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Interpolating sequences and embedding theorems in
weighted Bergman spaces
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Abstract. For 0<p<\infty , let L^{P_{a}}(\mu) denote the weighted Bergman space on the unit
disk D in the complex plane, where \mu is a finite positive Borel measure on D . When \mu is an
absolutely continuous measure which satisfies an (A_{p}) -condition, we study interpolating
sequences on L_{a}^{p}(\mu) and give several sufficient conditions in order that such a sequence
exists in L_{a}^{p}(\mu) . Using them, we obtain embedding theorems for weighted Bergman
spaces between L_{a}^{p}(\mu) and L_{a}^{q}(\iota/) , where \nu is a finite positive Borel measure on D and
0<q<\infty .

Key words: interpolating sequence, (A_{p})-condition, Carleson inequality, Bergman space,
analytic function.

1. Introduction

Let D denote the open unit disk in the complex plane and H a set
of all analytic functions on D . For 0<p<\infty , let L^{p}(\mu) denote an L^{p_{-}}

space on D with respect to a finite positive Borel measure \mu on D and set
L_{a}^{p}(\mu)=L^{p}(\mu)\cap H , which is called a weighted Bergman space on D .

For any a in D , let \phi_{a} be the M\"obius function on D , that is, \phi_{a}(z)=(a-

z)/(1-\overline{a}z)(z\in D) , and put \beta(a, z)=1/2\{\log(1+|\phi_{a}(z)|)(1-|\phi_{a}(z)|)^{-1}\}

(a, z\in D) . For 0<r<\infty and a in D , let D_{r}(a)=\{z\in D;\beta(a, z)<r\} be
the Bergman disk with “center” a and “radius” r , and m be the Lebesgue
area measure on D . We define an average of a finite positive measure \mu on
D_{r}(a) by

\hat{\mu}_{r}(a)=\frac{1}{m(D_{r}(a))}\int_{D_{r}(a)}d\mu (a\in D) ,

and if there exists a non-negative function w in L^{1}(m) such that d\mu=wdm ,
then we may write it \hat{w}_{r} instead of \hat{\mu}_{r} .

Let lJ and \mu be finite positive Borel measures on D , and for 0<p ,
q<\infty , let i : L_{a}^{p}(\mu)arrow L_{a}^{q}(\nu) be an inclusion mapping. Our purpose of
this paper is to study a necessary and sufficient condition on \nu and \mu so

1991 Mathematics Subject Classification : 30D99,42A50 .



522 M. Yamada

that the inclusion mapping i is continuous. We say that \nu and \mu satisfy a
(\iota/, \mu) -Carleson inequality of (q,p) , if there is a constant C>0 such that
( \int|f|^{q}d\nu)^{1/q}\leqq C(\int|f|^{p}d\mu)^{1/p} for all f in Hr When 1\leqq p , q<\infty , clearly i
is continuous if and only if \nu and \mu satisfy the (V, \mu) -Carleson inequality of
(q, p) . Hence, naturally we will study a necessary and sufficient condition
on lJ and \mu so that lJ and \mu satisfy the (\nu, \mu) -Carleson inequality of (q,p)
for 1\leqq p , q<\infty and remaining cases, namely 0<p<1 or 0<q<1 .

Particularly, put d\mu=(1-|z|^{2})^{\alpha}dm for \alpha>-1 . When 0<p\leqq
q<\infty , Oleinik-Pavlov [11] showed that \nu and \mu satisfy the (\nu, \mu) -Carleson
inequality of (q, p) if and only if there exists 0<r<\infty such that (1 -

|a|^{2})^{2(1-q/p)}\hat{\iota\nearrow}_{r}(a)/\hat{\mu}_{r}(a)^{q/p} is bounded for a\in D . And when 0<q<p<\infty ,
Luecking [8] showed that \nu and \mu satisfy the (\iota/, \mu)-Carleson inequality of
(q,p) if and only if there exists 0<r<\infty such that \hat{l/}_{r}(a)/\hat{\mu}_{r}(a) is in
L^{t}(\mu) , where 1/t+1/(p/q)=1 . In the result of [8], roughly speaking, if
parrow q , then t – \infty , hence we obtain that \hat{\nu}_{r}(a)/\hat{\mu}_{r}(a) is bounded for a\in

D . Therefore, we can find the common property between two inequalities
which are the (\iota\nearrow, \mu) -Carleson inequalities of (q,p) when 0<p\leqq q<\infty

and 0<q<p<\infty . Conversely, when 0<p<\infty , \mu=m and d\mu=
\chi_{G}dm , where \chi_{G} is a characteristic function of a measurable subset G of D ,
Luecking [5] showed the equivalence between the (\nu, \mu)-Carleson inequality
of (p, p) and the condition that \hat{l/}_{r}(a)/\hat{\mu}_{r}(a) is bounded for a\in D . A
necessary and sufficient condition for the (\nu, \mu)-Carleson inequality of (q,p)
is not known completely when \nu , \mu , p , and q are general. Therefore, it is
interesting to study this condition. However, the result for this investigation
is known only in Nakazi-Yamada [9]. When p=q=2, d\mu=wdm , and
w satisfies the (A_{2}(0))_{\partial} condition (See \S 3.), Nakazi-Yamada [9] showed the
equivalence between the (\nu, \mu) -Carleson inequality of (2,2) and the condition
that \hat{\nu}_{r}(a)/\hat{\mu}_{r}(a) is bounded for a\in D . Since w(z)=(1-|z|^{2})^{\alpha} does not
satisfies the (A_{2}(0))_{\partial} condition if \alpha\geqq 1 , this result does not contain Oleinik-
Pavlov’s one.

In \S 2 of this paper, we give two sufficient conditions for the (\nu, \mu) -

Carleson inequality of (q, p) when 0<p\leqq q<\infty and 0<q<p<\infty . In
\S 3, observing interpolating sequences in weighted Bergman spaces, we show
that two sufficient conditions in \S 2 are also necessary when \mu satisfies some
conditions. This interpolation problem was studied by Amar [1], Amar gives
a sufficient condition for a sequence in D in order that it is an interpolating
sequence in L_{a}^{p}(m) . And Rochberg [12] extended it when D is a symmetric



Interpolating sequences 523

domain in C^{n} . The proofs in [12] are based on the results in [2]. Here,
it is difficult that the results in [2] can be extend to the weighted case.
Therefore, we use quantities \in_{R} and \delta_{R} in order to avoid the difficulty (See
\S 3.). Using the quantities, we give a sufficient condition for \mu in order that
an interpolating sequence exists in L_{a}^{p}(\mu) , and give necessary and sufficient
conditions, which can be unifiable, on \nu and \mu in order that (\nu, \mu) -Carleson
inequalities of (q,p) are satisfied when 0<p\leqq q<\infty and 0<q<p<\infty .

