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A note on extreme norms on R2
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Abstract. We denote by AN2 the set of all absolute normalized norms on R2. It

is known that the set AN2 and the set of all continuous convex functions ψ on [0, 1]

with max{1 − t, t} ≤ ψ(t) ≤ 1 for t ∈ [0, 1] (denoted by Ψ2) are in a one to one

correspondence under the equation ψ(t) = ‖(1 − t, t)‖. Recently, we characterized

extreme points of AN2 by considering Ψ2. In this paper we give another proof of this

result.
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1. Introduction and preliminaries

A norm ‖ · ‖ on R2 is said to be absolute if ‖(x1, x2)‖ = ‖(|x1|, |x2|)‖ for
all x1, x2 ∈ R, and normalized if ‖(1, 0)‖ = ‖(0, 1)‖ = 1. The `p-norms ‖ · ‖p

(1 ≤ p ≤ ∞) are basic examples:

‖(x1, x2)‖p =

{
(|x1|p + |x2|p)1/p if 1 ≤ p < ∞,

max{|x1|, |x2|} if p = ∞.

Let AN2 be the family of all absolute normalized norms on R2.
Let Ψ2 be the set of all continuous convex functions on the interval [0, 1]

satisfying max{1− t, t} ≤ ψ(t) ≤ 1 for t ∈ [0, 1]. Then by [1], AN2 and Ψ2

are in a one-to-one correspondence with ψ(t) = ‖(1− t, t)‖ for t ∈ [0, 1] and

‖(x1, x2)‖ψ =





(|x1|+ |x2|)ψ
(

|x2|
|x1|+|x2|

)
if (x1, x2) 6= (0, 0),

0 if (x1, x2) = (0, 0)

(see also [5], [7], [6]). For `p-norm ‖ · ‖p, the corresponding convex function
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ψp is

ψp(t) =

{
((1− t)p + tp)1/p if 1 ≤ p < ∞,

max{1− t, t} if p = ∞.

We consider the convex structure of the set AN2 in the sense that

‖ · ‖, ‖ · ‖′ ∈ AN2, λ ∈ [0, 1] ⇒ (1− λ)‖ · ‖+ λ‖ · ‖′ ∈ AN2.

Note that Ψ2 also has its own convex structure, and the correspondence
ψ → ‖ · ‖ψ preserves the operation to take a convex combination. A norm
‖ · ‖ ∈ AN2 is an extreme point of AN2 if

‖ · ‖ =
1
2
(‖ · ‖′ + ‖ · ‖′′), ‖ · ‖′, ‖ · ‖′′ ∈ AN2 ⇒ ‖ · ‖′ = ‖ · ‖′′.

The definition of extreme point of Ψ2 is similar to that of AN2. It is easy
to see that ψ is an extreme point of Ψ2 if and only if ‖ · ‖ψ is an extreme
point of AN2 (see [4]).

As in [4], we determined the set of all extreme points of AN2 by con-
sidering the set Ψ2. After that, the authors were informed by Professor
P. N. Dowling about the result of R. Grzaślewicz [2], which solved a problem
posed by Professor A. Pietsch at the Winter School on Functional Analy-
sis in January 1978 (cf. [8]). The method in [4] is different from that of
R. Grzaślewicz [2].

The main results are stated as follows. Let ψ′L(1/2) (resp. ψ′R(1/2)) be
the left (resp. the right) derivative of ψ at t = 1/2.

Theorem 1 Let ψ ∈ Ψ2. We define a function ϕ as ϕ = 2ψ − ψ∞.

( i ) If ψ′R(1/2) ≥ ψ′L(1/2) + 1, then ϕ ∈ Ψ2 and

ψ =
ϕ + ψ∞

2
.

