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Symmetry algebras of normal \mathcal{A}-hypergeometric systems

Mutsumi SAITO
(Received August 28, 1995)

Abstract. The structure of the symmetry algebras of normal A-hypergeometric systems
is studied and determined in terms of generators and relations. An irreducible component
of the semisimple part of their symmetry Lie algebras is proved to be either of A-type or
of C-type. This result generalizes Hrabowski’s theorem [Hr].
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Introduction

Miller demonstrated in [M1] that a variety of addition theorems and
generating functions for generalized hypergeometric functions were derived
from the representation theory of the corresponding symmetry Lie algebras,
which he called dynamical symmetry algebras. In the case of A_{n}-type, by
using the symmetry Lie algebras of hypergeometric systems, Sasaki obtained
in [Sas] all contiguity relations for the corresponding generalized hyperge-
ometric functions, and Horikawa clarified in [Hor] the action of the Weyl
group on the space of those functions. These examples show that the study
of the structure and the representation theory of the symmetry Lie algebras
of hypergeometric systems is very important. In this direction, Hrabowski
proved in [Hr] that, when a symmetry Lie algebra generates all symmetries,
it is a simple Lie algebra of finite dimension if and only if the simple Lie
algebra is either of A_{n}-type or of C_{n}-type where n is the dimension of the
parameter space. In this paper, we generalize his result when a symmetry
Lie algebra not necessarily generates all symmetries. To solve this problem,
we proceed in the following way. First we determine the structure of the
associative algebra composed of all symmetries; we call this associative al-
gebra, the symmetry algebra of a hypergeometric system. Next we study
the symmetry Lie algebra as the Lie subalgebra composed of all symmetries
of order less than or equal to one.

Among a number of definitions of generalized hypergeometric systems,
we choose a definition suitable for our problem of determining the structure
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of the symmetry algebras: that is the definition of generalized hyperge0-
metric systems in which symmetries are nicely visible. We adopt the defini-
tion of A-hypergeometric systems, which were defined and studied from the
toric viewpoint by Gelfand and his collaborators in the successive papers
[G], [GGZ], [GZKI], [GZK2], [GKZ], etc. We remark that similar hyperge-
ometric systems were defined and studied by Hrabowski in his paper [Hr]
under the influence of the paper [KKM] in which tw0-variable case was stud-
ied and that, as seen in [Ho], A-hypergeometric systems are Hrabowski’s
hypergeometric systems with the regularity condition.

In the paper [Sail] the author defined b-functions for A-hypergeomet-
ric systems and calculated them when the systems were normal in the
sense to be defined later in \S 1. In this paper, by using the theory of b-
functions, we obtain the structure theorem of symmetry algebras of normal
A-hypergeometric systems in terms of generators and relations. As a re-
sult, we prove that the semisimple part of the symmetry Lie algebra of any
normal A-hypergeometric system is the sum of components of A-type or
C-type. This is a generalization of the Hrabowski’s result mentioned above.

Example 0.1. Here by using the hypergeometric function pp-F1 , we show
a method of deriving an A-hypergeometric system from a hypergeometric
function (cf. [M1], [KKM]) and a motivation to study symmetry algebras.
The function pp-F1 around the origin of \mathbb{C} is defined to be

pF_{p-1}(a_{1} a_{p};b_{1}, \ldots, b_{p-1}=\sum_{n=1}^{\infty}\frac{\prod_{i=1}^{p}(a_{i})_{n}}{\prod_{i=1}^{p-1}(b_{i})_{n}}\frac{x^{n}}{n!} (0.1)

where we put

(a)_{n}=\{
1, for n=0

(0.3)a(a+1) . (a+n-1) , for n\geq 1 .

Following Miller (cf. [M1]), we associate an A-hypergeometric system with
the function pp-F1 . We easily see the following differential contiguity rela-
tions for pp-F1 :

(\theta+a_{i})_{p}F_{p-1}=a_{ip}F_{p-1}(a_{i}+1) (1 \leq i\leq p) ,
(\theta+b_{i}-1) pp-F1=(b_{i}-1) pp-F1(b_{i}-1) (1 \leq i\leq p-1) ,

\frac{\partial}{\partial x}pFp-1=\frac{\prod_{i=1}^{p}a_{i}}{\prod_{i=1}^{p-1}b_{i}}pFp-1(a_{1}+1, \ldots, a_{p}+1;b_{1}+1, \ldots , ^{b_{p-1}}+1)

(0.3)
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where \theta=x \partial/\partial x . Here pp-F1(a_{i}+1) stands for pp-F1(a_{1} , \ldots , a_{i}+

1 , \ldots , a_{p} ; b_{1} , \ldots , b_{p-1} ; x ), etc. In order to consider the contiguity operators
appearing on the left hand sides of the equations (0.3) as vector fields, we
introduce additional variables v_{a_{1}} , . , v_{a_{p}} , v_{b_{1}} , . ., v_{b_{p-1}} and a new function

pp-\tilde{F}1=Fpp-1 v_{a_{1}}^{a_{1}} . . v_{a_{p}}^{a_{p}}\cdot v_{b_{1}}^{b_{1}-1} . v_{b_{p-1}}^{b_{p-1}-1} (0.4)

We then define the following operators:

E^{a_{i}}:=v_{a_{i}}(\theta+\theta_{a_{i}}) (1\leq i\leq p) ,
E_{b_{i}}:=v_{b_{i}}^{-1}(\theta+\theta_{b_{i}}) (1\leq i\leq p-1) ,

E^{a_{1}\cdots a_{p}\cdot b_{1}\cdots b_{p-1}}:=v_{a_{1}} .
v_{a_{p}} v_{b_{1}}

. . v_{b_{p-1}} \frac{\partial}{\partial x} (0.5)

where \theta_{a_{i}}=v_{a_{i}} \partial/\partial v_{a_{i}}(1\leq i\leq p) and \theta_{b_{i}}=v_{b_{i}} \partial/\partial v_{b_{i}}(1\leq i\leq p-1) .
Then the function pp-\tilde{F}1 satisfies

\theta_{a_{i}p}\tilde{F}_{p-1}=a_{ip}\tilde{F}_{p-1} (1\leq i\leq p) ,
\theta_{b_{i}p}\tilde{F}_{p-1}=(b_{i}-1)_{p}\tilde{F}_{p-1} (1\leq i\leq p-1) ,
E^{a_{i}}\tilde{F}pp-1=a_{ip}\tilde{F}_{p-1}(a_{i}+1) (1 \leq i\leq p) ,
E_{b_{i}p}\tilde{F}_{p-1}=(b_{i}-1) pp-\tilde{F}1(b_{i}-1) (1 \leq i\leq p-1) ,
E^{a_{1}\cdots a_{I^{J}}\cdot b_{1}\cdots b_{p-1}}\tilde{F}pp-1

= \frac{a_{1}\cdot\cdot a_{p}}{b_{1}\cdot b_{p-1}}p\tilde{F}-1(pa_{1}+1, \ldots, a_{p}+1;b_{1}+1, \ldots, b_{p-1}+1) .

(0.6)

Hence the function pp-\tilde{F}1 is a solution of the system of differential equations

(\theta_{a_{i}}-a_{i})\Phi=0 (1\leq i\leq p) ,
(\theta_{b_{i}}-b_{i}+1)\Phi=0 (1 \leq i\leq p-1) ,
( E^{a_{1}}. .^{E^{a_{p}}}-E_{b_{1}}.^{E_{b_{p-1}}E^{a_{1}\cdots a_{p}\cdot b_{1}\cdots b_{p-1}})\Phi=0} . (0.7)

Next we change variables from v_{a_{1}} . v_{a_{p}},v_{b_{1}} , \ldots , v_{b_{p-1}} , x to u_{i}=-v_{a_{i}}^{-1}

(1\leq i\leq p) , u_{p+i}=v_{b_{i}}(1\leq i\leq p-1) , u_{2p}=v_{a_{1}}^{-1} . . v_{a_{p}}^{-1}v_{b_{1}}^{-1} . v_{b_{p-1}}^{-1}x so
that E^{a_{i}}(1\leq i\leq p) , E_{b_{i}}(1\leq i\leq p-1) , E^{a_{1}\cdots a_{p}\cdot b_{1}\cdots b_{p-1}} are transformed into
D_{i}(1\leq i\leq p) , D_{p+i}(1\leq i\leq p-1) , D_{2p} respectively where D_{j}=\partial/\partial u_{j}

(1\leq j\leq 2p) . Hence the function pp-\tilde{F}1(u_{1}, \ldots, u_{2p}) is a solution of the
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system of differential equations

(\theta_{i}+\theta_{2p}+a_{i})\Phi=0 (1\leq i\leq p) ,
(\theta_{p+i}-\theta_{2p}-b_{i}+1)\Phi=0 (1 \leq i\leq p-1) ,

(D_{1} . D_{p}-D_{p+1}. D_{2p})\Phi=0 , (0.8)

where \theta_{j}=u_{j}D_{j}(1\leq j\leq 2p) . We call the above system (0.8) an A-
hypergeometric system \mathcal{M}_{p} with parameter - \sum_{i=1}^{p}a_{i}e_{i}+\sum_{i=1}^{p-1}(b_{i}-1)e_{p+i}

where we put A=\{\chi_{1}=e_{1} , \ldots , \chi_{2p-1}=e_{2p-1} , \chi_{2p}=\sum_{i=1}^{p}e_{i}-\sum_{i=1}^{p-1}e_{p+i}

\in \mathbb{Z}^{2p-1}=\oplus_{i=1}^{2p-1}\mathbb{Z}e_{i}\} . We easily see that the operators D_{i}(1\leq i\leq 2p-1) ,
\theta_{i}+\theta_{2p}(1\leq i\leq p) , \theta_{p+i}-\theta_{2p}(1\leq i\leq p-1) , and 1 form a basis of a
Lie subalgebra 9p of the symmetry Lie algebra of \mathcal{M}_{p} . By the explicit
calculation, we find that the Lie algebra 9p coincides with the symmetry
Lie algebra if and only if p\neq 2 . When p=2 , the symmetry Lie algebra is
much larger than g_{2} (see [M1] again). On the other hand, we can describe
the symmetry algebras of \mathcal{M}_{p}(p\geq 2) in a unified fashion (see Example 2.7,

Theorem 2.17, and Theorem 4.5). Hence the symmetry algebra is better
suited for the systematic study than the symmetry Lie algebra. This is the
reason why we work on the symmetry algebra first.

Let us take a brief look at the contents, section by section. In \S 1 we
define the symmetry algebra A of a normal A-hypergeometric system, and
prove that it has a weight decomposition (Lemma 1.4). In \S 2 we prove that
the weight subspace A_{0} of A with weight 0 is a polynomial ring (Proposition
2.4). Then we determine the A_{0}-module structure of A (Theorem 2.17); for
each weight \chi , the weight subspace A_{\chi} is a free A_{0}-module of rank one gen-
erated by a uniquely determined operator E_{\chi} . In \S 3 we define irreducibility
of A, and then prove a lemma (Lemma 3.4) for obtaining relations among
the generators E_{\chi} (cf. Remark 4.6). In \S 4 we determine the structure of
the symmetry algebra A as an algebra (Theorem 4.5). In \S 5, for operators
in A , we define their orders, and calculate them (Proposition 5.3). We de-
fine the symmetry Lie algebra \tilde{g} as the Lie subalgebra of A composed of all
symmetries of order less than or equal to one. We denote by R the set of
the nonzero weights of the reductive part of the symmetry Lie algebra \tilde{g} .
We prove that the set R is a reduced root system whose irreducible comp0-

nents are of A-type or of C-type (Theorem 5.8 and Theorem 5.9), which is
a generalization of the Hrabowski’s result mentioned above.
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1. Symmetry algebras of normal A-hypergeometric systems

In this section, we recall some definitions and fix notations related to an
A-hypergeometric system, its symmetry algebra A , etc. Then we see that
the Lie algebra \mathfrak{h} of an n-dimensional algebraic torus T can be considered
as a subspace of the symmetry algebra A (Corollary 1.3). Accordingly we
decompose the symmetry algebra A into its weight spaces with respect to
\mathfrak{h} (Lemma 1.4).