The author wishes to thank Professor Takahiko Nakazi for his advice
and indispensable help while this work was in progress.

2. (\nu, \mu)-Carleson inequality

Let w\geqq 0 be an integrable function on D . For 1<p<\infty , we say that
w satisfies an (A_{p}) -condition if there exist 0<r , C<\infty such that

\hat{w}_{r}(a)(w^{-1/(p-1)})_{\hat{r}}(a)^{p-1}\leqq C

for all a in D (This condition is often called condition C_{p}[7] .). Moreover, for
\alpha>-1 , put dm_{\alpha}=(1-|z|^{2})^{\alpha}dm , and throughout, C will denote a positive
constant whose value is not necessarily the same at each occurrence; it may
vary even within a line. We give sufficient conditions on \nu and \mu which
satisfy the (\nu, \mu) -Carleson inequality of (q, p) . The following lemma 1 is a
consequence of corollary 3.6 and corollary 3.8 in [7].

Lemma 1 Suppose that d\mu=wdm_{\alpha} and w satisfies the (A_{p}) condition
for some 0<p<\infty . Then, for any 0<r(1) , r(2) , r(3)<\infty , there is a

constant 0<C<\infty such that C^{-1}\hat{\mu}_{r(1)}(a)\leqq\hat{\mu}_{r(2)}(z)\leqq C\hat{\mu}_{r(1)}(a) for all
a , z in D such that \beta(a, z)<r(3) .

Lemma 1 implies that the (A_{p})-condition is independent of choice of r
and \hat{w}_{r}(a) is equivalent to \hat{w}_{r}(z) for z\in D_{r}(a) when w satisfies the (A_{p}) -

condition. The following proposition 1 gives sufficient conditions on \nu and
\mu which satisfy the (\nu, \mu)-Carleson inequality of (q,p) . In order to prove
them we use ideas in [8], [9] and [14; p109].

Proposition 1 Suppose that d\mu=wdm_{\alpha} and w satisfies the (A_{s}) -condi-
tion for some 1<s<\infty .

(1) Suppose that 0<p\leqq q<\infty . If there exists 0<r<\infty such that
(1-|a|^{2})^{2(1-q/p)}\hat{\nu}_{r}(a)/\hat{\mu}_{r}(a)^{q/p} is bounded for a\in D , then \nu and \mu satisfy
the (\nu, \mu) -Carleson inequality of (q,p) .
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(2) Suppose that 0<q<p<\infty . If there exists 0<r<\infty such that
\hat{\nu}_{r}(a)/\hat{\mu}_{r}(a) is in L^{t}(\mu) , here 1/t+1/(p/q)=1 , then \nu and \mu satisfy the
(\nu, \mu) -Carleson inequality of (q,p) .

Proof. (1) Suppose that there exists 0 <r<\infty such that (1 -

|a|^{2})^{2(1-q/p)}\hat{\nu}_{r}(a)/\hat{\mu}_{r}(a)^{q/p} is bounded for a\in D . Proposition 4.3.8 in [14;
p62] and H\"older’s inequality imply that there exists a constant C>0 such
that

|f(a)|^{p/s} \leqq\frac{C}{m(D_{r}(a))}\int_{D_{r}(a)}|f|^{p/s}dm

\leqq\frac{C}{m(D_{r}(a))}(\int_{D_{r}(a)}|f|^{p}wdm)1/s

\cross(\int_{D_{r}(a)}w^{-1/(s-1)}dm)(s-1)/s

for all f in H and a in D . Since m(D_{r}(a)) is equivalent to (1 -|a|^{2})^{2} ,
the function (1 -|z|^{2})^{\alpha} can be replaced by (1 -|a|^{2})^{\alpha} for z in D_{r}(a) ,
and w satisfies the (A_{s}) -condition, hence lemma 1 implies that |f(a)|^{q}\leqq

C( \int_{D_{r}(a)}|f|^{p}d\mu)^{q/p}\hat{\mu}_{r}(a)^{-q/p}(1-|a|^{2})^{-2q/p} for all f in H and a in D . Inte-
grating the inequality with respect to \nu over D , and by lemma 4.3.6 in [14;
p62] , there is a positive integer N=N_{r} such that there exists \{\lambda_{n}\}\subset D

satisfying that D=\cup D_{r}(\lambda_{n}) and any z in D belongs to at most N of the
sets D_{2r}(\lambda_{n}) , therefore lemma 1 implies that

\int_{D}|f|^{q}d\nu

\leqq C\sum\int_{D_{r}(\lambda_{n})}(\int_{D_{r}(a)}|f|^{p}d\mu\hat{\mu}_{r}(a)^{-1}(1-|a|^{2})^{-2})^{q/p}d\nu(a)

\leqq C\sum(\int_{D_{2r}(\lambda_{n})}|f|^{p}d\mu\hat{\mu}_{r}(\lambda_{n})^{-1}(1-|\lambda_{n}|^{2})^{-2})^{q/p}\nu(D_{r}(\lambda_{n})) ,

since D_{r}(a)\subset D_{2r}(\lambda_{n}) for a in D_{r}(\lambda_{n}) and (1-|z|^{2})^{\alpha} can be replaced by
(1-|a|^{2})^{\alpha} for z in D_{r}(a) . Hence the hypothesis and the choice of Bergman
disks imply that the (\nu, \mu) -Carleson inequality of (q,p) is satisfied, because
q/p\geqq 1 .

(2) Suppose that there exists 0<r<\infty such that \hat{\nu}_{r}(a)/\hat{\mu}_{r}(a) is in
L^{t}(\mu) , where 1/t+1/(p/q)=1 . At the first inequality in the proof of (1)
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of this proposition, we replace p by g , then we have that

|f(a)|^{q} \leqq C(\frac{1}{m(D_{r}(a))})^{s}\int_{D_{r}(a)}|f|^{q}wdm

\cross(\int_{D_{r}(a)}w^{-1/(s-1)}dm)^{s-1}

for all f in H and a in D . Moreover, similar arguments in the proof of (1)
implies that |f(a)|^{q} \leqq C(\int_{D_{r}(a)}|f|^{q}d\mu)\hat{\mu}_{r}(a)^{-1}(1-|a|^{2})^{-2} for all f in H and
a in D . Integrating the inequality with respect to \nu over D , and applying
Fubini’s theorem, then lemma 1 implies that

\int_{D}|f(a)|^{q}d\nu(a)

\leqq C\int_{D}|f(z)|^{q}\int_{D_{r}(z)}\hat{\mu}_{r}(a)^{-1}(1-|a|^{2})^{-2}d\nu(a)d\mu(z)

\leqq C\int_{D}|f(z)|^{q}(\hat{\nu}_{r}(z)\hat{\mu}_{r}(z)^{-1})d\mu(z) ,

because \chi_{D_{r}(a)}(z)=\chi_{D_{r}(z)}(a) , and (1-|z|^{2}) is equivalent to (1-|a|^{2}) for
a in D_{r}(z) . Hence the hypothesis and H\"older’s inequality imply that the
(\nu, \mu) -Carleson inequality of (q, p) is satisfied, because p/q>1 . \square

In the statements of (1) and (2) of proposition 1, if we replace \hat{\mu}_{r}(a)

by (w^{-1/(s-1)})_{\hat{r}}(a)^{-(s-1)} , then we can omit the hypothesis of the (A_{s}) -

condition. Therefore, we can give more general sufficient conditions.