( ii ) Let ψ′R(1/2) < ψ′L(1/2) + 1. Then ϕ /∈ Ψ2. However, we can find a
function ϕ0 ∈ Ψ2 with
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ϕ0(t) =

{
ϕ(t) if t ∈ [0, s0] ∪ [t0, 1],
ϕ(t0)−ϕ(s0)

t0−s0
t + ϕ(s0)t0−ϕ(t0)s0

t0−s0
if t ∈ [s0, t0]

for some s0 ∈ [0, 1/2] and t0 ∈ (1/2, 1]. Moreover, putting a function
ϕmax = 2ψ − ϕ0 we have ϕmax ∈ Ψ2 and

ψ =
ϕ0 + ϕmax

2
.

For 0 ≤ α ≤ 1
2 ≤ β ≤ 1 and for the case (α, β) 6= ( 1

2 , 1
2 ) we define

ψα,β(t) =





1− t if 0 ≤ t ≤ α,

α+β−1
β−α t + β−2αβ

β−α if α ≤ t ≤ β,

t if β ≤ t ≤ 1.

For the case (α, β) = ( 1
2 , 1

2 ) we put ψ1/2,1/2 = ψ∞. We clearly have ψα,β ∈
Ψ2 for all α, β with 0 ≤ α ≤ 1

2 ≤ β ≤ 1 and the corresponding norm is

‖(x1, x2)‖ψα,β
=





|x1| if |x2| ≤ α
1−α |x1|,

β(1−2α)
β−α |x1|+ (2β−1)(1−α)

β−α |x2|
if α

1−α |x1| < |x2|, 1−β
β |x2| < |x1|,

|x2| if |x1| ≤ 1−β
β |x2|.

Theorem 2 ([3], [4]) Let ψ ∈ Ψ2. Then the following are equivalent :

( i ) ψ is an extreme point of Ψ2,
( ii ) ‖ · ‖ψ is an extreme point of AN2,
(iii) There exist α, β with 0 ≤ α ≤ 1/2 ≤ β ≤ 1 such that ψ = ψα,β (resp.

‖ · ‖ψ = ‖ · ‖ψα,β
).

Note that the equivalence of (ii) and (iii) in Theorem 2 is essentially the
same as the next result given by R. Grzaślewicz [2].

Corollary 3 ([2]) Let ‖ · ‖ ∈ AN2. Then ‖ · ‖ is an extreme point of AN2

if and only if all extreme points of the unit ball of (R2, ‖ · ‖) are contained
in the unit sphere of (R2, ‖ · ‖∞).
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2. Proof of Theorem 1

Note that

ϕ(t) =

{
2ψ(t)− 1 + t if 0 ≤ t ≤ 1/2,

2ψ(t)− t if 1/2 ≤ t ≤ 1.

It is clear that ϕ is a convex function on [0, 1/2] (resp. [1/2, 1]). For each
t ∈ (0, 1], we denote by ϕ′L(t) (resp. ψ′L(t)) the left derivative of ϕ (resp. of ψ)
at t. Similarly, for each t ∈ [0, 1), we denote by ϕ′R(t) (resp. ψ′R(t)) the right
derivative of ϕ (resp. of ψ) at t. Since ϕ(0) = 1 and ϕ(t) ≥ ψ∞(t) = 1 − t

for t ∈ [0, 1/2], we have

ϕ′R(0) = lim
t→+0

ϕ(t)− ϕ(0)
t

≥ lim
t→+0

1− t− 1
t

= −1.

Since ϕ(1) = 1 and ϕ(t) ≥ ψ∞(t) ≥ t for all t ∈ [1/2, 1], we also have

ϕ′L(1) = lim
t→−0

ϕ(1 + t)− ϕ(1)
t

≤ lim
t→−0

1 + t− 1
t

= 1.

Hence, if 0 < s < t < 1/2, then

−1 ≤ ϕ′R(0) ≤ ϕ′R(s) ≤ ϕ′L(t) ≤ ϕ′R(t) ≤ ϕ′L(1/2) = 2ψ′L(1/2) + 1,

and if 1/2 < s < t < 1, then

2ψ′R(1/2)− 1 = ϕ′R(1/2) ≤ ϕ′R(s) ≤ ϕ′L(t) ≤ ϕ′R(t) ≤ ϕ′L(1) ≤ 1.