We begin with the definition of A-hypergeometric systems following
Gelfand-Graev-Zelevinski (cf. [GGZ]). Let T= \{ t=(t_{1}, \ldots, t_{n})|t_{i}\in

\mathbb{C}-\{0\}(\forall i)\} be an n-dimensional algebraic torus, M its character group,
and \mathfrak{h}_{\mathbb{Z}} the dual group of M . We can consider each operator s_{i}=t_{i}(\partial/\partial t_{i})

(i=1, . , n) as an element of \mathfrak{h}_{\mathbb{Z}} (cf. [O]); then \{ s_{1}, \ldots, s_{n}\} is a basis of
the free \mathbb{Z}-module \mathfrak{h}_{\mathbb{Z}} . For a subset A=\{\chi_{j}|1\leq j\leq N\}(N>n) of M
we consider the following three conditions:

The vectors \chi_{1} , . . , \chi_{N} generate M. (1.1)
There exists an element c_{0}\in \mathfrak{h}_{\mathbb{Z}} such that

\chi_{j}(c_{0})=1 for all j . (1.2)

In M_{\mathbb{R}} :=\mathbb{R}\otimes_{\mathbb{Z}}M , we have \Lambda=M\cap(_{j=1}\sum^{N}\mathbb{R}\geq 0\chi_{j})

where we define the semigroup \Lambda by \Lambda:=\sum_{j=1}^{N}\mathbb{Z}\geq 0\chi_{j} . (1.3)

For a set A satisfying (1.1) and (1.2), we denote by L the subgroup of
\mathbb{Z}^{N} consisting of those a=(a_{j})_{j=1}^{N} satis\Phi ing\sum_{j=1}^{N}a_{j}\chi_{j}=0 . Let W=
\mathbb{C}[u_{1}, \ldots, u_{N}, D_{1}, , D_{N}] denote the Weyl algebra on \mathbb{C}^{N} where (u_{1} , \ldots ,
u_{N}) is a coordinate system on \mathbb{C}^{N} and D_{j}=\partial/\partial u_{j} for j=1 , . . , N . We put
\coprod_{a}=\prod_{a_{j}>0}D_{j}^{a_{j}}-\prod_{a_{j}<0}D_{j}^{-a_{j}} for a\in L . For \beta=(\beta_{i})_{i=1}^{n}\in \mathbb{C}^{n}arrow \mathbb{C}\otimes_{\mathbb{Z}}M\sim

we call a W-module

W/( \sum_{i=1}^{n}W(\sum_{j=1}^{N}\chi_{j}(s_{i})\theta_{j}-\beta_{i})+\sum_{a\in L}W\coprod_{a}) (1.4)

the A-hypergeometric system with parameter \beta (cf. [GGZ]) where \theta_{j}=

u_{j}D_{j} (j=1, . . , N) . When A satisfies (1.3) in addition to (1.1) and (1.2),
the above A-hypergeometric system is said to be normal. Throughout this
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paper we require A to satisfy (1.1), (1.2), and (1.3).
Next we proceed to the definition of a symmetry algebra of an A-

hypergeometric system. We denote by H=H_{A} the quotient of W divided
by the left ideal generated by \coprod_{a}(a\in L) , i.e.,

H=W/ \sum_{a\in L}W\coprod_{a}
. (1.5)

The left W-module H is exactly the canonical system in the sense of Kalnins-
Manocha-Miller (cf. [KMM]). The symmetry algebra of an A-hyperge0-
metric system is, roughly speaking, the associative algebra consisting of the
differential operators which preserve the space of solutions of the canonical
system H . We define \tilde{A}=\tilde{A}_{A} by

\tilde{A}:=

\{ ^{P}\in W|\coprod {}_{a}P=\sum_{b\in L}P_{ab}\square _{b} (\forall a\in L, \exists P_{ab}\in W) \} . (1.6)

Clearly, \tilde{A} is an associative algebra and any element of \tilde{A} preserves the space
of solutions of the canonical system H. Since the operators \coprod_{a}(a\in L) act
on the space of solutions trivially, we divide \tilde{A} by the ideal generated by
\coprod_{a}(a\in L) , which we call the symmetry algebra and A=AA denote it by

A:= \tilde{A}/\tilde{A}\cap(\sum_{a\in L}W\coprod_{a})

arrow\sim(\tilde{A}+\sum_{a\in L}W\coprod_{a})/\sum_{a\in L}W\coprod_{a}

\subset H . (1.7)

It is actually an associative algebra since \tilde{A}\cap(\sum_{a\in L}W\coprod_{a}) is a tw0-sided
ideal of \tilde{A} . In what follows, we denote the element of H represented by
P\in W . by \overline{P} or simply by P again.

Lemma 1.1 (1) D_{1} , \ldots , D_{N}\in A .
(2) \sum_{j=1}^{N}\chi_{j}(s_{i})\theta_{j}\in A for all i with 1\leq i\leq n .

Proof. (1) is trivial. For (2), we have

[ \sum_{j=1}^{N}\chi_{j}(s_{i})\theta_{j} , \coprod_{a}]
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=( \sum_{j=1}^{N}\chi_{j}(s_{i})\theta_{j})\coprod_{a}-\coprod_{a}(\sum_{j=1}^{N}\chi_{j}(s_{i})\theta_{j})

=( \sum_{a_{j}>0}a_{j}\chi_{j}(s_{i}))\prod_{a_{j}>0}D_{j}^{a_{j}}+(\sum_{a_{j}<0}a_{j}\chi_{j}(s_{i}))\prod_{a_{j}<0}D_{j}^{-a_{j}}

=( \sum_{a_{j}>0}a_{j}\chi_{j}(s_{i}))\coprod_{a} .

\square

For the subset A=\{\chi_{1} , . . ’
\chi_{N}\} of the character group M , we consider

the map from T to \mathbb{C}^{N} defined by T\ni t\mapsto (\chi_{1}(t), , _{\chi_{N}}(t))\in \mathbb{C}^{N} Via this
map, each s_{i}=t_{i}(\partial/\partial t_{i}) is identified with the operator \sum_{j=1}^{N}\chi_{j}(s_{i})\theta_{j}\in W

Hence we obtain a natural morphism from the polynomial ring \mathbb{C}[s]=

\mathbb{C}[s_{1}, \ldots, s_{n}] to the polynomial ring \mathbb{C}[\theta_{1}, \ldots, \theta_{N}]\subset W by sending each
s_{i}=t_{i}(\partial/\partial t_{i}) to \sum_{j=1}^{N}\chi_{j}(s_{i})\theta_{j} . This morphism is injective because of (1.1)
and gives a morphism from the polynomial ring \mathbb{C}[s] to the canonical system
H=W/ \sum_{a\in L}W\coprod_{a} when composed with the projection from W onto H.
By Lemma 1.1 (2), the image of this morphism is included in the symmetry
algebra A . In order to check the injectivity of this morphism from \mathbb{C}[s] to
A , we prove that the restriction to the polynomial ring \mathbb{C}[\theta_{1}, \ldots, \theta_{N}] of the
above projection is injective.

Lemma 1.2 Let g(\theta)=g(\theta_{1}, \ldots, \theta_{N}) be a polynomial in \mathbb{C}[\theta_{1}, \ldots, \theta_{N}] .
Suppose that \overline{g(\theta)}=0 as an element of H. Then g=0 as a polynomial.

Proof. We remark that, for each \gamma=(\gamma_{j})_{j=1}^{N}\in \mathbb{C}^{N} , the Weyl algebra W
naturally acts on the module of formal power series twisted by \gamma , i.e., on
\mathbb{C}[[u_{1}, u_{1}^{-1}, . . , u_{N}, u_{N}^{-1}]]u^{\gamma} . Suppose \gamma=(\gamma_{j})_{j=1}^{N}\in(\mathbb{C}-\mathbb{Z})^{N}1 We define a
formal sum \Phi(u) by

\Phi(u):=\sum_{d=(d_{j})\in \mathbb{Z}^{N}}(\prod_{j=1}^{N}\Gamma(d_{j}+\gamma_{j}+1)^{-1}u_{j}^{d_{j}+\gamma_{j}}) .

Then D_{j}\Phi(u)=\Phi(u) for all j . Hence \Phi is a solution of the canonical system
H and we have g(\theta)\Phi(u)=0 by the assumption. On the other hand, we
have g( \theta)\Phi(u)=\sum_{d=(d_{j})\in \mathbb{Z}^{N}}g(d+\gamma)(\prod_{j=1}^{N}\Gamma(d_{j}+\gamma_{j}+1)^{-1}u_{j}^{d_{j}+\gamma_{j}}) . Hence
we obtain g(d+\gamma)=0 for all d\in \mathbb{Z}^{N} , and thus g=0. \square
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Corollary 1.3 The morphism from \mathbb{C}[s] to A sending s_{i} to \sum_{j=1}^{N}\chi_{j}(s_{i})\theta_{j}

for all i=1 , \ldots , n is injective.

Proof This follows from Lemma 1.2 and the remark just above Lemma
1.2. \square

From now on, we consider \mathbb{C}[s] as a subspace of A and, accordingly, as
a subspace of H . We recall that \mathfrak{h}_{\mathbb{Z}} is the dual group of the character group
M, and that \{ s_{1}, , s_{n}\} is its basis. We extend each \chi\in M linearly on
\mathfrak{h}=\mathbb{C}\otimes_{\mathbb{Z}}\mathfrak{h}_{\mathbb{Z}} . For each \chi\in M , we define the weight space A_{\chi} with weight
\chi by

A_{\chi}:=\{P\in A|[s, P]=\chi(s)P (\forall s\in \mathfrak{h})\} . (1.8)

Here we remark that \mathfrak{h} is identified with a subspace of A by Corollary 1.3.