3. Interpolating sequences in L_{ _{a}}^{p}(\mu)

For any a in D , let K_{a}(z)=(1-\overline{a}z)^{-2} and k_{a}(z)=K_{a}(z)/K_{a}(a)^{1/2}

(z\in D) . For \alpha>-1 , put \overline{\mu}_{\alpha}(a)=\int|k_{a}|^{2+\alpha}d\mu(a\in D) which is called a
Berezin transform of \mu . If d\mu=wdm_{\alpha} , then we write it \overline{w}_{\alpha} instead of \overline{\mu}_{\alpha} .
For 1<p<\infty , we say that w satisfies an (A_{p}(\alpha))_{\partial}-condition if there exists
0<C<\infty such that

\overline{w}_{\alpha}(a)(w^{-1/(p-1)})_{\alpha}^{-}(a)^{p-1}\leqq C

for all a in D (The (A_{p}(\alpha))_{\partial}-condition is stronger than the (A_{p}) -condition.).
For 0<R<\infty , put

\epsilon_{R}(\mu, \alpha)=\sup_{a\in D}(\int_{D\backslash D_{R}(a)}|k_{a}|^{2+\alpha}d\mu)\overline{\mu}_{\alpha}(a)^{-1} .
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Moreover, for 0<R<\infty and \theta is a real number, put

\delta_{R}(\mu, \alpha, \theta)

= \sup_{a\in D}(\int_{D\backslash D_{R}(a)}|K_{a}|^{1+\alpha/2}(1-|z|^{2})^{\theta}d\mu)\{(1-|a|^{2})^{\theta}\overline{\mu}_{\alpha}(a)\}^{-1} .

The quantity \in_{R}(\mu, 0) was defined in [9] and was used for an obser-
vation of a uniformly absolutely integrability for some measures, here we
need it for our objects. Clearly, 0 <\in_{R}(\mu, \alpha)\leqq 1 and if \theta=0 then
\in_{R}(\mu, \alpha)\leqq 2^{2+\alpha}\delta_{R}(\mu, \alpha, 0) for all 0<R<\infty , because |k_{a}|^{2+\alpha}=(1 -

|a|^{2})^{2+\alpha}\{|K_{a}|^{1+\alpha/2}\}^{2}\leqq(1-|a|^{2})^{2+\alpha}|K_{a}|^{1+\alpha/2}/(1-|a|)^{2+\alpha} .
Firstly, we show that the converse implication of (1) of proposition 1 is

true when \in_{R}(\mu, \alpha)<1 for some 0<R<\infty . Moreover, we also find that
the converse implication of (2) of proposition 1 is true when \in_{R}(\mu, \alpha)arrow 0

(Rarrow\infty) and 0<p\leqq 1 . In order prove it, we need a notion of interpolating
sequences in L_{a}^{p}(\mu) , which was studied by Amar [1] when \mu=m . When
d\mu=wdm_{\alpha} and w satisfies a condition B_{p}(\alpha) , Luecking [7] studied a suffi-
cient condition for separated sequences in order to embed L_{a}^{p}(\mu) isometri-
cally as a closed subspace of l^{p} , and hence obtained a representation formula
for L_{a}^{p}(\mu) -functions, which are closely related to interpolating sequences in
that space (The condition B_{p}(\alpha) is stronger than the (A_{p}) condition and
weaker than the (A_{p}(\alpha))_{\partial}-condition, the definitions of separated and in-
terpolating sequences are below.). Here, we give a sufficient condition for
separated sequences in order that the embedding map from L_{a}^{p}(\mu) to l^{p} is
onto when d\mu=wdm_{\alpha} , w satisfies the (A_{s}) condition for some 1<s<\infty ,
\in_{R}(\mu, \alpha) –0 (Rarrow\infty) , and 0<p\leqq 1 . We also observe the interpolating
sequences in L_{a}^{p}(\mu) , and obtain the characterization of the (\nu, \mu)-Carleson
inequality of (q,p) when 1<p<\infty .

Theorem 2 Suppose that 0<p\leqq q<\infty , d\mu=wdm_{\alpha} , w satisfies the
(A_{s}) -condition for some 0<s<\infty and there exists 0<R<\infty such that
\in_{R}(\mu, \alpha)<1 . Then \nu and \mu satisfy the (\nu, \mu) -Carleson inequality of (q,p) if
and only if there exists 0<r<\infty such that (1-|a|^{2})^{2(1-q/p)}\hat{\nu}_{r}(a)/\hat{\mu}_{r}(a)^{q/p}

is bounded for a\in D .

Proof. By (1) of proposition 1, it is enough to prove the “only if” part.
Therefore, we suppose that there exists a constant 0<C<\infty such that
\int|f|^{q}d\nu\leqq C(\int|f|^{p}d\mu)^{q/p} for all f in H. Here, put f=k_{a}^{(2+\alpha)/p} , by lemma
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4.3.3 in [14], we have that ( \int|k_{a}|^{2+\alpha}d\mu)^{q/p}\geqq C^{-1}\int_{D_{r}(a)}|k_{a}|^{(2+\alpha)q/p}d\nu\geqq

C’(1-|a|^{2})^{2(1-q/p)-\alpha q/p}\hat{\nu}_{r}(a) for all 0<r<\infty and a in D (Here, C’ is
depend only on lJ , \mu and r .). Moreover, a simple computation shows that
\in_{R}(\mu, \alpha)<1 if and only if there exists a constant 0<C<\infty such that
\int|k_{a}|^{2+\alpha}d\mu\leqq C(1-|a|^{2})^{-\alpha}\hat{\mu}_{R}(a) for all a in D (See lemma 1 in [9].). Hence,
the desired result follows from lemma 1. \square

We observe interpolating sequences for L_{a}^{p}(\mu) . Let A=\{a_{j}\} be an
infinite sequence in D , and put R_{A}=1/2 \inf\{\beta(a_{i}, a_{j});i\neq j\} . A sequence
A is said to be separated if R_{A}>0 . For 0<p<\infty , let s(\mu, p, a)=

s(a)= \inf\{\int|f|^{p}d\mu;f(a)=1, f\in H\}(a\in D) , which is called a Riesz’s
function of \mu and was studied in [10]. We define a map T_{A} from L_{a}^{p}(\mu)

to l^{p} by T_{A}f=\{s(a_{j})^{1/p}f(a_{j})\} , and a separated sequence A is called an
interpolating sequence for L_{a}^{p}(\mu) if T_{A} is onto. If d\mu=dm_{\alpha} , then s(a)=
(1-|a|^{2})^{2+\alpha} . When \alpha=0 , our definition of interpolating sequences is same
to Amar’s one. Hence, using the Riesz’s function, a notion of interpolating
sequences can be defined for a general weighted Bergman space L_{a}^{p}(\mu) .