We define a mapping G from [0, 1] into the subsets of R as

G(t) =





[−1, ϕ′R(0)] if t = 0,

[ϕ′L(t), ϕ′R(t)] if 0 < t < 1/2, 1/2 < t < 1,

{ϕ′L(1/2)} if t = 1/2,

[ϕ′L(1), 1] if t = 1.

Let us give a necessary and sufficient condition of ψ that ϕ is convex on
[0, 1]. Note that ϕ is convex on [0, 1] if and only if ϕ′L(1/2) ≤ ϕ′R(1/2).
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Therefore we clearly have the following lemma.

Lemma 4 ϕ is convex on [0, 1] if and only if ψ′R(1/2) ≥ ψ′L(1/2) + 1.

We consider the case ψ′R(1/2) ≥ ψ′L(1/2)+1. Since ϕ is convex on [0, 1]
and ϕ(0) = ϕ(1) = 1, we have ϕ(t) ≤ 1 for all t ∈ [0, 1]. Moreover, we have
ϕ = 2ψ − ψ∞ ≥ ψ∞ by ψ ≥ ψ∞. Thus ϕ ∈ Ψ2.

We next suppose that ψ′R(1/2) < ψ′L(1/2) + 1. By Lemma 4, ϕ is not
convex on [0, 1] and hence ϕ /∈ Ψ2. From ϕ′L(1/2) > ϕ′R(1/2), there exists a
real number a ∈ (1/2, 1] such that

ϕ′L(1/2) >
ϕ(a)− ϕ(1/2)

a− 1/2
. (2.1)

The following lemma is easy and so the proof is omitted.

Lemma 5 ( i ) Let 0 ≤ t1 < t2 ≤ 1/2. If λ1 ∈ G(t1) and λ2 ∈ G(t2),
then λ1 ≤ λ2.

( ii ) Let 0 < s0 < 1/2 and let λn ∈ G(sn) for each n. Then λn ↗ ϕ′L(s0)
if sn ↗ s0, and λn ↘ ϕ′R(s0) if sn ↘ s0.

Put A = {(s, λ) : 0 ≤ s ≤ 1/2, λ ∈ G(s)}. Then we have

Lemma 6 The set A is a compact connected subset of [0, 1/2] ×
[−1, ϕ′L(1/2)].

Proof. By Lemma 5(ii) A is closed, which implies that A is compact. To
prove that A is connected, it is enough to show that A is homeomorphic to
the closed interval I = [−1, 1/2+ϕ′L(1/2)]. Define a mapping f from A into
I as f(s, λ) = s + λ for (s, λ) ∈ A. Then f is injective by Lemma 5(i). We
show that f is surjective. For each t ∈ I, put

st = sup{s ∈ [0, 1/2] : s + λ ≤ t for some λ ∈ G(s)}.

Then it follows from Lemma 5(ii) that minG(st) ≤ t− st ≤ max G(st), and
so t− st ∈ G(st). Putting λt = t− st, we have t = st + λt and (st, λt) ∈ A.
Hence f is surjective. Since f is one to one continuous and A is compact, f

is a homeomorphism from A onto I. Thus A is homeomorphic to the closed
interval I, which completes the proof. ¤



6 K.-S. Saito, K.-I. Mitani and N. Komuro

The following is a key lemma to prove Theorem 1.

Lemma 7 There exist s0 ∈ [0, 1/2] and t0 ∈ [a, 1] such that

λ0 =
ϕ(t0)− ϕ(s0)

t0 − s0
∈ G(s0) ∩G(t0).