Lemma 1.4 We have the following weight space decomposition:

A=\oplus_{M}A_{\chi}x\in
. (1.9)

Proof Clearly we have a weight space decomposition W=\oplus_{\chi\in M}W_{\chi}

where W_{\chi}= \{ P\in W|[s, P]=\chi(s)P (\forall s\in \mathfrak{h})\} . Let P be an operator in
A . Then there exist P_{\chi}\in W_{\chi}(\chi\in M) such that P= \sum_{\chi\in M}P_{\chi} . We prove
that each P_{\chi} belongs to A by induction on the number of nonzero P_{\chi}’s .
Suppose that neither P_{\chi’} nor P_{\chi’}(\chi’\neq\chi’) is zero. We may assume that
\chi’ is not zero. Take any element s_{0}\in \mathfrak{h}_{\mathbb{Z}} which satisfies \chi’(s_{0})\neq\chi’(s_{0}) .
By Lemma 1.1, we see that [s_{0}, P]= \sum_{\chi\in M}\chi(s_{0})P_{\chi} belongs to A . By the
induction hypothesis, we see P_{\chi’}\in A since [s_{0}, P]-\chi’(s_{0})P\in A . Hence
P-P_{\chi’} also belongs to A . We use the induction hypothesis again to conclude
P_{\chi}\in A for all \chi\in M . \square

2. The structure of the symmetry algebra as an A_{0}-module

In this section, we determine the structure of the symmetry algebra
A as an A_{0}-module. For this determination, we use three tools. First,
since the symmetry algebra A is a noncommutative algebra, we consider a
filtration of A to obtain its graded algebra that is commutative. Second,
since it turns out that the symmetry algebra A has no zer0-divisors, we
consider a kind of microlocalization of A . Finally, we consider b-functions
for A-hypergeometric systems; they were defined and studied in [Sail].
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We now recall the filtration of the Weyl algebra W by order of operators.
For each nonnegative integer k , we denote by W(k) the set of all linear
differential operators in W with order less than or equal to k . Then W(k)
is a free \mathbb{C}[u] -module with a basis \{ D_{1}^{d_{1}}, . . D_{N}^{d_{N}}|d_{1}+ +d_{N}\leq k\} ,
and \{W(k)\}_{k=0}^{\infty} is an increasing filtration of W satisfying W= \bigcup_{k=0}^{\infty}W(k) .
Here we put \mathbb{C}[u]=\mathbb{C}[u_{1}, \ldots, u_{N}] . Let \sigma_{k} denote the principal symbol of
degree k ; it is a mapping from W(k) to \mathbb{C}[u]\otimes_{\mathbb{C}}\mathbb{C}[\xi] , i.e.,

\sigma_{k}(\sum_{d_{1}+\cdots+d_{N}\leq k}a_{d_{1}\ldots d_{N}}(u)D_{1}^{d_{1}}
. . D_{N}^{d_{N}})

= \sum_{d_{1}+\cdots+d_{N}=k}a_{d_{1}\ldots d_{N}}(u)\xi_{1}^{d_{1}}

. . \xi_{N}^{d_{N}} (2.1)

Here we put \mathbb{C}[\xi]=\mathbb{C}[\xi_{1}, \ldots, \xi_{N}] . The filtration of W induces a filtration
\{A(k)\}_{k=0}^{\infty} of A , i.e. ,

A(k):=(( \tilde{A}+\sum_{a\in L}W\square _{a})\cap(W(k)+\sum_{a\in L}W\coprod_{a}))/\sum_{a\in L}W\coprod_{a} . (2.2)

The following lemma is well known:

Lemma 2.1 The algebra \mathbb{C}[\Lambda]:=\mathbb{C}[\xi]/\sum_{a\in L}\mathbb{C}[\xi]\phi_{a} is an integral d0-
main where \phi_{a}=\prod_{a_{j}>0}\xi_{j}^{a_{j}}-\prod_{a_{j}<0}\xi_{j}^{-a_{j}}

Lemma 2.2 Let P, P’ belong to W(k) . Suppose that \overline{P}=\overline{P}’ in H. Then
\sigma_{k}(P) and \sigma_{k}(P’) represent the same element in \mathbb{C}[u]\otimes_{\mathbb{C}}\mathbb{C}[\Lambda] .

Proof. This follows from the fact that all \coprod_{a} are homogeneous. \square

By Lemma 2.2, we can define a morphism

\overline{\sigma}_{k} : H(k):=(W(k)+ \sum_{a\in L}W\coprod_{a})/\sum_{a\in L}W\coprod_{a}arrow \mathbb{C}[u]\otimes_{\mathbb{C}}\mathbb{C}[\Lambda]

so that \overline{\sigma_{k}(P)}=\overline{\sigma}_{k}(\overline{P}) for P\in W(k) where \overline{\sigma_{k}(P)} is the element of \mathbb{C}[u]\otimes_{\mathbb{C}}

\mathbb{C}[\Lambda] represented by \sigma_{k}(P) , and \overline{P} is the element of H(k) represented by
P . Then we define a linear map \overline{\sigma} : H – \mathbb{C}[u]\otimes_{\mathbb{C}}\mathbb{C}[\Lambda] by \overline{\sigma}(P)=\overline{\sigma}_{k}(P)

for P\in H(k)-H(k-1) .

Proposition 2.3 The algebra A has no zerO-divisors.

Proof. Let \overline{P}\in A(k)-A(k-1) and \overline{Q}\neq 0 satisfy \overline{P}\overline{Q}=0 . We have
\overline{\sigma}(\overline{P})\overline{\sigma}(\overline{Q})=\overline{\sigma}(\overline{P}\overline{Q})=0 . By Lemma 2.1, we see that \overline{\sigma_{k}(P)}=0 . In
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other words, \sigma_{k}(P) belongs to \sum_{a\in L}\mathbb{C}[u]\otimes_{\mathbb{C}}\mathbb{C}[\xi]\phi_{a} . Hence there exist
P_{a}\in W such that P- \sum_{a\in L}P_{a}\coprod_{a} belongs to W(k-1) . This contradicts
the assumption \overline{P}\not\in A(k-1) . \square

Proposition 2.4

A_{0}=\mathbb{C}[s]=\mathbb{C}[s_{1}, \ldots, s_{n}] .

Proof. As in the proof of Lemma 1.2, we put

\Phi(u):=\sum_{d=(d_{j})\in \mathbb{Z}^{N}}(\prod_{j=1}^{N}\Gamma(d_{j}+\gamma_{j}+1)^{-1}u_{j}^{d_{j}+\gamma_{j}}) .

Then we have \coprod_{b}\Phi(u)=0 for all b\in L . Let g(\theta)=g(\theta_{1}, . , \theta_{N})\in A .
Then we have \coprod_{a}g(\theta)\Phi(u)=0 for all a\in L . On the other hand, we have

\coprod_{a}g(\theta)\Phi(u)

= \sum_{d=(d_{j})\in \mathbb{Z}^{N}}g(d+\gamma)(\prod_{j=1}^{N}\Gamma(d_{j}+\gamma_{j}-(a_{+})_{j}+1)^{-1}u_{j}^{d_{j}-(a)_{j}+\gamma_{j}})+

-

\sum_{d=(d_{j})\in \mathbb{Z}^{N}}g(d+\gamma)(\prod_{j=1}^{N}\Gamma(d_{j}+\gamma_{j}-(a_{-})_{j}+1)^{-1}u_{j}^{d_{j}-(a-)_{j}+\gamma_{j}})

where we define a_{+} , a_{-}\in \mathbb{Z}^{N} by (a_{+})_{j}= \max\{a_{j}, 0\} and (a_{-})_{j}= \max\{-a_{j} ,
0} for all j with 1\leq j\leq N . Hence we obtain g(d+a+\gamma)=g(d+\gamma) for
all d\in \mathbb{Z}^{N} and all a\in L , and thus g(\theta+a)=g(\theta) for all a\in \mathbb{C}\otimes_{\mathbb{Z}}L .
Therefore we obtain g\in \mathbb{C}[s] . \square

Lemma 2.5 We have

\sum_{a\in L}\mathbb{C}[\xi]\theta_{a}=\mathbb{C}[\xi]\cap\sum_{a\in L}\mathbb{C}[\xi^{\pm}]\phi_{a}

where \mathbb{C}[\xi^{\pm}]=\mathbb{C}[\xi_{1}, \ldots, \xi_{N}, \xi_{1}^{-1}, \ldots, \xi_{N}^{-1}] .

Proof. Let f( \xi)=\sum_{d\in \mathbb{Z}_{\geq 0}^{N}}f_{d}\xi^{d} belong to \mathbb{C}[\xi]\cap\sum_{a\in L}\mathbb{C}[\xi^{\pm}]\phi_{a} . Then
we have, for t=(t_{i})_{i=1}^{n}\in(\mathbb{C}^{\cross})^{n} ,

0=f(\chi_{1}(t) , . . ’
^{\chi_{N(t))}}= \sum_{d\in \mathbb{Z}_{\geq 0}^{N}}f_{d}\chi_{1}(t)^{d_{1}}

. . \chi_{N}(t)^{d_{N}}

where \chi_{j}(t)=t_{1}^{\chi_{j}(s_{1})}\cdot\cdot t_{n}^{\chi_{j}(s_{n})} for j with 1\leq j\leq N . Hence we obtain
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\sum_{d-d\in L},f_{d’}=0 for all d\in \mathbb{Z}_{\geq 0}^{N} . Therefore we obtain \sum_{d’-d\in L}f_{d’}\xi^{d’}=

\sum_{d’ d-d\in L\neq d},’ f_{d’}(\xi^{d’}-\xi^{d}) for all d\in \mathbb{Z}_{\geq 0}^{N} , and thus conclude f \in\sum_{a\in L}\mathbb{C}[\xi]\phi_{a} .

\square

Proposition 2.6 The natural morphism

H arrow \mathbb{C}[u, D^{\pm}]/\sum_{a\in L}\mathbb{C}[u, D^{\pm}]\coprod_{a}

is injective where \mathbb{C}[u, D^{\pm}]=W[ ^{D_{1}^{-1}}, . . ’ ^{D_{N}^{-1}}] with relations [ u_{i}, D_{j}^{-1}]=

\delta_{ij}D_{j}^{-2} .

Proof. Let P \in W\cap(\sum_{a\in L}\mathbb{C}[u, D^{\pm}]\coprod_{a}) , and P\in W(k)-W(k-1) .
Since all \coprod_{a} are homogeneous, we see that \sigma_{k}(P)\in(\mathbb{C}[u]\otimes_{\mathbb{C}}\mathbb{C}[\xi])\cap

( \mathbb{C}[u]\otimes_{\mathbb{C}}\sum_{a\in L}\mathbb{C}[\xi^{\pm}]\theta_{a}) . By Lemma 2.5, we see that \sigma_{k}(P) \in

\sum_{a\in L}\mathbb{C}[u]\otimes_{\mathbb{C}}\mathbb{C}[\xi]\phi_{a} . Hence there exist P_{a}\in W such that P- \sum_{a\in L}P_{a}

\coprod_{a}\in W(k-1) . Since P- \sum_{a\in L}P_{a}\coprod_{a} belongs to W \cap(\sum_{a\in L}\mathbb{C}[u, D^{\pm}]\coprod_{a}) ,
we can prove the proposition by induction on k . \square

In order to describe explicit formulas of -functions, we introduce linear
forms \varphi_{\Gamma}\in \mathfrak{h}_{\mathbb{Z}} . Recall that \mathfrak{h}_{\mathbb{Z}} is the dual group of M and a free \mathbb{Z}-module
with a basis \{ s_{1}, \ldots , s_{n}\} . For a given subset A=\{\chi_{1}, . . , \chi_{N}\} satisfying
(1.1), (1.2), and (1.3), we denote by Q the Newton polyhedron, i.e., Q is
the convex hull in M_{\mathbb{R}}=\mathbb{R}\otimes_{\mathbb{Z}}M of the points \chi_{1} , . . , \chi_{N} and by \mathcal{F} the
set of facets, i.e., faces of codimension one, of Q . For \Gamma\in \mathcal{F} , we denote
by \varphi r the linear form defining the hyperplane spanned by \Gamma such that the
coefficients of \varphi_{\Gamma} are integers, that their greatest common divisor is one,
and that \varphi_{\Gamma}(\chi_{j})\geq 0 for all j=1 , \ldots , N . This linear form \varphi_{\Gamma} is uniquely
determined and plays a significant role throughout this paper.