Lemma 2 Suppose that 0<p<\infty , d\mu=wdm_{\alpha} , w satisfies the (A_{s}) -

condition for some 1 <s<\infty and there exists 0<R<\infty such that
\in_{R}(\mu, \alpha)<1 . If a sequence A is separated, then T_{A} is continuous.

Proof. Clearly, a simple computation and the hypothesis in lemma 2
imply that there exists a constant 0<C<\infty such that s(a)\leqq(1 -

|a|^{2})^{2+\alpha} \int|k_{a}|^{2+\alpha}d\mu\leqq C\mu(D_{R}(a)) for all a in D (See lemma 1 in [9].).
Hence a continuity of T_{A} follows from theorem 3.12 in [7]. \square

When D is a symmetric domain in C^{n} , Rochberg [12], using results in
[2] to avoid direct and complicated computations, gave a sufficient condition
for A=\{a_{j}\} in order that T_{A} is onto. In order to prove proposition 3, we
use ideas in [1] and [12], but for general weighted Bergman space L_{a}^{p}(\mu) ,
it may be hard to consider estimations of reproducing kernels in that space
which are used in [1] and [12]. We refer the problem to the quantity \in_{R} and
\delta_{R} . In order to prove theorem 4, the following proposition 3 is important
and essential.

Proposition 3 Suppose that \mu=wdm_{\alpha} .
(1) If 0<p\leqq 1 , w satisfies the (A_{s}) -condition for some 1<s<\infty

and\in_{R}(\mu, \alpha)arrow 0(R --\infty) . Then, there exist 0<R_{0} , \gamma<\infty such that
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if a sequence A=\{a_{j}\} is in D and R_{A}\geqq R_{0} , then there is a map S_{A}

from l^{p} to L_{a}^{p}(\mu) so that T_{A}S_{A}=I and \sup\{\int|S_{A}\{c_{j}\}|^{p}d\mu;\Sigma|c_{j}|^{p}\leqq 1 ,
\{c_{j}\}\in l^{p}\}\leqq\gamma .

(2) If 1<p<\infty , w satisfies the (A_{p}(\alpha))_{\partial} -condition and there exists
\theta such that (1-p)(1+\alpha)<\theta<0 , \delta_{R}(\mu, \alpha, \theta)arrow 0(Rarrow\infty) . Then there
exist 0<R_{0} , \gamma<\infty such that they satisfy the same properties in (1) of
proposition 3.

Proof. (1) It is enough to prove that there exists a sequence of functions
f_{i} in L_{a}^{p}(\mu) such that \int|f_{i}|^{p}d\mu\leqq C and \Sigma_{j}|s(a_{j})^{1/p}f_{i}(a_{j})-\delta_{ij}|^{p}\leqq 1-\eta

(i\geqq 1) for some 0<C<\infty and 0<\eta<1 . In fact, suppose such a
sequence of functions exists. Let \sigma_{j} be a point mass of a_{j} , and L^{p}(D, \Sigma\sigma_{j})

be a usual measure space on D . Put v_{i}(a_{j})=\delta_{ij} , and we define Bv_{i}=f_{i} ,
then B is continuously extendable to L^{p}(D, \Sigma\sigma_{j}) , because \int|f_{i}|^{p}d\mu\leqq C for
all i\geqq 1 . Moreover, we have that

||(T_{A}B-I)(\Sigma\lambda_{i}v_{i})||_{p}^{p}\leqq\Sigma|\lambda_{i}|^{p}||T_{A}Bv_{i}-v_{i}||_{p}^{p}\leqq(1-\eta)\Sigma|\lambda_{i}|^{p} .

Therefore, put S_{A}=B(T_{A}B)^{-1} , then S_{A} satisfies the required property. We
will prove the existence of f_{i} . Let f_{i}(z)=s(a_{i})^{-1/p}\{(1-|a_{i}|^{2})k_{a_{i}}(z)\}^{(2+\alpha)/p} ,
then f_{i} is analytic on D and \int|f_{i}|^{p}d\mu=s(a_{i})^{-1}(1-|a_{i}|^{2})^{2+\alpha}\int|k_{a_{i}}|^{2+\alpha}d\mu .
By the definition of s(a) , making a change of variable, and Jensen’s inequal-
ity implies that

s(a)\geqq C(1-|a|^{2})^{\alpha} inf \{\int_{D_{r}(0)}|f\circ\phi_{a}|^{p}w\circ\phi_{a}|k_{a}|^{2}dm;f(a)=1\}

\geqq C(1-|a|^{2})^{2+\alpha}m(D_{r}(0)) exp \{\int_{D_{r}(0)}wo\phi_{a}dm/m(D_{r}(0))\}

\geqq C(1-|a|^{2})^{2+\alpha}(w^{-1/(s-1)})_{\hat{r}}(a)^{-(s-1)} ,

where 0<r<\infty is arbitrary and C depends only on r . Since w satisfies
the (A_{s}) -condition and \in_{R}(\mu, \alpha)<1 for some R, lemma 1 implies that
\int|f_{i}|^{p}d\mu\leqq C(i\geqq 1) . Next, the above results imply that for any fixed
0<r<\infty , there exists a constant 0<C=C_{r}<\infty so that

\Sigma_{j}|s(a_{j})^{1/p}f_{i}(a_{j})-\delta_{ij}|^{p}

=\Sigma_{j\neq i}s(a_{j})s(a_{i})^{-1}(1-|a_{i}|^{2})^{2+\alpha}|k_{a_{i}}(a_{j})|^{2+\alpha}

\leqq Cs(a_{i})^{-1}(1-|a_{i}|^{2})^{2+\alpha_{\Sigma_{j\neq i}}}\int_{D_{r}(a_{j})}|k_{a_{i}}|^{2+\alpha}d\mu
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\leqq s(a_{i})^{-1}(1-|a_{i}|^{2})^{2+\alpha}\int_{\bigcup_{j\neq i}D_{r}(a_{j})}|k_{a_{i}}|^{2+\alpha}d\mu

\leqq C\overline{\mu}_{\alpha}(a_{i})^{-1}\int_{D\backslash D_{(2R_{A}-r)}(a_{i})}|k_{a_{i}}|^{2+\alpha}d\mu (i\geqq 1)

for all A=\{a_{i}\} such that R_{A}>r/2 , since for any j\neq i if \zeta\in D_{r}(a_{j}) then
2R_{A}\leqq\beta(a_{i}, a_{j})\leqq\beta(a_{i}, \zeta)+\beta(\zeta, a_{j})\leqq\beta(a_{i}, \zeta)+r . Therefore, the desired
result follows from the hypothesis \in_{R}(\mu, \alpha) –0 (Rarrow\infty) .