Proof. Let Ω = A× [a, 1]. Then Ω is compact and connected by Lemma 6.
For any (s, λ, t) ∈ Ω, we define F (s, λ, t) = ϕ(t)−ϕ(s)−λ(t−s). For any t ∈
[a, 1] we have (0,−1, t) ∈ Ω and F (0,−1, t) > 0. Also, (1/2, ϕ′L(1/2), a) ∈
Ω and F (1/2, ϕ′L(1/2), a) < 0 by (2.1). Since Ω is connected and F is
continuous on Ω, there exists an element (s, λ, t) ∈ Ω with F (s, λ, t) = 0.
Put C = {(s, λ, t) ∈ Ω : F (s, λ, t) = 0}. Since C is compact, we put
s0 = min{s : (s, λ, t) ∈ C}, λ0 = min{λ : (s0, λ, t) ∈ C} and t0 = min{t :
(s0, λ0, t) ∈ C}, respectively. Note

λ0 =
ϕ(t0)− ϕ(s0)

t0 − s0
∈ G(s0).

We show F (s0, λ0, t) ≥ 0 for all t ∈ [a, 1]. Let t1 ∈ [a, 1]. Let s0 >

0 and 0 < s1 < s0. Put A0 = {(s, λ) : 0 ≤ s ≤ s1, λ ∈ G(s)} and
B0 = {(s, λ) ∈ A0 : F (s, λ, t1) > 0}. As in the proof of Lemma 6, A0 is
connected. By the definition of s0, F (s, λ, t1) 6= 0 for all (s, λ) ∈ A0. Hence
B0 is an open and closed set of A0. Also, B0 6= ∅ by F (0,−1, t1) > 0.
Hence B0 coincides with A0. Thus F (s, λ, t1) > 0 for all (s, λ) ∈ A0. Let
sn ↗ s0 and let λn ∈ G(sn). By Lemma 5(ii) we have λn ↗ ϕ′L(s0)
and so F (s0, ϕ

′
L(s0), t1) ≥ 0. If ϕ′L(s0) = λ0, then F (s0, λ0, t1) ≥ 0. If

ϕ′L(s0) < λ0, then F (s0, ϕ
′
L(s0), t1) > 0 by the definition of λ0. Assume

F (s0, λ0, t1) < 0. Then F (s0, λ, t1) = 0 for some λ with ϕ′L(s0) < λ < λ0,
which contradicts the definition of λ0. Hence F (s0, λ0, t1) ≥ 0. Let s0 = 0.
Assume F (0, λ0, t1) < 0. By F (0,−1, t1) > 0 there exists λ′0 ∈ (−1, λ0) such
that F (0, λ′0, t1) = 0, which is a contradiction. Hence F (0, λ0, t1) ≥ 0. Thus
F (s0, λ0, t) ≥ 0 for all t ∈ [a, 1].

Finally we show λ0 ∈ G(t0). Let t ∈ [a, 1]. By F (s0, λ0, t) ≥
F (s0, λ0, t0) we obtain ϕ(t)− ϕ(t0)− λ0(t− t0) ≥ 0. This implies ϕ′L(t0) ≤
λ0 ≤ ϕ′R(t0) and thus λ0 ∈ G(t0), which completes the proof. ¤

For s0 and t0 given in Lemma 7, we define a function ϕ0 on [0, 1] as
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ϕ0(t) =

{
ϕ(t) if t ∈ [0, s0] ∪ [t0, 1],
ϕ(t0)−ϕ(s0)

t0−s0
t + ϕ(s0)t0−ϕ(t0)s0

t0−s0
if t ∈ [s0, t0].

Let us show that ϕ0 is convex on [0, 1]. Note that ϕ0 is convex on [0, 1]
if and only if (ϕ0)′L(t) ≤ (ϕ0)′R(t) for t = s0, t0. By Lemma 7,

(ϕ0)′L(s0) = ϕ′L(s0) ≤ λ0 = (ϕ0)′R(s0)

and

(ϕ0)′L(t0) = λ0 ≤ ϕ′R(t0) = (ϕ0)′R(t0).