Example 2.7. Let n=2p-1 and N=2p for p\geq 2 . Then \{ s_{1} , s_{2} ,
s_{2p-1}\} is a basis of \mathfrak{h}_{\mathbb{Z}} . Let \{ e_{1}, e_{2}, \ldots, e_{2p-1}\} be its dual basis of M . Let
A= \{ e_{1}, e_{2}, \ldots, e_{2p-1}, \sum_{i=1}^{p}e_{i}-\sum_{i=1}^{p-1}e_{p+i}\} . Then the A-hypergeometric
system corresponds to the hypergeometric function pp-F1 (See Example
0.1). In this case, we see that A satisfies (1.1), (1.2), and (1.3), and that

\{\varphi_{\Gamma}|\Gamma\in \mathcal{F}\}=\{s_{i}, s_{i}+s_{p+j}|1\leq i\leq p, 1\leq j\leq p-1\} .

Let c_{j}\in \mathbb{Z}_{\geq 0} for all j with 1\leq j\leq N , and \chi=\sum_{j=1}^{N}c_{j}\chi_{j}\in\Lambda(\Lambda was
introduced in (1.3) ) . Let D^{\chi} denote D_{1}^{c_{1}} \cdot D_{N}^{c_{N}} , which is an element of H .
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Proposition 2.8 Suppose that \chi\in\Lambda .
(1) There exists a uniquely determined element E_{\chi} in H such that

E_{\chi}D^{\chi}=b_{\chi}(s) , (2.3)

where

b_{\chi}(s)=
\prod_{\Gamma\in \mathcal{F}}

\prod_{m=0}^{\varphi_{\Gamma}(\chi)-1}(\varphi_{\Gamma}-m) (2.4)

\varphi_{\Gamma}(\chi)\neq 0

is considered as an element of H according to Corollary 1.3 ( c/. [Sail]).
(2) D^{\chi}\in A_{-\chi} and E_{\chi}\in A_{\chi} . Here A_{\chi} is the weight subspace of A

with weight \chi (see (1.8)).

Proof. Clearly we have D^{\chi}\in A_{-\chi} . Since [\coprod_{a}, D^{\chi}]=0 , we have [\coprod_{a} ,
(D^{\chi})^{-1}]=0 . Since E_{\chi}=b_{\chi}(s)(D^{\chi})^{-1} in \mathbb{C}[u, D^{\pm}]/\sum_{a\in L}\mathbb{C}[u, D^{\pm}]\coprod_{a} ,
the uniqueness of E_{\chi} and (2) follow from Proposition 2.6. For the existence
of E_{\chi} , see [Sail]. \square

For \chi\in\Lambda , we define the operator E_{-\chi} by

E_{-\chi}:=D^{\chi} . (2.5)

Proposition 2.9 For \chi\in\Lambda , we have

A_{-\chi}=\mathbb{C}[s]E_{-\chi} .

Proof. Let P\in A_{-\chi} . Then there exists an operator P’\in W with weight
0 such that P=P’D^{\chi} in H . Since P’=P(D^{\chi})^{-1} , we see that P’\in A_{0} .
By Proposition 2.3, we obtain the proposition. \square

For \chi\in\Lambda , we have seen in Proposition 2.9 that E_{-\chi} is a generator of
A_{-\chi} as a \mathbb{C}[s] -module. Next we study the \mathbb{C}[s] -module structure of A_{\chi}

for an arbitrary \chi\in M . For this purpose, we define a b-function for an
arbitrary \chi\in M .

In the remaining part of this section, we fix an arbitrary element \chi=
\sum_{j=1}^{N}c_{j}\chi_{j} of M, where c_{j}(1\leq j\leq N) are integers. For this \chi , we define
elements \chi_{+} , \chi_{-} of the semigroup \Lambda as follows:

\chi+:=\sum_{c_{j}>0}c_{j}\chi_{j}
, (2.3)
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\chi_{-}:=-\sum_{c_{j}<0}c_{j}\chi_{j}
. (2.7)

Recall that D^{X+}=E_{-\chi+} (see (2.5)). For P\in A_{\chi} , we see that E_{X-}PD^{X+}

belongs to A_{0}=\mathbb{C}[s] . We define a subset B_{X+,X-} of \mathbb{C}[s] by

B_{X+,X-}:= \{ p(s)\in \mathbb{C}[s]|p(s)=E_{X-}PD^{X+}, P\in A_{\chi}\} . (2.8)

Lemma 2.9 The subset B_{X+,X-} is an ideal of \mathbb{C}[s] .

Proof. Let P\in A_{\chi} , and p(s)=E_{X-}PD^{X+} . Since [s, E_{X-}]=\chi_{-}(s)E_{X-} ,
we have q(s)p(s)=E_{X-}q(s+\chi_{-})PD^{X+} for q(s)\in \mathbb{C}[s] . Hence q(s)p(s)\in

B_{X+,X-} , and B_{X+,X-} is an ideal. \square

Since \chi_{+} and \chi- are elements of the semigroup \Lambda , we know the explicit
formulas of b_{X+}(s) and b_{X-}(s) (see (2.4)). We denote by b_{X+,X-}(s) the least
common multiplier of b_{X+}(s) and b_{X-}(s) , i.e.,

b_{X+,X-}(s)= \prod_{+\varphi\Gamma(\chi+\chi-)>0}\prod_{m=0}^{+}(\varphi_{\Gamma}-m)\max\{\varphi r(\chi),\varphi\Gamma(X-)\}-1 . (2.9)

Lemma 2.10 Let p(s)\in B_{X+,X-} . Then b_{X+,X-}(s) divides p(s) .

Proof. Since there exists P\in A_{\chi} such that (E_{X-}P)D^{X+}=p(s) , we see
that b_{X+}(s) divides p(s) by the definition of b_{X+}(s) . Since PD^{X+}\in A_{-\chi-} ,
there exists q(s)\in \mathbb{C}[s] such that PD^{X+}=q(s)D^{X-} by Proposition 2.8.
Hence we have

p(s)=E_{X-}(PD^{X+})=E_{X-}q(s)D^{X-}

=q(s-\chi_{-})E_{X-}D^{X-}=q(s-\chi_{-})b_{X-}(s) .

Therefore we see that b_{X-}(s) divides p(s) . \square

We proceed to the proof of the fact that b_{X+,X-}(s)\in B_{X+,X-;} it is
parallel to the proof of Corollary 5.7 in [Sail]. Recall that we have defined
the set \mathcal{F} and the linear forms \varphi_{\Gamma} just before Example 2.7. Let I(\chi) denote
the left ideal of W generated by \coprod_{a}(a\in L) and all \prod_{j=1}^{N}D_{j}^{d_{j}} with d_{j}\in \mathbb{Z}_{\geq 0}

(1\leq\forall j\leq N) satisfying \sum_{j=1}^{A}d_{j}\varphi r(\chi_{j})\tau\geq\varphi_{\Gamma}(\chi)(\forall\Gamma\in \mathcal{F}) . For \Gamma\in \mathcal{F} , let
I(\Gamma, \chi) denote the left ideal of W generated by \coprod_{a}(a\in L) and all \prod_{j=1}^{N}D_{j}^{d_{j}}

with d_{j}\in \mathbb{Z}_{\geq 0}(1\leq\forall j\leq N) satisfying \sum_{j=1}^{N}d_{j}\varphi_{\Gamma}(\chi_{j})\geq\varphi_{\Gamma}(\chi) . We remark
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that I(\Gamma, \chi)=W if \varphi r(\chi)\leq 0 .

Lemma 2.11 I( \chi)=\bigcap_{\Gamma\in F}I(\Gamma, \chi) .

The proof is very similar to the proof of Proposition 4.3 in [Sail]. Hence
we omit the proof.

For m\in \mathbb{Z}_{\geq 0} and \Gamma\in \mathcal{F} with \varphi_{\Gamma}(\chi)>0 , let \Theta(\Gamma, m) denote the ideal
of \mathbb{C}[\theta_{j}|\varphi r(\chi_{j})>0] generated by all \prod_{\varphi_{\Gamma}(\chi_{j})>0}\theta_{j}(\theta_{j}-1) (\theta_{j}-d_{j}+1)

with d_{j}\in \mathbb{Z}_{\geq 0}(1\leq\forall j\leq N) satisfying \sum_{\varphi_{\Gamma}(\chi_{j})>0}d_{j}\varphi_{\Gamma}(\chi_{j})\geq m . Here
\mathbb{C}[\theta_{j}|\varphi_{\Gamma}(\chi_{j})>0] denotes the polynomial ring in \theta_{j} satisfying \varphi_{\Gamma}(\chi_{j})>0 .
Clearly we have \Theta(\Gamma, \varphi_{\Gamma}(\chi))\subset I(\Gamma, \chi) . We know that O-(\Gamma, m) is a radical
ideal (cf. [Sail, p.530]). Let V(\ominus(\Gamma, m)) denote the zero set of \Theta(\Gamma, m) .
Then by Lemma 6.3 in [Sail], we see

\{\sum_{x_{j}\not\in\Gamma}d_{j}\varphi_{\Gamma}(\chi_{j})|d=(d_{j})\in V(O-(\Gamma, m))\}=\{0,1 , . ,^{m-1\}} .

(2.10)

For \Gamma\in \mathcal{F} with \varphi_{\Gamma}(\chi)>0 , we define a polynomial b_{\Gamma,\chi}(s)\in \mathbb{C}[s] by

b_{\Gamma,\chi}(s):= \prod_{m=0}^{\varphi\Gamma(\chi)-1}(\varphi r-m)\in \mathbb{C}[s] . (2.11)

Lemma 2.12 For \Gamma\in \mathcal{F} with \varphi_{\Gamma}(\chi)>0 , we have

b_{\Gamma,\chi}(s)\in\Theta(\Gamma, \varphi r(\chi))\subset I(\Gamma, \chi) .

Proof. Recall that

\varphi_{\Gamma}=\sum_{j=1}^{N}\varphi_{\Gamma}(\chi_{j})\theta_{j} (2.12)

by the identification in Corollary 1.3. Hence we have

b_{\Gamma,\chi}(s)= \prod_{m=0}^{\varphi r(\chi)-1}(\varphi_{\Gamma}-m)=\prod_{m=0}^{\varphi_{\Gamma}(\chi)-1}(\sum_{j=1}^{N}\varphi_{\Gamma}(\chi_{j})\theta_{j}-m) .

Since b_{\Gamma,\chi}(d)=0 for all d\in V(\ominus(\Gamma, \varphi_{\Gamma}(\chi))) , and since \Theta(\Gamma, \varphi_{\Gamma}(\chi)) is a
radical ideal, we conclude that b_{\Gamma,\chi}(s)\in\Theta(\Gamma, \varphi_{\Gamma}(\chi))\subset I(\Gamma, \chi) . \square
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We define a polynomial b_{\chi}(s)\in \mathbb{C}[s] by

b_{\chi}(s):= \prod_{\varphi r(\chi)>0}b_{\Gamma,\chi}(s)
(2.13)

Corollary 2.13 The polynomial b_{\chi}(s) belongs to I(\chi) .

Proof This is clear from Lemma 2.11 and Lemma 2.12. \square

Corollary 2.14 The operator b_{\chi}(s)D^{X-} belongs to the left ideal of W
generated by \coprod_{a}(a\in L) and D^{X+} .