(2) Let g_{i}(z)=s(a_{i})^{-1/p}\{(1-|a_{i}|^{2})K_{a_{i}}(z)^{1/2}\}^{2+\alpha} and \{e_{i}\} be the
usual basis in l^{p} . We can define a mapping L from l^{p} to L_{a}^{p}(\mu) by L(\Sigma\lambda_{i}e_{i})=

\Sigma\lambda_{i}g_{i} . We claim that L is a continuous mapping. In fact, the (A_{p}(\alpha))_{\partial}-

condition implies the condition B_{p}(\alpha) , therefore by theorem 2.1 in [7],
we have that the dual of L_{a}^{p}(\mu)=L_{a}^{p}(wdm_{\alpha}) can be identified with
L_{a}^{q}(w^{-q/p}dm_{\alpha}) , where 1/p+1/q=1 and the pairing is given by \langle g, h\rangle=

\int g\overline{h}dm_{\alpha} . For any h in L_{a}^{q}(w^{-q/p}dm_{\alpha}) , we have that

|\langle L(\Sigma\lambda_{i}e_{i}), h\rangle|

\leqq\Sigma|\lambda_{i}|s(a_{i})^{-1/p}(1-|a_{i}|^{2})^{2+\alpha}|\int h\overline{K}_{a_{i}}^{1+\alpha/2}dm_{\alpha}|

\leqq(\Sigma|\lambda_{i}|^{p})^{1/p}\{\Sigma s(a_{i})^{-q/p}(1-|a_{i}|^{2})^{q(2+\alpha)}|h(a_{i})|^{q}\}^{1/q} .

Since w satisfies the (A_{p}(\alpha))_{\partial}-condition, there exists a constant 0<C<\infty
such that

\Sigma s(\mu,p, a_{i})^{-q/p}(1-|a_{i}|^{2})^{q(2+\alpha)}|h(a_{i})|^{q}\leqq C\Sigma\int_{D_{R_{A}}(a_{i})}|h|^{q}w^{-q/p}dm_{\alpha} ,

here C depends only on R_{A} . Moreover, we may assume that R_{A}>0 , we
obtain that L is continuous. As in the proof of (1) of proposition 3, it is
enough to prove that an operator norm of T_{A}L-I can be less than 1-\eta for
some 0<\eta<1 . Let (a_{ij}) be a matrix of T_{A}L-I with respect to \{e_{i}\} , then
we have that a_{ii}=0 and a_{ij}=\{s(a_{i})/s(a_{j})\}^{1/p}\{(1-|a_{j}|^{2})K_{a_{j}}(a_{i})^{1/2}\}^{2+\alpha}

(i\neq j) . By theorem 3.2.2 in [14; p42] , we only prove that there exists
a non-negative sequence \{h_{i}\} such that \Sigma_{j}|a_{ij}|h_{j}^{q}\leqq(1-\eta)h_{i}^{q}(i\geqq 1)

and \Sigma_{i}|a_{ij}|h_{i}^{p}\leqq(1-\eta)h_{j}^{p}(j\geqq 1) . By the hypothesis, there exists \theta

such that ( 1 – p)(1+\alpha)<\theta<0 and \delta_{R}(\mu, \alpha, \theta) –0 (Rarrow\infty) . Let
h_{i}=s(a_{i})^{1/pq}(1-|a_{i}|^{2})^{\theta/p} , then for any fixed 0<r<\infty lemma 4.3.3 in
[14; p60] , proposition 4.3.8 in [14; p62] , and above arguments in the proof
of (1) of proposition 3 imply that there exists a constant 0<C=C_{r}<\infty
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such that

\Sigma_{j}|a_{ij}|h_{j}^{q}h_{i}^{q}

\leqq C(1-|a_{i}|^{2})^{-q\theta/p}\int_{D_{2R_{A}-r}(a_{i})^{c}}(1-|z|^{2})^{q\theta/p+\alpha}|1-\overline{a}_{i}z|^{-(2+\alpha)}dm

and

\Sigma_{i}|a_{ij}|h_{i}^{p}h_{j}^{p}

\leqq C(1-|a_{j}|^{2})^{2+\alpha-\theta}s(a_{j})^{-1}\int_{D_{2R_{A}-r}(a_{j})^{c}}(1-|z|^{2})^{\theta}|1-\overline{a}_{j}z|^{-(2+\alpha)}d\mu

\leqq C\{(1-|a_{j}|^{2})^{\theta}\overline{\mu}_{\alpha}(a_{j})\}^{-1}\int_{D_{2R_{A}-r}(a_{j})^{c}}|K_{a_{j}}|^{1+\alpha/2}(1-|z|^{2})^{\theta}d\mu ,

because 1-|a|^{2} is equivalent to 1-|z|^{2} for z\in D_{r}(a) . In the first inequality,
by making a change of variable, lemma 4.2.2 in [14; p53] and corollary 1.2 in
[3; p121] imply that the right hand side of the inequality can be sufficiently
small if R_{A} – \infty . In the second inequality, the same assertion follows from
the hypothesis \delta_{R}(\mu, \alpha, \theta)arrow 0(Rarrow\infty) . \square

Using the results in proposition 3, we give a necessary and sufficient
condition in order to satisfy the (\nu, \mu)-Carleson inequality of (q,p) when
q<p . This condition is a generalization of Luecking’s result [8]. The proof
of theorem 4 is similar to that in [8]. But, in the proof of main theorem in
[8], it seems that a result which is concerned with interpolating sequences
is important. In weighted Bergman spaces, an interpolating theorem also
plays an important role, and proposition 3 enables us to prove theorem 4.
Moreover, we will show that the hypotheses \in_{R}(\mu, \alpha)arrow 0(R -\infty) and
\delta_{R}(\mu, \alpha, \theta) –0 (Rarrow\infty) in theorem 4 are valid for many functions which
are modulus of polynomials.