Hence ϕ0 is convex on [0, 1] and so ϕ0 ∈ Ψ2. If s0 = 1/2, then since
ϕ is convex on [1/2, 1] and from ϕ′L(t0) ≤ λ0, we have ϕ(t) = ϕ0(t) for
t ∈ [1/2, t0], which is a contradiction. Thus s0 6= 1/2. Putting ϕmax(t) =
2ψ(t)− ϕ0(t), we have

ϕmax(t) =

{
ψ∞(t) if t ∈ [0, s0] ∪ [t0, 1],

2ψ(t)− ϕ0(t) if t ∈ [s0, t0].

Note that ϕmax is convex if and only if (ϕmax)′L(t) ≤ (ϕmax)′R(t) for t =
s0, t0. By Lemma 7,

(ϕmax)′L(s0) = (ψ∞)′L(s0) = −1 ≤ ϕ′R(s0)− λ0 − 1

= 2ψ′R(s0)− λ0 = (ϕmax)′R(s0)

and

(ϕmax)′L(t0) = 2ψ′L(t0)− λ0 = ϕ′L(t0) + 1− λ0 ≤ 1

= (ψ∞)′R(t0) = (ϕmax)′R(t0).

Hence ϕmax is convex on [0, 1] and so ϕmax ∈ Ψ2. Thus this completes the
proof of Theorem 1.

Example 8 We consider the case ψ = ψ2. It is clear that (ψ2)′L(1/2) =
(ψ2)′R(1/2). Hence it follows from Lemma 4 that ϕ(= 2ψ2 − ψ∞) is not
convex. Put s0 = 1

2 −
√

7
14 and t0(= 1 − s0) = 1

2 +
√

7
14 . Note that since ϕ
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is symmetric to t = 1/2, we have ϕ(s0) = ϕ(t0). Easy calculation shows
that ϕ has local minimums at t = s0, t0 and hence λ0 = ϕ(s0)−ϕ(t0)

s0−t0
= 0 ∈

G(s0)∩G(t0). For s0, t0 and λ0, two functions ϕ0 and ϕmax are the following:

ϕ0(t) =





2((1− t)2 + t2)1/2 − 1 + t if 0 ≤ t ≤ 1
2 −

√
7

14 ,

− 1
2 +

√
7

2 if 1
2 −

√
7

14 ≤ t ≤ 1
2 +

√
7

14 ,

2((1− t)2 + t2)1/2 − t if 1
2 +

√
7

14 ≤ t ≤ 1

and

ϕmax(t) =





1− t if 0 ≤ t ≤ 1
2 −

√
7

14 ,

2((1− t)2 + t2)1/2 + 1
2 −

√
7

2 if 1
2 −

√
7

14 ≤ t ≤ 1
2 +

√
7

14 ,

t if 1
2 +

√
7

14 ≤ t ≤ 1.

3. Proof of Theorem 2

The equivalence of (i) and (ii) is clear (see [4]). (i) ⇒ (iii). Suppose that
ψ is an extreme point of Ψ2. If ψ′R(1/2) ≥ ψ′L(1/2) + 1, then we have by
Theorem 1, ψ = ϕ+ψ∞

2 and ψ = ϕ = ψ∞ = ψ1/2,1/2. If ψ′R(1/2) < ψ′L(1/2)+
1, then we have by Theorem 1, ψ = (ϕ0 + ϕmax)/2 and so ψ = ϕmax = ϕ0.
This implies that ψ = ψs0,t0 . We may put α = s0 and β = t0, respectively.

(iii) ⇒ (i). Suppose that ψ = ψα,β for some α, β. If ψα,β = 1
2 (ϕ1 + ϕ2)

where ϕ1, ϕ2 ∈ Ψ2, then ψα,β = ϕ1 = ϕ2 on [0, α] ∪ [β, 1]. For each t ∈
[α, β], ψα,β(t) = 1

2 (ϕ1(t) + ϕ2(t)). Since ϕ1 and ϕ2 are convex, we have
ψα,β = ϕ1 = ϕ2. Thus ψα,β is an extreme point of Ψ2. This completes the
proof.

Acknowledgement. The authors would like to thank the referees for their
helpful comments and careful reading in this paper.
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