Proof By Corollary 2.13, we see that b_{\chi}(s) belongs to the left ideal of W
generated by \coprod_{a}(a\in L) and all \prod_{j=1}^{N}D_{j}^{d_{j}} that satisfy \sum_{j=1}^{N}d_{j}\varphi_{\Gamma}(\chi_{j})\geq

\varphi_{\Gamma}(\chi) for all \Gamma\in \mathcal{F} . Hence the operator b_{\chi}(s)D^{X-} belongs to the left ideal of
W generated by \coprod_{a}(a\in L) and all \prod_{j=1}^{N}D_{j}^{d_{j}} that satisfy \sum_{j=1}^{N}d_{j}\varphi_{\Gamma}(\chi_{j})\geq

\varphi_{\Gamma}(\chi_{+}) for all \Gamma\in \mathcal{F} , which is exactly the left ideal of W generated by \coprod_{a}

(a\in L) and D^{X+} by Proposition 4.3 in [Sail]. \square

Proposition 2.15 (1) There exists a unique operator E_{X+,X-}\in A such
that

b_{\chi}(s)D^{X-}=E_{X+,X-}D^{X+} . (2.14)

(2) We have

b_{X+,X-}(s)=E_{X-}E_{X+,X-}D^{X+} . (2.15)

In particular, b_{X+,X-}(s)\in B_{X+,X-} , and thus the ideal B_{X+,X-} is generated
by b_{X+,X-}(s) (see Lemma 2.10).

Proof (1) The existence in H is clear from Corollary 2.14. Since E_{X+,X-}

=b_{\chi}(s)D^{X-}(D^{X+})^{-1} . we see the uniqueness and E_{X+,X-}\in A_{\chi} .
(2) Since we have E_{X+,X-}D^{X+}=b_{\chi}(s)D^{X-}=D^{X-}b_{\chi}(s-\chi-) , we

obtain b_{X-}(s)b_{\chi}(s-\chi-)=E_{X-}E_{X+,X-}D^{X+} . On the other hand, we see
that b_{X-}(s)b_{\chi}(s-\chi-)=b_{X+,X-}(s) . Hence we conclude

b_{X+,X-}(s)\in B_{X+,X}\coprod^{-}’
.

Proposition 2.16 Suppose that \chi=\sum_{j=1}^{N}c_{j}\chi_{j}=\sum_{j=1}^{N}d_{j}\chi_{j} . Put \chi_{+}=

\sum_{c_{j}>0}c_{j}\chi_{j} , \chi_{-}=-\sum_{c_{j}<0}c_{j}\chi_{g} , \chi_{+}’=\sum_{d_{j}>0}d_{j}\chi_{j} , and \chi_{-}’=-\sum_{d_{j}<0}

d_{j}\chi_{j} . Then we have E_{X+,X-}=E_{\chi_{+}’,\chi_{-}’} Hence we may define the operator
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E_{\chi}\in A_{\chi} by

E_{\chi}=E_{X+,X-} . (2.16)

Proof. Since we have E_{X+,X-}=b_{\chi}(s)D^{X-}(D^{\chi}\dagger)^{-1}=b_{\chi}(s)D^{-\chi} , this is
clear. \square

The following is the main theorem of this section.

Theorem 2.17 For \chi\in M , we have

A_{\chi}=\mathbb{C}[s]E_{\chi} .

Proof. Suppose that \chi=\chi_{+}-\chi_{-} with \chi_{+} , \chi_{-}\in\Lambda and P\in A_{\chi} .
By Proposition 2.15 (2), there exists p(s)\in \mathbb{C}[s] such that E_{X-}PD^{X+}=
p(s)b_{X+,X-}(s) . By the definition of E_{\chi} , we have E_{X-}PD^{X+}=p(s)b_{X+,X-}(s)=
p(s)E_{X-}E_{\chi}D^{X+}=E_{X-}p(s+\chi_{-})E_{\chi}D^{X+} . We obtain P=p(s+\chi_{-})E_{\chi} by
Proposition 2.3. \square

3. Irreducibility of \mathcal{A}

In \S 2, we have determined the \mathbb{C}[s] -module structure of the symmetry
algebra A . It is the free \mathbb{C}[s] -module with the basis \{ E_{\chi}|\chi\in M\} . In
order to describe in the next section the algebra structure of the symmetry
algebra A , we in this section define irreducibility of the set \mathcal{A} , and then
prove a lemma (Lemma 3.4) for obtaining relations among the generators
E_{\chi} (cf. Remark 4.6).

Definition We say that \mathcal{A}=\{\chi_{1}, \ldots, \chi_{N}\} is reducible when there
exists a nontrivial decomposition \{ 1, 2, . . . ’ N\}=II\lrcorner J such that M=
( \sum_{i\in I}\mathbb{Z}\chi_{i})\oplus(\sum_{j\in J}\mathbb{Z}\chi_{j}) ; otherwise \mathcal{A} is said to be irreducible.

Remark 3.1. Let \mathcal{A}=\mathcal{A}_{1}\square \mathcal{A}_{2} be the decomposition of \mathcal{A} in the fashion
described above. Then we see that the \mathcal{A}-hypergeometric system is the ex-
terior tensor product of \mathcal{A}_{1} -hypergeometric system and \mathcal{A}_{2}-hypergeometric
system.

For i with 1\leq i\leq n , put

M_{i}=\{\chi\in M|\chi(s_{i})=0\} . (3.1)
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Then we have the next lemma.

Lemma 3.2 Suppose that a\mathbb{Z} -module M’ satisfies M’ \subset\bigcup_{i=1}^{n}M_{i} . Then
there exists i such that M’\subset M_{i} .

Proof. Assume the contrary. Take \lambda_{i}\in M’(1\leq i\leq n) so that \lambda_{i}(s_{i})\neq 0 .
Let k= \min\{i|\lambda_{1}(s_{i})=0\} . Take d_{k}\in \mathbb{Z}-\{0\} so that (\lambda_{1}+d_{k}\lambda_{k})(s_{i})\neq 0

for aI1\}^{r}i with i<k . Then (\lambda_{1}+d_{k}\lambda_{k})(s_{k})\neq 0 . Let k’= \min\{i|(\lambda_{1}+

d_{k}\lambda_{k})(s_{i})=0\} , then we have k<k’ We repeat this process to conclude
that there exists \lambda\in M’ that does not belong to \bigcup_{i=1}^{n}M_{i} . \square

We denote by \{ e_{1}, . , e_{n}\} the basis of M dual to \{ s_{1}, \ldots, s_{n}\} .

Lemma 3.3 Assume A=\{\chi_{1}, . , \chi_{N}\} to be irreducible. Suppose that
\chi_{i}=e_{i} for all i with 1\leq i\leq n . Then we have ( \sum_{j=n+1}^{N}\mathbb{Z}\chi_{j})\cap(\mathbb{Z}^{\cross})^{n}\neq\emptyset .

Proof. Assume the contrary. Then we have ( \sum_{j=n+1}^{N}\mathbb{Z}\chi_{j})\subset\bigcup_{i=1}^{n}M_{i} .
By Lemma 3.2, there exists i such that ( \sum_{j=n+1}^{N}\mathbb{Z}\chi_{j})\subset M_{i} . Then clearly
we have M=( \sum_{j\neq i}\mathbb{Z}\chi_{j})\oplus \mathbb{Z}\chi_{i} , which contradicts the irreducibility of A.

\square

Lemma 3.4 Assume A to be irreducible. Then there exists \in=(\epsilon_{1} ,
\in_{N})\in\{\pm 1\}^{N} such that M= \sum^{N}j=1\mathbb{Z}\geq 0\in_{j}\chi_{j} .

Proof. By base change if necessary, we may assume that \chi_{i}=e_{i} for
all i with 1 \leq i\leq n . By Lemma 3.3, there exist a_{1} , \ldots , a_{n}\in \mathbb{Z}^{\cross} and
b_{n+1} , , b_{N}\in \mathbb{Z} such that \sum_{j=1}^{n}a_{j}\chi_{j}=\sum_{j=n+1}^{N}b_{j}\chi_{j} . Let \epsilon_{j}(1\leq j\leq n)

be the sign of a_{j} , and \in_{j}(n+1\leq j\leq N) the sign of-b_{j} . When b_{j}=0 , we
define \in_{j} arbitrarily. Put M’:= \sum^{N}j=1\mathbb{Z}\geq 0(\in_{j}\chi_{j}) . For i with 1\leq i\leq n , we
have - \in_{i}\chi_{i}=\sum_{1\leq j\leq n,j\neq i}|a_{j}|(\epsilon_{j}\chi_{j})+(|a_{i}|-1)(\in_{i}\chi_{i})+\sum_{j=n+1}^{N}|-b_{j}|(\in_{j}\chi_{j}) .
Hence we see -\in_{i}\chi_{i}\in M’ for all i with 1\leq i\leq n . Therefore we have
\pm e_{i}\in M’ , and obtain M’=M. \square

4. The structure of the symmetry algebra

In this section, we determine the algebra structure of the symmetry al-
gebra A . The symmetry algebra A is the direct sum of its weight subspaces
with weight in M (Lemma 1.4); for each weight \chi\in M , there exists an
operator E_{\chi} (see (2.14) and (2.16)) such that the weight space A_{\chi} is the
free \mathbb{C}[s] -module generated by E_{\chi} (Theorem 2.17). Hence we only need to
calculate the multiplications among E_{\chi} ’s to determine the algebra structure
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of A . Since the multiplication E_{\chi}E_{\chi’} belongs to A_{\chi+\chi’} , there exists a poly-
nomial q_{\chi,\chi’}(s)\in \mathbb{C}[s] such that E_{\chi}E_{\chi’}=q_{\chi,\chi’}(s)E_{\chi+\chi’} . Therefore what
we need to do is the calculation of the polynomial q_{\chi,\chi’}(s) .

Lemma 4.1 Let \chi , \chi’\in\Lambda=\sum^{N}j=1\mathbb{Z}\geq 0\chi_{j} . Then we have
(1) E_{-\chi}E_{-\chi’}=E_{-\chi-\chi’} ,
(2) E_{\chi}E_{\chi’}=E_{\chi+\chi’} .

Proof. (1) means D^{\chi}D^{\chi’}=D^{\chi+\chi’} (see (2.5)). Hence (1) is trivial. By
(2.3), we see E_{\chi}E_{\chi’}D^{\chi+\chi’}=E_{\chi}E_{\chi’}D^{\chi’}D^{\chi}=E_{\chi}b_{\chi’}(s)D^{\chi}=b_{\chi’}(s-\chi)E_{\chi}D^{\chi}

=b_{\chi’}(s-\chi)b_{\chi}(s) . Taking account of the formula (2.4), we have E_{\chi}E_{\chi’}D^{\chi+\chi’}

=b_{\chi+\chi’}(s) . Hence we obtain E_{\chi}E_{\chi’}=E_{\chi+\chi’} by Proposition 2.8 (1). \square

Lemma 4.2 For \chi\in\Lambda , we have

D^{\chi}E_{\chi}=b_{\chi}(s+\chi) . (4.1)

Proof. By (2.3), we have E_{\chi}D^{\chi}=b_{\chi}(s) . Recall that we considered a
kind of microlocalization of the canonical system H in Proposition 2.6. For
\chi=\sum_{j=1}^{N}c_{j}\chi_{j} with c_{j}\in \mathbb{Z}_{\geq 0}(1\leq\forall j\leq N) , (D^{\chi})^{-1} denotes D_{1}^{-c_{1}}\cdots D_{N}^{-c_{N}}

Since (D^{\chi})^{-1} has weight \chi , we see E_{\chi}=b_{\chi}(s)(D^{\chi})^{-1}=(D^{\chi})^{-1}b_{\chi}(s+\chi) .
Therefore we conclude D^{\chi}E_{\chi}=b_{\chi}(s+\chi) . \square

So far, we have considered only \chi belonging to the semigroup \Lambda . Next
we consider an arbitrary \chi\in M . and derive some preparatory formulas.

