46B25.
 *Corresponding author.
 The first author was supported in part by Grant-in-Aid for Scientific Research (C), 23540189, Japan Society for the Promotion of Science.