Theorem 4 Suppose that 0<q<p<\infty and d\mu=wdm_{\alpha} .
(1) If 0<p\leqq 1 , w satisfies the (A_{s}) -condition for some 1<s<

\infty and\in_{R}(\mu, \alpha) –0 (Rarrow\infty) , then \nu and \mu satisfy the (\nu, \mu) -Carleson
inequality of (q, p) if and only if there exists 0<r<\infty such that \hat{\nu}_{r}(a)/\hat{\mu}_{r}(a)

is in L^{t}(\mu) , here 1/t+1/(p/q)=1 .
(2) If 1<p<\infty , w satisfies the (A_{p}(\alpha))_{\partial} -condition and there exists

\theta such that (1-p)(1+\alpha)<\theta<0 , \delta_{R}(\mu, \alpha, \theta)arrow 0(Rarrow\infty) , then the same
equivalence in (1) of theorem 4 is valid.
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Proof. (1) The “if” part is a consequence of (2) of proposition 1 and
hence we will show the “only if” part. For any 0<r<\infty , by lemma
4.3.6 in [14; p62] , there exists \{\lambda_{n}\}\subset D satisfying that D=\cup D_{r/2}(\lambda_{n})

and D_{r/8}(\lambda_{n})\cap D_{r/8}(\lambda_{m})=\phi(n\neq m) . Since \{\lambda_{n}\} is separated, Amar’s
theorem (See [1].) implies that \{\lambda_{n}\} is a finite union of A(l)(1\leqq l\leqq N) ,
where A(l) is a separated sequence such that R_{A(l)} is sufficiently large for
1\leqq l\leqq N . Hence, by the hypothesis and (1) of proposition 3, we can assume
that R_{A(l)}\geqq R_{0}\geqq 4r and \sup\{\int|S_{A(l)}\{c_{j}\}|^{p}d\mu;\Sigma|c_{j}|^{p}\leqq 1, \{c_{j}\}\in l^{p}\}\leqq\gamma

for all 1 \leqq l\leqq N . Put R=R_{0}/2 . Here, it is enough to prove that
\Sigma(\hat{\nu}_{r}(a_{j})/\hat{\mu}_{R}(a_{j}))^{t}\mu(D_{R}(a_{j}))<\infty , where \{a_{j}\} is a one of the separated
sequences A(l)(1\leqq l\leqq N) . In fact, since w satisfies the (A_{s})-condition,
lemma 1 implies that

\int(\hat{\nu}_{r/2}(z)/\hat{\mu}_{r/2}(z))^{t}\mu

\leqq C\Sigma(\hat{\nu}_{r}(\lambda_{n})/\hat{\mu}_{r}/_{4}(\lambda_{n}))^{t}\int_{D_{r}/2(\lambda_{n})}d\mu

\leqq C\Sigma(\hat{\nu}_{r}(\lambda_{n})/\hat{\mu}_{R}(\lambda_{n}))^{t}\mu(D_{R}(\lambda_{n})) .

Therefore, we will prove it. We replace \nu with \chi_{D_{K}(0)}\nu and put y_{j}=

\{m(D_{R}(a_{j}))^{-1}\nu(D_{r}(a_{j}))/\hat{\mu}_{R}(a_{j})\}\mu(D_{R}(a_{j}))^{1/t} , where \chi_{D_{K}(0)} is a charac-
teristic function of D_{K}(0) . By the corollary of lemma 4.3.3 in [14; p60] , it
is enough to prove that \Sigma|y_{j}|^{t}\leqq C , where C is independent of 0<K<\infty .
The (\nu, \mu) -Carleson inequality of (q,p) implies that

\{C_{\nu,\mu}(\int_{D}|f|^{p}d\mu)^{1/p}\}^{q}

\geqq\Sigma\int_{D_{r}(a_{j})}|f|^{q}d\nu

\geqq\Sigma|f(a_{j})|^{q}\nu(D_{r}(a_{j}))-\Sigma\int_{D_{r}(a_{j})}|f(a_{j})-f|^{q}d\nu

for all f in H . Here, normal families arguments, H\"older’s inequality, and
the (A_{s})-condition imply that

|f(a)-f(z)|^{q/s} \leqq C_{R}\beta(a, z)\{m(D_{R}(a))^{-1}\int_{D_{R}(a)}|f|^{q}d\mu\}^{1/s}\hat{\mu}_{R}(a)^{-1/s}

for all f in H and a , z\in D such that \beta(a, z)<r (See [8].). Hence, two
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H\"older’s inequalities imply that

\Sigma\int_{D_{r}(a_{j})}|f(a_{j})-f|^{q}d_{lJ}

\leqq C_{R}r^{s}\Sigma(\int_{D_{R}(a_{j})}|f|^{p}d\mu)^{q/p}\mu(D_{R}(a_{j}))^{1/t}\nu(D_{r}(a_{j}))

\cross m(D_{R}(a_{j}))^{-1}/\hat{\mu}_{R}(a_{j})

\leqq C_{R}r^{s}(\Sigma\int_{D_{R}(a_{j})}|f|^{p}d\mu)^{q/p}\{\Sigma\mu(D_{R}(a_{j}))\nu(D_{r}(a_{j}))^{t}

\cross m(D_{R}(a_{j}))^{-t}/\hat{\mu}_{R}(a_{j})^{t}\}^{1/t}

\leqq C_{R}r^{s}(\int_{D}|f|^{p}d\mu)^{q/p}(\Sigma|y_{j}|^{t})^{1/t}

for all f\in H . Moreover, Hahn-Banach’s theorem shows that there ex-
ists a sequence \{d_{j}\} such that \Sigma y_{j}d_{j}=(\Sigma|y_{j}|^{t})^{1/t} and (\Sigma|d_{j}|^{p/q})^{q/p}=1 .
Therefore, put |c_{j}|^{q}=|d_{j}|s(a_{j})^{q/p}\mu(D_{R}(a_{j}))^{1/t}m(D_{R}(a_{j}))^{-1}\hat{\mu}_{R}(a_{j})^{-1} , then
we have that \Sigma|c_{j}|^{p}\leqq C_{R,\mu} . Hence, by (1) of proposition 3, there exist
0<\gamma_{R}<\infty and f in L_{a}^{p}(\mu) such that f(a_{j})=c_{j} and \int|f|^{p}d\mu\leqq\gamma_{R} , and
they imply that \Sigma|f(a_{j})|^{q}lJ(D_{r}(a_{j}))\geqq(\Sigma|y_{j}|^{t})^{1/t} and \int|f|^{p}d\mu\leqq\gamma_{R}(\gamma_{R}

may not be different from above \gamma .). Therefore, above inequalities and the
choice of f imply that C_{\nu,\mu^{q}}\gamma_{R^{q/p}}\geqq(1-C_{R}r^{s}\gamma_{R^{q/p}})(\Sigma|y_{j}|^{t})^{1/t} , hence let r
be sufficiently small, the desired result follows.

(2) The proof is same to (1). \square

We give some examples. Some results in example 1 and example 2
are more general than (1) of proposition 5, (5) of proposition 9 and (2) of
proposition 5, (6) of proposition 9 respectively.