Lemma 4.3 Let \chi=\sum_{j=1}^{N}c_{j}\chi_{j}\in M. \chi+=\sum_{c_{j}>0}c_{j}\chi_{j} , and \chi-=
- \sum_{c_{j}<0}c_{j}\chi_{j} . Then we have

(1) E_{\chi}E_{X-}=(b_{X+,X-(S+\chi-)}/b_{X+}(s+\chi_{-}))E_{X+} ,
(2) E_{X-}E_{\chi}=(b_{X+,X-}(s)/b_{X+}(s))E_{X+} ,
(3) E_{\chi}E_{-\chi+}=(b_{X+,X-(S+\chi-)}/b_{X-}(s+\chi_{-}))E_{-\chi-} ,
(4) E_{-\chi+}E_{\chi}=E_{-\chi-}(b_{X+,X-}(s+\chi_{+})/b_{X-}(s+\chi_{+})) .

Recall that the polynomial b_{X+,X-}(s) is the least common multiplier of
b_{X+}(s) and b_{X-}(s) ; the explicit formulas of b_{\chi}(s) and b_{X+,X-}(s) are given in
(2.4) and (2.9).

Proof. (2) By definition, we have b_{X+,X-}(s)=(b_{X+,X-}(s)/b_{X+}(s))b_{X+}(s)=

(b_{X+,X-}(s)/b_{X\dagger}(s))E_{X+}D^{X+} . On the other hand, we see b_{X+,X-}(s) =
E_{X-}E_{\chi}D^{X+} by (2.15) and (2.16). Hence we obtain E_{X-}E_{\chi}=(b_{X+,X-}(s)/

b_{X+}(s))E_{X+} .
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(1) By (2) and Lemma 4.1, we have E_{X-}E_{\chi}E_{X-}=(b_{X+,X-}(s)/b_{X+}(s))

E_{X+}E_{X-}=E_{X-}(b_{X+,X-}(s+\chi-)/b_{X+}(s+\chi_{-}))E_{X+} . By Proposition 2.3, we
obtain E_{\chi}E_{X-}=(b_{X+,X-}(s+\chi-)/b_{X\dagger}(s+\chi_{-}))E_{X+} .

(3) By (2), Lemma 4.2, and (2.5), we have b_{X-}(s+\chi_{-})E_{\chi}E_{-\chi+}=

E_{-\chi-}E_{X-}E_{\chi}E_{-\chi+}=E_{-\chi-}(b_{X+,X-}(s)/b_{X+}(s))E_{X+}E_{-\chi+}=E_{-\chi-}(b_{X+,X-}(s)

/b_{X+}(s))b_{X+}(s)=E_{-\chi-}b_{X+,X-}(s)=b_{X+,X-}(s+\chi_{-})E_{-\chi-}\tau Hence we obtain
E_{\chi}E_{-\chi+}=(b_{X+,X-(S+\chi-)}/b_{X-}(s+\chi_{-}))E_{-\chi-} .

(4) By (3), Lemma 4.1, and (2.5), we have E_{\chi}=(b_{X+,X-}(s+\chi_{-})/

b_{X-}(s+\chi_{-}))(D^{X+})^{-1}D^{X-}=(D^{X+})^{-1}D^{(X-)}(b_{X+,X-}(s+\chi_{+})/b_{X-}(s+\chi_{+})) .
Hence we obtain E_{-\chi+}E_{\chi}=E_{-\chi-}(b_{X+,X-}(s+\chi_{+})/b_{X-}(s+\chi_{+})) . \square

For \chi , \chi’\in M , we define the polynomial q_{\chi,\chi’}(s)\in \mathbb{C}[s] by

q_{\chi,\chi’}(s):= \prod_{\varphi\Gamma(\chi)<0,\varphi\Gamma(\chi’)>0}

m=\varphi_{\Gamma}(\chi)

\min\{\varphi r(\chi+\chi’),0\}-1\prod(\varphi_{\Gamma}-m)

\cross\prod_{\varphi\Gamma(\chi)>0,\varphi\Gamma(\chi’)<0}\prod_{m=\max\{\varphi r(\chi+\chi’),0\}}^{\varphi\Gamma(\chi)-1}(\varphi_{\Gamma}-m) . (4.2)

Lemma 4.4 Let c_{1} , \ldots , c_{N} , c_{1}’ , . . , c_{N}’ be integers. Let \chi=\sum_{j=1}^{N}c_{j}\chi_{j} ,
\chi+=\sum_{c_{j}>0}c_{j}\chi_{j} , \chi-=-\sum_{c_{j}<0}c_{j}\chi_{j} , \chi’=\sum_{j=1}^{N}c_{j}’\chi_{j} , \chi_{+}’=\sum_{c_{j}’>0}c_{j}’\chi_{j} ,
and \chi_{-}’=-\sum_{c_{j}’<0}c_{j}’\chi_{j} satisfy both identities ( \chi+\chi’)_{+}=\sum_{c_{j}+c_{j}>0},(c_{j}+

c_{j}’)\chi_{j}=\chi_{+}+\chi_{+}’ and ( \chi+\chi’)_{-}=-\sum_{c_{j}+c_{j}’<0}(c_{j}+c_{j}’)\chi_{j}=\chi-+\chi_{-}’ . Then
we have

q_{\chi,\chi’}(s)

= \frac{(b_{X+,X-(s+\chi-)/b_{X+}(s+\chi-))b_{X+}(s+\chi-+\chi_{-}’)b_{\chi_{+}’,\chi_{-}’}(s+\chi_{-}’-\chi)}}{b_{(\chi+\chi)_{+},(\chi+\chi)_{-}}(s+\chi_{-}+\chi_{-}’)},,\cdot

Proof. This is an easy consequence of the formulas (2.4) and (2.9).
\square

Theorem 4.5 Let c_{1} , \ldots , c_{N} , c_{1}’ , . , c_{N}’ be integers. Let \chi=\sum_{j=1}^{N}c_{j}\chi_{j} ,
\chi+=\sum_{c_{j}>0}c_{j}\chi_{j} , \chi-=-\sum_{c_{j}<0}c_{j}\chi_{j} , \chi’=\sum_{j=1}^{N}c_{j}’\chi_{j} , \chi_{+}’=\sum_{c_{j}’>0}c_{j}’\chi_{j} ,
and \chi_{-}’=-\sum_{c_{j}’<0}c_{j}’\chi_{j} satisfy both identities ( \chi+\chi’)_{+}=\sum_{c_{j}+c_{j}’>0}(c_{j}+

c_{j}’)\chi_{j}=\chi++\chi_{+}’ and ( \chi+\chi’)_{-}=-\sum_{c_{j}+c_{j}’<0}(c_{j}+c_{j}’)\chi_{j}=\chi_{-}+\chi_{-}’ . Then
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we have

E_{\chi}E_{\chi’}=q_{\chi,\chi’}(s)E_{\chi+\chi’} . (4.3)

Proof. By Lemma 4.1 and Lemma 4.3, we have

E_{(\chi+\chi’)_{-}}E_{\chi}E_{\chi’}E_{-(\chi+\chi’)_{+}}

=E_{\chi_{-}’}E_{X-}E_{\chi}E_{\chi’}E_{-\chi_{+}’}E_{-\chi+}

=E_{\chi_{-}’}(b_{X+,X-(s)/b_{X+}(s))E_{X+}(b_{\chi_{+}’,\chi_{-}’}(s+\chi_{-}’)/}

b_{\chi_{-}’}(s+\chi_{-}’)E_{-\chi_{-}’}E_{-\chi+}

=(b_{x+,x-}(s-\chi_{-}’)/b_{X+}(s-\chi_{-}’))E_{\chi_{-}’+\chi+}E_{-(\chi_{-}’+_{X+})}

\cross(b_{\chi_{+}’,\chi_{-}’}(s-\chi_{+})/b_{\chi_{-}’}(s-\chi_{+})

=(b_{X+,X-(s-\chi_{-}’)/b_{X+}(s-\chi_{-}’))b_{\chi_{-}’+\chi+}(s)(b_{\chi_{+}’,\chi_{-}’}(s-\chi_{+})/}

b_{\chi_{-}’}(s-\chi_{+})

=(b_{X+,X-(s-\chi_{-}’)/b_{X+}(s-\chi_{-}’))b_{X+}(s)b_{\chi_{+}’,\chi_{-}’}(s-\chi_{+})} .

Furthermore by Lemma 4.4, we have

(b_{X+,X-(s-\chi_{-}’)/b_{X+}(s-\chi_{-}’))b_{X+}(s)b_{\chi_{+}’,\chi_{-}’}(s-\chi_{+})}

=q_{\chi,\chi’}(s-\chi_{-}-\chi_{-}’)b_{(\chi+\chi’)_{+},(\chi+\chi’)_{-}}(s)

=q_{\chi,\chi’}(s-\chi--\chi_{-}’)E_{(\chi+\chi’)_{-}}E_{\chi+\chi’}E_{-(\chi+\chi’)_{+}}

=E_{(\chi+\chi’)_{-q_{\chi,\chi’}(s)E_{\chi+\chi’}E_{-(\chi+\chi’)_{+}}}} .

Therefore we obtain

E_{(\chi+\chi’)_{-}}E_{\chi}E_{\chi’}E_{-(\chi+\chi’)_{+}}=E_{(\chi+\chi’)_{-}}q_{\chi,\chi’}(s)E_{\chi+\chi’}E_{-(\chi+\chi’)_{+}} .

By Proposition 2.3, we conclude

E_{\chi}E_{\chi’}=q_{\chi,\chi’}(s)E_{\chi+\chi’} .

\square

Remark 4.6. Suppose that A does not have an irreducible component of
type N=n. By Lemma 3.4, the assumption in Theorem 4.5 is fulfilled by
all \chi and \chi’ in M .

Definition The closure of each connected component of M_{\mathbb{R}}- \bigcup_{\Gamma\in \mathcal{F}}\{\chi\in

M_{\mathbb{R}}|\varphi r(\chi)=0\} is said to be a chamber.
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Remark 4.7. When we consider a reducible set, we have to treat the case
of N=n. In fact, when N=n, by base change if necessary, we may
assume A= \{ e_{1}, \ldots, e_{n}\} . Then clearly \{\varphi_{\Gamma}|\Gamma\in \mathcal{F}\}= \{ s_{1}, \ldots, s_{n}\} . For
a decomposition I\coprod J=\{1,2, . , N\} , we have

(_{i\in I}\cap\{\chi\in M|s_{i}(\chi)\geq 0\})\cap(_{j\in J}\cap\{\chi\in M|s_{j}(\chi)\leq 0\})

= \sum_{i\in I}\mathbb{Z}\geq 0e_{i}+\sum_{j\in J}\mathbb{Z}\geq 0(-e_{j})
.

Hence the chambers are exactly octants in this case.

Corollary 4.8 Suppose that A does not have an irreducible component
of type N=n. Let \chi and \chi’ belong to M. Then E_{\chi}E_{\chi’}=E_{\chi’}E_{\chi} if and
only if there exists a chamber C such that \chi , \chi’\in C . In this case, we have

E_{\chi}E_{\chi’}=E_{\chi+\chi’} .

Proof By Theorem 4.5 and Remark 4.6, we see q_{\chi,\chi’}(s)=1 if and only
if \chi and \chi’ belong to the same chamber. \square

Definition We say \chi\in M to be decomposable if there exists a chamber
C and there exist \chi’ , \chi’\in C\cap M-\{0\} such that \chi=\chi’+\chi’ ; otherwise
we say \chi to be indecomposable.

Corollary 4.9 Suppose that A does not have an irreducible component
of type N=n . Then the symmetry algebra A is generated by \{ s_{1}, \ldots, s_{n}\}

and { E_{\chi}|\chi is indecomposable} as a\mathbb{C} -algebra.

Proof It is clear from Corollary 4.8. \square

Solutions of A-hypergeometric system with parameter \lambda\in M_{\mathbb{C}}=\mathbb{C}\otimes_{\mathbb{Z}}

M (see (1.4)) are called A-hypergeometric functions with parameter \lambda . Let
F_{\lambda} be an A-hypergeometric function with parameter \lambda , i.e., F_{\lambda} satisfies

\{

( \sum_{j=1}^{N}\chi_{j}(s_{i})\theta_{j}-\lambda(s_{i}))F_{\lambda}=0 (i=1 , . ,^{n)}

\coprod_{a}F_{\lambda}=0 (a\in L) .

(4.4)

As an application of Theorem 4.5, we can derive a necessary condition of
the equality E_{\chi}F_{\lambda}=0 .
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Corollary 4.10 Suppose that A does not have an irreducible component
of type N=n. Let \chi\in M and \lambda\in M_{\mathbb{C}} . Let F_{\lambda} be a nonzero A-
hypergeometric function with parameter \lambda . Suppose that E_{\chi}F_{\lambda}=0 . Then
there exists a facet \Gamma\in \mathcal{F} satisfying \varphi_{\Gamma}(\lambda)\in \mathbb{Z}_{\leq-1} and \varphi_{\Gamma}(\chi)\geq-\varphi_{\Gamma}(\lambda) ,
or a facet \Gamma\in \mathcal{F} satisfying \varphi_{\Gamma}(\lambda)\in \mathbb{Z}_{\geq 0} and \varphi_{\Gamma}(\chi)\leq-\varphi_{\Gamma}(\lambda)-1 .

Proof. From the equality E_{-\chi}E_{\chi}F_{\lambda}=0 , we have q_{-\chi,\chi}(s)F_{\lambda}=0 by The-
orem 4.5 and Remark 4.6. Since the weight of F_{\lambda} is \lambda , we have q_{-\chi,\chi}(s)F_{\lambda}=

q_{-\chi,\chi}(\lambda)F_{\lambda}=0 . Hence we obtain q_{-\chi,\chi}(\lambda)=0 . Then the formula (4.2)
yields the assertion. \square

5. Symmetry Lie algebras

In this section, we clarify the structure of the symmetry Lie algebra
of an A-hypergeometric system, i.e., the Lie subalgebra of A generated
by all operators of order less than or equal to one; we also consider its
reductive part. Throughout this section, we assume that the set A contains
no irreducible component of type N=n. First, we define an order of an
element of A and express the order of the operator E_{\chi} in terms of \chi . Then
we determine a \mathbb{C}-basis of the symmetry Lie algebra. Next, we introduce a
certain inner product on M_{\mathbb{R}} . Then we show the main theorem that the set
of \chi\in M such that the orders of E_{\chi} and E_{-\chi} are both one, is a reduced
root system whose irreducible components are of A-type or of C-type.

Recall that we defined the filtration \{ A(k)\} of the symmetry algebra
A by (2.2).

Definition Let P belong to A . We say that the order of P is k , denoted
by ord(F)=k , when P belongs to A(k)-A(k-1) .

Lemma 5.1 For any nonzero \chi\in M , we have ord(E_{\chi})\geq 1 .

Proof. We assume the contrary. Let E_{\chi}= \sum_{d_{1X1}+\cdots+d_{NXN}=\chi}c_{d}u_{1}^{d_{1}}\cdot\cdot u_{N}^{d_{N}}

where c_{d}\in \mathbb{C} . We inductively define m_{j}\in \mathbb{Z}_{\geq 0}(1\leq j\leq N) by m_{j}:=

\max\{d_{j}|d_{k}=m_{k}(\forall k<j), c_{d}\neq 0\} . Since \chi is not zero, we have
(m_{1}, . , m_{N})\neq(0, \ldots , 0) . Let j_{0} satisfy m_{jo}\neq 0 and m_{k}=0(\forall k>j_{0}) .
Put P=(adD_{jo})^{m_{j_{0}}-1_{\circ}} (ad D_{1})^{m_{1}}\circ\cdots\circ (ad D_{jo-1})^{m_{j_{0}-1}} where ad P’(P’)=
[P’, P’] . Then clearly we have P(E_{\chi})=lu_{j_{0}} with l\in \mathbb{C}^{\cross} On the other
hand, we see P(E_{\chi})\in A since D_{j}\in A for all j . Hence we have u_{jo}\in A .
Take a\in L so that a_{j_{0}}>0 ; such an a\in L exists because the set A does not



Symmetry algebras of normal A-hypergeometric systems 613

contain an irreducible subset of type N=n. For this a\in L , we see that
[ \coprod_{a}, u_{j_{0}}]=a_{j_{0}}D_{jo}^{a_{j_{0}}-1}\prod_{a_{j}>0,j\neq j_{0}}D_{j}^{a_{j}} belongs to \sum_{a\in L},W\Pi_{a’} since u_{j_{0}}\in

A . It means D_{j_{0}}^{a_{j_{0}}-1} \prod_{a_{j}>0,j\neq j_{0}}D_{j}^{a_{j}}=0 as an element of A , which contra-
dicts Proposition 2.3. \square

Lemm a 5.2 For a polynomial p(s)\in \mathbb{C}[s] , we have

ord p(s)=\deg p(s) . (5.1)

Proof. Let d=\deg p(s) and d’= ord p(s) . Then there exists an operator
P\in W of order d’ such that p(s)-P \in\sum_{a\in L}W\coprod_{a} . By decomposing into
weight spaces, we may assume that P has weight 0. Hence we may assume
that P is a polynomial of degree d’ in \theta_{1} , \ldots , \theta_{N} . By Lemma 1.2, we obtain
p(s)=P and d=d’ . \square

Recall that c_{0} is the element of \mathfrak{h}_{\mathbb{Z}} satisfying c_{0}(\chi_{j})=1 for all j (see
(1.2) ) .

Proposition 5.3 For all \chi\in M_{j} we have

ord
E_{\chi}=-c_{0}( \chi)+\sum_{\varphi r(\chi)>0}\varphi_{\Gamma}(\chi)

. (5.1)

Proof. For \chi=\sum_{j=1}^{N}c_{j}\chi_{j} with c_{j}\in \mathbb{Z}(1\leq\forall j\leq N) , let \chi+=\sum_{c_{j}>0}c_{j}\chi_{j}

and \chi_{-}=-\sum_{c_{j}<0}c_{j}\chi_{j} . Since b_{X+,X-}(s)=E_{X-}E_{\chi}D^{X+} (see (2.15)), we have
ord b_{X+,X-}=ordE_{X-}+ordE_{\chi}+ordD^{X+} . By the formula (2.9) and Lemma
5.2, we have ord b_{X+,X-}= \sum_{\varphi_{\Gamma}(\chi)>0}\varphi_{\Gamma}(\chi_{+})+\sum_{\varphi r(\chi)\leq 0}\varphi_{\Gamma}(\chi

-
) . Further-

more we see that ord D^{X+}=c_{0}(\chi_{+}) by definition, and that ord E_{X-}=

ord b_{X-}- ordD^{X-}=\deg b_{X-}-ordD^{X-}=\sum_{\varphi r(X-)>0}\varphi_{\Gamma} (\chi_{-}) – c_{0}(\chi_{-}) by
(2.3), (2.4), and Lemma 5.2. Hence we obtain

ord E_{\chi}=ordb_{X+,X-}-ordE_{X-}-ordD^{X+}

= \sum_{\varphi r(\chi)>0}\varphi_{\Gamma}(\chi_{+})+\sum_{\varphi\Gamma(\chi)\leq 0}\varphi r(\chi-)-c_{0}(\chi_{+})

-( \sum_{\varphi\Gamma(X-)>0}\varphi r(\chi-)-c_{0}(\chi-))

= \sum_{\varphi r(\chi)>0}\varphi_{\Gamma}(\chi)-c_{0}(\chi)
.

\square
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Let \tilde{R} denote the set of \chi\in M such that the order of E_{\chi} is one, i.e.,

\tilde{R}= { \chi\in M| ord E_{\chi}=1 }. (5.3)

We define the symmetry Lie algebra \tilde{g} by

\tilde{g}=\tilde{\mathfrak{h}}\oplus(\oplus \mathbb{C}E_{\chi})\chi\in\overline{R} (5.4)

where \tilde{\mathfrak{h}}=\mathfrak{h}\oplus \mathbb{C}1 . Clearly \tilde{R} is the set of roots of \tilde{g} with respect to \tilde{\mathfrak{h}} .
Recall that we say \chi\in M-\{0\} to be indecomposable if there exists

no chamber C such that \chi=\chi’+\chi’ for some \chi’ , \chi’\in C\cap M-\{0\} .

Lemma 5.4 Each \chi\in\tilde{R} is indecomposable.

Proof. Let \chi’ and \chi’ belong to a chamber C . Then E_{\chi’+\chi’}=E_{\chi’}E_{\chi’} by
Corollary 4.8. Hence by Lemma 5.1, we see ord E_{\chi’+\chi’}\geq 2 and \chi’+\chi’\not\in\tilde{R} .

\square

Proposition 5.5 the symmetry Lie algebra \tilde{g} is actually a Lie algebra.

Proof. In general, ord [P, P’]\leq 1 if ord P\leq 1 and ord P’\leq 1 . Hence the
assertion is clear. \square

It is convenient to define the degree deg \chi of \chi\in M by

deg
\chi=\sum_{\Gamma\in F}|\varphi r(\chi)|

. (5.5)

Lemma 5.6 (1) deg \chi=ordE_{\chi}+ordE_{-\chi} .
(2) deg \chi\geq 2 for all \chi\in M-\{0\} .

Proof. (1) is obtained by Proposition 5.3, (2) follows (1) and Lemma 5.1.
\square

We define a finite subset R of M by

R= { \chi\in M| deg \chi=2 } =\{\chi\in\tilde{R}|-\chi\in\tilde{R} \} . (5.6)

We introduce an inner product ( ., ) on M_{\mathbb{R}} by

( \chi, \chi’)=\sum_{\Gamma\in \mathcal{F}}\varphi r(\chi)\varphi_{\Gamma}(\chi’)
. (5.7)

Here we give a list of properties of the sets R and \tilde{R} .
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Lemma 5.7 Let \chi\in M . Then we have
(1) If c_{0}(\chi)<-1 , then \chi\not\in\tilde{R} .
(2) \{\chi\in\tilde{R}|c_{0}(\chi)=-1\}=\{-\chi_{1}, \ldots, -\chi_{N}\} .
(3) \{\chi\in R|c_{0}(\chi)=0\}=\{\chi\in\tilde{R}|c_{0}(\chi)=0, (\chi, \chi)=2\} .
(4) \{\chi\in R|c_{0}(\chi)=1\}\subset\{\chi_{1}, . , \chi_{N}\} .
(5) If c_{0}(\chi)>1 , then \chi\not\in R .
(6) R\subset { \chi\in M|(\chi, \chi)=2 or 4}.