Example 1. Let w(z)=(1-|z|^{2})^{l} such that l is real and d\mu=wdm_{\alpha} .
Then, clearly w satisfies the (A_{p}) -condition for alll <p<\infty . Moreover, by
making a change of variable, lemma 4.2.2 in [14; p53] implies that \overline{w}_{\alpha}(a)\leqq

C(1-|a|^{2})^{l} , if \alpha+l>-1 and l-\alpha-2<0 . Analogously, we have that
(w^{-1/(p-1)})_{\alpha}^{-}(a)^{p-1}\leqq C(1-|a|^{2})^{-l} . if-l/(p-1)+\alpha>-1 and -l/(p-
1)-\alpha-2<0 . Hence, if l\geqq 0 , |l-1/2|<\alpha+3/2 , and 1+l/(1+\alpha)<p ,
then w satisfies the (A_{p}(\alpha))_{\partial}-condition. If l<0 , |l-1/2|<\alpha+3/2 ,
and 1 – l/(2+\alpha)<p , then w satisfies the (A_{p}(\alpha))_{\partial}-condition. Similar
calculations, lemma 4.2.2 in [14; p53] , and corollary 1.2 in [3; p121] show
that \in_{R}(\mu, \alpha)arrow 0(R -\infty) if |l-1/2|<\alpha+3/2 , because for any fixed
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0<r<\infty we have that \overline{\mu}_{\alpha}(a)^{-1}\leqq C_{r}\hat{w}_{r}(a)^{-1}\leqq C(1-|a|^{2})^{-l} for all a in
D . Similarly, we obtain that \delta_{R}(\mu, \alpha, \theta)arrow 0(Rarrow\infty) if \theta>-1-\alpha-l

and \theta<-l . Since 0>-1-\alpha , for any 1<p<\infty there is \theta such that
( 1 - p) (1+\alpha)<\theta<0 and \delta_{R}(\mu, \alpha, \theta) –0 (R –\infty) , if -(1+\alpha)<l<

(p-1)(1+\alpha) .

Example 2. Let \{b_{j}\} be a finite sequence of complex numbers with b_{i}\neq b_{j}

(i\neq j) and \{l(j)\} be a finite sequence of non-negative real numbers. Put
w(z)= \prod_{j}|z-b_{j}|^{l(j)} and d\mu=wdm_{\alpha} . Set \Lambda=\{j;b_{j}\in\partial D\} and \Gamma=

\{j;b_{j}\in D\} . For any 0<r<\infty , lemma 2 in [9] asserts that C_{r}^{-1}\hat{w}_{r}(a)\leqq

\prod_{j\in\Lambda}|a-b_{j}|^{l(j)}\leqq C_{r}\hat{w}_{r}(a) for all a in D when l(j)>-2(j\in\Gamma) even if
\{l(j)\} is not non-negative. Therefore, we have that \hat{w}_{r}(a)\leqq C_{r}\prod_{j\in\Lambda}|a-

b_{j}|^{l(j)} and (w^{-1/(p-1)})_{\hat{r}}(a)^{p-1} \leqq C_{r}\prod_{j\in\Lambda}|a-b_{j}|^{-l(j)} , if-l (j)/(p-1)>-2
(j\in\Gamma) . Hence, we obtain that w satisfies the (A_{p}) -condition for some
1<p<\infty . We claim that w satisfies the (A_{p}(\alpha))_{\partial}-condition if l(j)<\alpha+2
(j\in\Lambda) and l(j) \max\{1,1/(1+\alpha)\}/2+1<p(j\in\Gamma\cup\Lambda) . In fact, let
w(z)=|z-b_{1}|^{l(1)}|z-b_{2}|^{l(2)} such that b_{1} is in D , b_{2} is in \partial D , and l(1) , l(2)
are non-negative, it is enough to prove that the assertion is true for such
a w . Since |z-b_{1}|^{l(1)} is a bounded function, making a change of variable,
and lemma 4.2.2 in [14; p53] imply that \overline{w}_{\alpha}(a)\leqq 2^{l(1)}C|1-\overline{a}b_{2}|^{l(2)}||\phi_{a}(b_{2})-

z||_{\infty}^{l(2)}\leqq C|1-\overline{a}b_{2}|^{l(2)} if l(2)<\alpha+2 . Moreover, let U(1) and U(2) be
neighborhoods of b_{1} and b_{2} in D\cup\partial D such that U(1)\cap U(2)=\phi . Then,
we have that

(w^{-1/(p-1)})_{\alpha}^{-}(a)^{p-1}

=( \int_{U(1)}+\int_{U(2)}+\int_{(U(1)\cup U(2))^{c}})^{p-1}

\leqq 2^{p-1}C(|z-b_{1}|^{-l(1)/(p-1)})_{\alpha}^{-}(a)^{p-1}

+2^{2(p-1)}C(|z-b_{2}|^{-l(2)/(p-1)})_{\alpha}^{-}(a)^{p-1}+2^{2(p-1)}C^{2} .

where C is a constant such that |z-b_{2}|^{-l(2)}\leqq C on U(1) and |z-b_{1}|^{-l(1)}\leqq C

on U(2) . Here, for b in D\cup\partial D and l\geqq 0 the similar calculation above for
\overline{w}_{\alpha} shows that (|z-b|^{-l/(p-1)})_{\alpha}^{-}(a)^{p-1} \leqq|1-\overline{a}b|^{-l}||1-\overline{a}z||_{\infty}^{l}(\int|\phi_{a}(b) -

z|^{-l/(p-1)}dm_{\alpha})^{p-1} . Hence, if \alpha>0 and l/(p-1) <2 , then \int|\phi_{a}(b) -

z|^{-l/(p-1)}dm_{\alpha} \leqq\int_{2D}|z|^{-l/(p-1)}dm<\infty , where 2D=\{2z;z\in D\} . More-
over, if 0>\alpha>-1 and l/\{(1+\alpha)(p-1)\}<2 , then there exists \beta such
that 1<1/(1+\alpha)<\beta<2(p-1)/l . Therefore, H\"older’s inequality implies
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that

\int|\phi_{a}(b)-z|^{-l/(p-1)}dm_{\alpha}

\leqq(\int|\phi_{a}(b)-z|^{-\beta l/(p-1)}dm)^{1/\beta}

\cross(\int(1-|z|^{2})^{\alpha\beta/(\beta-1)}dm)^{(\beta-1)/\beta}<\infty ,

because \beta l/(p-1)<2 and \alpha\beta/(\beta-1)>-1 . Hence, the desired result
follows for b=b_{j} and l=l(j)(j=1,2) . Next, we assert that \in_{R}(\mu, \alpha) –