Proof. (1) is clear from Proposition 5.3. Since the order of E_{-\chi_{j}}=D^{Xj}

is one, we see -\chi_{j}\in\tilde{R} . On the other hand, let \chi\in\tilde{R} satisfy c_{0}(\chi)=-1 .
Then by Proposition 5.3, we see that \varphi_{\Gamma}(\chi)\leq 0 for all \Gamma\in \mathcal{F} . Since
\chi is indecomposable by Lemma 5.4, we obtain (2). (6) is clear from the
definitions of the degree and the inner product. (5) is obtained from (1).
(4) is obtained from (2). Let \chi\in\tilde{R} satisfy c_{0}(\chi)=0 . Then by Proposition
5.3, we have \sum_{\varphi r(\chi)>0}\varphi r(\chi)=1 . Taking (6) into account, we see that
(\chi, \chi)=2 . We thus obtain (3). \square

We define a finite-dimensional subspace g of \tilde{g} by

g =\tilde{\mathfrak{h}}\oplus(\oplus_{R}\mathbb{C}E_{\chi})x\in . (5.8)

The following three theorems 5.8, 5.9, and 5.12 are the main theorems
in this paper.

Theorem 5.8 The set R is a reduced root system.

Proof. Let \chi , \chi’\in R . We define the reflection \sigma_{\chi} with respect to \chi by

\sigma_{\chi}(\chi’):=\chi’-2(\chi, \chi’)/(\chi, \chi)\chi . (5.9)

In order to prove that the set R is a reduced root system, we need to show
(1) 2(\chi, \chi’)/(\chi, \chi)\in \mathbb{Z} , (2) \sigma_{\chi}(\chi’)\in R , (3) R is a finite set, and (4)
m\chi\in R with m\in \mathbb{Z} implies m=\pm 1 . We obtain (3) and (4) by (5.5) and
(5.6). By Lemma 5.7 (6), we have (\chi, \chi)=2 or 4.

(1) If (\chi, \chi)=2 , then we have clearly 2(\chi, \chi’)/(\chi, \chi)\in \mathbb{Z} . If (\chi, \chi)=

4 , then there exists a facet \Gamma_{0}\in \mathcal{F} such that \varphi_{\Gamma_{0}}(\chi)=\pm 2 and \varphi_{\Gamma}(\chi)=0

for all \Gamma\neq\Gamma_{0} . Hence we see that 2(\chi, \chi’)/(\chi, \chi)=\pm\varphi_{\Gamma_{0}}(\chi’)\in \mathbb{Z} .
(2) If (\chi, \chi)=2 , then we have (\chi, \chi’)=\pm 2 , \pm 1 , or 0. If (\chi, \chi)=4 ,

then we have (\chi, \chi’)=\pm 4 , \pm 2 , or 0. In all cases, we can verify by the direct
computation that deg \sigma_{\chi}(\chi’)=2 . Hence we omit the proof. \square



616 M. Saito

Theorem 5.9 The root system R contains only irreducible components
of type A or of type C .

Proof. (1) For \alpha\in R , we have (\alpha, \alpha)=2 or 4 by Lemma 5.7 (6). Hence
R does not contain a component of type G_{2} .

(2) Let \alpha , \alpha’\in R satisfy (\alpha, \alpha)=(\alpha’, \alpha’)=4 . Then \alpha=\pm\alpha’ or
(\alpha, \alpha’)=0 . Hence R does not contain a component of type B_{k}(k\geq 3) or
F_{4} .

(3) Suppose that there exist \alpha_{i}\in R(1\leq i\leq 4) such that (\alpha_{i}, \alpha_{i})=2

(1\leq i\leq 4) , (\alpha_{1}, \alpha_{i})=-1(2\leq i\leq 4) , and (\alpha_{i}, \alpha_{j})=0(2\leq i\neq j\leq

4) . Then there exist a facet \Gamma and i , j with 2\leq i\neq j\leq 4 such that
\varphi_{\Gamma}(\alpha_{i})=\varphi_{\Gamma}(\alpha_{j})=-\varphi_{\Gamma}(\alpha_{1})\neq 0 . Since (\alpha_{i}, \alpha_{j})=0(j=3,4) , there
exists a facet \Gamma’\neq\Gamma such that \varphi_{\Gamma’}(\alpha_{i})=-\varphi_{\Gamma’}(\alpha_{j})\neq 0 . Then we see that
deg (\alpha_{i}+\alpha_{j})=2 , i.e. , \alpha_{i}+\alpha_{j}\in R , and that (\alpha_{i}+\alpha_{j}, \alpha_{i}+\alpha_{j})=4 . Thus
\alpha_{i}+\alpha_{j} is a long root. Hence R does not contain a component of type D_{k}

(k\geq 4) or E_{k}(k=6,7,8) . \square

Example 5.10. (cf. [Sai2]) Let M be the root lattice of A_{n} type (n\geq 3) ,
i.e., M= \sum_{i=1}^{n}\mathbb{Z}\alpha_{i} where \{\alpha_{1}, , \alpha_{n}\} is the set of simple roots. Let p be
a fixed number satisfying 1<p<n . Put A:= \{\sum_{k=l}^{m}\alpha_{k}|l\leq p\leq m\} .
Let \{ s_{1}, \ldots, s_{n}\} be the dual basis of \{\alpha_{1}, \ldots, \alpha_{n}\} . Then we have

\{\varphi_{\Gamma}|\Gamma\in \mathcal{F}\}

=\{s_{1}, s_{i+1}-s_{i}(1\leq i\leq p-1), s_{i}-s_{i+1}(p\leq i\leq n-1), s_{n}\} .

Moreover we have \tilde{R}=R=the root system of A_{n} type

Example 5.11. (cf. [Sai2]) Let M be the root lattice of C_{n} type (n\geq 2) ,
i.e., M= \sum_{i=1}^{n}\mathbb{Z}\alpha_{i} where \{\alpha_{1}, . . , \alpha_{n}\} is the set of simple roots, and \alpha_{n}

is a long root. Put A:= \{\sum_{k=i}^{j-1}\alpha_{k}+2\sum_{k=j}^{n-1}\alpha_{k}+\alpha_{n}|l\leq i\leq j\leq n\} . Let
\{s_{1}, \ldots, s_{n}\} be the dual basis of \{\alpha_{1}, . . ’ \alpha_{n}\} . Then we have

\{\varphi_{\Gamma}|\Gamma\in \mathcal{F}\}=\{s_{1}, s_{i+1}-s_{i}(1\leq i\leq n-2), 2s_{n}-s_{n-1} \} .

Moreover we have \tilde{R}=R=the root system of C_{n} type

Theorem 5.12 g is a reductive Lie algebra of finite dimension. R is the
root system of g with respect to \tilde{\mathfrak{h}} .

Proof. Fix a positive root system R_{+} containing \{\alpha\in R|\varphi_{\Gamma}(\alpha)\geq 0

for all \Gamma\in \mathcal{F} }. Let \Pi denote the simple root system corresponding to R_{+} .
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For a long root \alpha\in\Pi , we put X_{\alpha}:= \frac{1}{2}E_{\alpha} , Y_{\alpha}:=- \frac{1}{2}E_{-\alpha} , and H_{\alpha}:= \varphi_{\Gamma}+\frac{1}{2}

where \Gamma is the unique facet satisfying \varphi_{\Gamma}(\alpha)=2 . When a short root \alpha\in\Pi

satisfies \varphi r_{1}(\alpha)=\varphi_{\Gamma_{2}}(\alpha)=1 for distinct \Gamma_{1} , \Gamma_{2}\in \mathcal{F} , we put X_{\alpha}:=E_{\alpha} ,
Y_{\alpha}:=-E_{-\alpha} , and H_{\alpha}:=\varphi_{\Gamma_{1}}+\varphi_{\Gamma_{2}}+1 . When a short root \alpha\in\Pi satisfies
\varphi_{\Gamma_{1}}(\alpha)=-\varphi_{\Gamma_{2}}(\alpha)=1 for some \Gamma_{1} , \Gamma_{2}\in \mathcal{F} , we put X_{\alpha}:=E_{\alpha} , Y_{\alpha}:=E_{-\alpha} ,
and H_{\alpha}:=\varphi_{\Gamma_{1}}-\varphi_{\Gamma_{2}} . By using Theorem 4.5, we see that the elements
X_{\alpha} , Y_{\alpha} , and H_{\alpha}(\alpha\in\Pi) generate g_{ss}:=(\oplus_{\alpha\in\Pi}\mathbb{C}H_{\alpha})\oplus(\oplus_{\alpha\in R}\mathbb{C}E_{\alpha}) and
satisfy the relations:

[H_{\alpha}, H_{\beta}]=0 , [ X_{\alpha}, Y_{\beta}]=\delta_{\alpha\beta}H_{\alpha} ,
(5.10)

[H_{\alpha}, X_{\beta}]=a_{\beta\alpha}X_{\beta} , [ H_{\alpha}, Y_{\beta}]=-a_{\beta\alpha}Y_{\beta}

for all \alpha , \beta\in\Pi , and

(ad X_{\alpha})^{-a_{\beta\alpha}+1}(X_{\beta})=0 , (ad Y_{\alpha})^{-a_{\beta\alpha}+1}(Y_{\beta})=0 (5.11)

for all distinct \alpha , \beta\in\Pi . Here we put a_{\beta\alpha}=2(\alpha, \beta)/(\alpha, \alpha) . Hence by
the Serre’s theorem (cf. [Ser]), 9ss is the semisimple Lie algebra with root
system R. Therefore g is a reductive Lie algebra. \square

We have proved in Corollary 4.9 that the symmetry algebra A is gen-
erated by \{ s_{1}, \ldots, s_{n}\} and { E_{\chi}|\chi is indecomposable} over \mathbb{C} . In Lemma
5.4, we have seen that any \chi\in R is indecomposable. Here we consider when
R coincides with the set of indecomposable elements.

Lemma 5.13 Let M(R) denote the submodule of M generated by all
\alpha\in R . If \chi\in M(R) is indecomposable, then \chi\in R .

Proof. Let \chi=\sum_{\alpha\in R}a_{\alpha}\alpha be a presentation which minimizes \sum_{\alpha\in R}|a_{\alpha}| .
Taking place of \alpha by -\alpha , we may assume that a_{\alpha}\geq 0 for all \alpha\in R . Suppose
that \sum_{\alpha\in R}a_{\alpha}>1 . Since \chi is indecomposable, there exist \alpha , \beta\in R such
that a_{\alpha}>0 and a_{\beta}>0 , and that no chamber contains both \alpha and \beta . Then
we can verify that the weight \alpha+\beta belongs to R. This contradicts the
minimality of \sum_{\alpha\in R}|a_{\alpha}| . \square

Proposition 5.14 We have R= { \chi\in M|\chi is indecomposable} if and
only if \chi_{j}\in R for all j with 1\leq j\leq N .

Proof. Clearly \chi_{1} , . , \chi_{N} are indecomposable. Hence the statement is
obtained from Lemma 5.4 and Lemma 5.13. \square

In this paper, we have determined the structure of the symmetry alge-
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bras, and that of the symmetry Lie algebras. For future research, we may
proceed in the following way (cf. [M2, \S 2-2]). First study realizations of
representations of Lie subalgebras of a symmetry Lie algebra \tilde{g} on the space
of A-hypergeometric functions, by utilizing Corollary 4.10. Next take exp0-
nentials of operators in \tilde{g} to obtain realizations of representations of a local
Lie group of which Lie algebra is a Lie subalgebra of \tilde{g} . Then it is expected
that we can derive new formulas for A-hypergeometric functions. For ex-
ample, Miller showed in [M3, Chapter 5] that many formulas for Lauricella
functions could be obtained in this way.
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