0 (R -\infty) if l(j)<\alpha+2(j\in\Lambda) , and for any 1 <p<\infty there is
\theta such that ( 1 – p)(1+\alpha)<\theta<0 and \delta_{R}(\mu, \alpha, \theta)arrow 0(R -\infty) if
l(j)<(1+ \alpha)\min\{1,p-1\} (j\in\Lambda) . Let w(z)=|z-b_{1}|^{l(1)}|z-b_{2}|^{l(2)} such
that b_{1} is in D and b_{2} is in \partial D . It is enough to prove that the assertions
are true for such a w . For any 1 <s<\infty , we have that \in_{R}(\mu, \alpha)\leqq

\sup(\int_{D_{R}(a)^{c}}|k_{a}|^{2+\alpha}dm_{\alpha})(w^{-1/(s-1)})_{\alpha}^{-}(a)^{s-1} . Hence, if s is sufficiently large
and l(2)<\alpha+2 , then the above arguments for (A_{p}(\alpha))_{\partial}-condition and
corollary 1.2 in [3; p121] imply that \in_{R}(\mu, \alpha)arrow 0(R --\infty) . Similarly, we
have that

\delta_{R}(\mu, \alpha, \theta)

\leqq 2^{l(1)} sup \{(1-|a|^{2})^{\theta}|1-\overline{a}b_{2}|^{l(2)}||\phi_{a}(b_{2})-z||_{\infty}^{l(2)}

\cross(\int_{D_{R}(0)^{c}}(1-|z|^{2})^{\theta+l(2)}|1-\overline{a}z|^{-\{2+(\theta+\alpha)+(\theta+l(2))}dm)\}

\cross\{(1-|a|^{2})^{-\theta}(w^{-1/(s-1)})_{\alpha}^{-}(a)^{s-1}\} .

Hence, lemma 4.2.2 in [14; p53] and corollary 1.2 in [3; p121] imply that
\delta_{R}(\mu, \alpha, \theta)arrow 0(Rarrow\infty) if \theta+\alpha>-1 and \theta+l(2)<0 . Since 0>-1-\alpha

and l(2)>0 , for any 1<p<\infty , there is \theta such that (1-p)(1+\alpha)<\theta<0

and \delta_{R}(\mu, \alpha, \theta)arrow 0(Rarrow\infty) if l(2)<(1+ \alpha)\min\{1,p-1\} .

Example 3. We will observe that the hypotheses of\in_{R} and \delta_{R} in theorem
2 and theorem 4 are not sharp. We show that there are measures \nu and \mu

such that they satisfy the (\nu, \mu) -Carleson inequality of (q, q) , (\nu, \mu)-Carleson
inequality of (q, p) , w satisfies the (A_{s}) -condition for some 1<s<\infty , and
w satisfies the (A_{p}(0))_{\partial}-condition, but \in_{R}(\mu) and \delta_{R}(\mu) do not converges to
0, where d\mu=wdm . Let w(z)=|1-z|^{l} , d\mu=wdm and d\nu=|1-z|^{k}dm
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such that k>l>0 . For 0<q<p<\infty , we have that ( \int|f|^{q}\nu)^{1/q}\leqq

2^{(k-l)/q}( \int|f|^{q}d\mu)^{1/q}\leqq 2^{(k-l)/q}\mu(D)^{1/q-1/p}(\int|f|^{p}d\mu)^{1/p} for all f in H . Here,
the last inequality follows from H\"older’s inequality. Therefore, \nu and \mu

satisfy the (\nu, \mu)-Carleson inequality of (q, q) and (\nu, \mu) -Carleson inequality
of (q, p) . Moreover, since \hat{\nu}_{r}(a) and \hat{\mu}_{r}(a) are equivalent to |1-a|^{k} and
|1-a|^{l} respectively, \hat{\nu}_{r}(a)/\hat{\mu}_{r}(a) is bounded and \hat{\nu}_{r}/\hat{\mu}_{r} is in L^{t}(\mu) , where
1/t+1/(p/q)=1 . By example 2, w satisfies the (A_{s}) -condition for some
1<s<\infty , but we can prove that \in_{R}(\mu, 0)=1 for all 0<R<\infty if l\geqq 2 .
Suppose that there exists 0<R<\infty such that \in_{R}(\mu, 0)<1 . Then, we have
that \overline{\mu}0(a)\leqq C_{R}\hat{\mu}_{R}(a)\leqq C_{R}|1-a|^{l} for all a in D . Hence, we obtain that
\infty>C_{R}\geqq\overline{\mu}0(a)|1-a|^{-l}=\int|1+z|^{l}|1-az|^{-l}dm for all 0<a<1 . Let D_{+}=

{ z\in D ; Re z\geqq 0}, then C_{R} \geqq\int_{D+}|1+z|^{l}|1-az|^{-l}dm\geqq\int_{D+}|1-az|^{-l}dm .
And, hence we have that \int_{D}|1-az|^{-l}dm\leqq C_{R}+\int_{D+^{c}}|1-az|^{-l}dm\leqq C

for all 0<a<1 . This contradicts lemma 4.2.2 in [14; p53] . Furthermore,
by example 2, w satisfies the (A_{p}(0))_{\partial}-condition if l<2 and l<2(p-1) .
But, let p=2, then we can prove that there is not \theta such that -1 =
(1-p)(1+0)<\theta<0 and \delta_{R}(\mu, 0, \theta) –0 (R -\infty) if 1\leqq l<2 . We
suppose that there is \theta such that -1<\theta<0 and \delta_{R}(\mu, 0, \theta) –0 (Rarrow\infty) .
Since 1\leqq l<2 , example 2 implies that there exists 0<r<\infty such that
\in_{r}(\mu, 0)<1 . Hence, we have that \overline{\mu}0(a)\leqq C_{r}\hat{\mu}_{r}(a)\leqq C_{r}|1-a|^{l} for all
a in D . Therefore, there exists 0<R<\infty such that \infty>\delta_{R}(\mu, 0, \theta)\geqq

C_{R^{-1}} \int_{D_{R}(0)^{c}}|1+z|^{l}(1-|z|^{2})^{\theta}|1-az|^{-(2+l+2\theta)}dm for all 0<a<1 , because
\delta_{R}(\mu, 0, \theta)arrow 0(R --\infty) . Hence, similar arguments imply that

\int_{D}(1-|z|^{2})^{\theta}|1-az|^{-(2+l+2\theta)}dm

\leqq C_{r}\delta_{R}(\mu, 0, \theta)+\int_{D_{R}(0)}(1-|z|^{2})^{\theta}|1-az|^{-(2+l+2\theta)}dm

+ \int_{(D+^{c})\backslash D_{R}(0)}(1-|z|^{2})^{\theta}|1-az|^{-(2+l+2\theta)}dm

\leqq C_{r}(\mu, 0, \theta)+C_{R}\int_{D}(1-|z|^{2})^{\theta}dm\leqq C<\infty

for all 0<a<1 . Therefore, this contradicts lemma 4.2.2 in [14; p53] ,
because \theta+l>0 .
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