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Differential field extensions with no movable
algebraic branches

Keiji NISHIOKA
(Received February 24, 1995; Revised October 5, 1995)

Abstract. Differential field extensions with no movable algebraic branches are defined,
and such a differential field extension is proved to be a Painlev\’e-Umemura extension
provided that it is included in a decomposable extension, which was defined previously
by the author.
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1. Introduction

Let K be an ordinary differential field of characteristic 0 with the dif-
ferentiation D . Let U be a universal extension of K\tau Any differential field
extension of K under consideration is tacitly assumed to be finitely gener-
ated and embedded in U unless particularly mentioned.

For differential field extensions of finite type, namely, finitely generated
in the sense of field extensions, the notion of decomposability is defined
inductively. Finite extensions are decomposable. A differential field exten-
sion R/K with finite transcendence degree is decomposable if there exist
a differential field extension L/K and an intermediate differential field M
between LR and L with tr.deg. M/L=1 such that R and L are free over
K and LR/M is decomposable (cf. [5]).

For differential field extensions of finite type, the notion of Painlev\’e-

Umemura extensions, or briefly, PU-extensions is defined inductively. Finite
extensions are PU. A differential field extension R/K is PU if there exist a
differential field extension L/K and a constant c of LR transcendental over
L such that R and L are free over K and LR/L(c) is PU (cf. [7]).

Our objective is to show some type of differential subfield of a decom-
posable differential field extension of K turns out to be a PU-extension.
Such an attempt was done in [9] so as to afford the second proof of the
irreducibility for Painlev\’e’s first transcendent. Related topics will be seen
abundantly in [8]. To do that we need some notions.
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In what follows the field of formal Laurent series U((t)) with coefficients
from U and indeterminate t will be regarded as a differential one by

D \sum_{i}a_{i}t^{i}=\sum_{i}D(a_{i})t^{i}+\sum_{i}ia_{i}t^{i-1}
.

Note that the field of constants of U((t)) is a field isomorphic to U since
any of its constants would be described as

\sum_{i=0}^{\infty}a_{i}t^{i} . a_{i}=(-1)^{i} \frac{D^{i}a_{0}}{i!} .

The verification will be straightforward.
A differential isomorphism f of a differential field extension R/K to a

finite extension of U((t)) is called a fifinite branch if f(K)\subset U and U remains
to be universal over f(K) . A finite branch f is said to be nontrivial unless
U includes properly f(R) , and regular if f(R)\subset U((t)) (here poles are not
counted in singularities).

For example let us consider the following first equation of Painlev\’e

y’=6y+x2 , ’=D, x’=1

defined over the rational function field K of x . Let y be a general solution
of it and R=K\langle y\rangle . We easily obtain a finite branch of R/K at which y
has a pole.

y=t^{-2}- \frac{x}{10}t^{2}-\frac{1}{15}t^{3}+c_{4}t^{4}+c_{5}t^{5}+ \cdot .

Here c_{4} can take an arbirary element in U , other c’s belong to the differential
field K\langle c_{4}\rangle . To see that this expression indeed offers a finite branch, the fact
that R/K has no intermediate differential field with transcendence degree
1 over K should be noticed.

A differential field extension R/K is said to have no movable algebraic
branches if every its finite branch is regular and each finite branch of an
arbitrary differential field extension L/K can be extended to a finite branch
of LR/K .

It is readily seen that if K^{a}R/K^{a} has no movable algebraic branches, K^{a}

being the algebraic closure of K in U , then R/K has no movable algebraic
branches as well.

After Picard, in Ch.16 of [2] Forsyth called algebraic differential equa-
tions “sub-uniform if they satisfy the conditions that no parametric point is
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algebraic critical point, and that the assignment of initial arbitrary values
determines an integral function uniform in the vicinity of the initial point.”
Our definition does not require the latter condition, but clarifying the mean-
ing of parametric points, which is here interpreted as specific uniformization
t with t’=1 of differential field extension. Given a general solution of some
algebraic differential equation of the shape

y= \sum_{i=p}^{\infty}a_{i}(x-c)^{i/h} . D=d/dx

where the a_{i} are constants, h is a natural number, and c is an arbitrary
constant, interpreting the a_{i} as the elements of U((t^{1/h})) with t=x-c we
have

a_{i}= \sum_{j=0}^{\infty}a_{ij}t^{j/h}., a_{ij}=0 if j\not\equiv 0 mod h ,

and hence

y= \sum_{i=p}^{\infty}(\sum_{j+k=i}a_{jk})t^{i/h}

This is an intuitive ground on which our definition stands.
Let us recall the notion of rational dependence on arbitrary constants.

A differential field extension R/K is said to depend rationally on arbitrary
constants if there exists a differential field extension L/K such that R and
L are free over K and LR/L is generated by constants. By the definition
it readily seen that if K^{a}R/K^{a} depends rationally on arbitrary constants,
then so does R/K.

Theorem 1 If R/K is a differential fifield extension depending rationally
on arbitrary constants, then R/K has no movable algebraic branches.

As is well known, in the case where a differential field extension R/K
is an algebraic function field of one variable, R/K depends rationally on
arbitrary constants if and only if R/K has no movable singularities (cf.
[4] ) . The latter means that every valuation ring of R/K is a differential
K-algebra.

Remark that K^{a}R/K^{a} has no movable singularities, then so does R/K .
In fact every valuation ring O of R/K has an extension O’ to K^{a}R/K^{a} with
O’\cap R=O , hence it is a differential K-algebra.
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Theorem 2 Suppose that a differential fifield extension R/K is an alge-
braic function fifield of one variable. Then the following are equivalent.

1) R/K has no movable singularity.
2) Every fifinite branch of R/K is regular.
3) R/K has no movable algebraic branches.
4) R/K depends rationally on arbitrary constants.

The following is an analogue of a classical result of [10] (see also [2]).

Theorem 3 Let K be algebraically closed, S/K a differential fifield exten-
sion which is an algebraic function fifield of one variable and R a differential
fifield with R=S\langle y\rangle , Dy/y\in S. Then R/K has no movable algebraic
branches if and only if R/K satisfifies the following two conditions:

1) S/K has no movable algebraic branches;
2) for any prime divisor P of S with v_{P}(Dt_{P})=0 , the differential

Dydt_{P}/y has order at least-1 and the residue in rational intergers, where
t_{P} indicates a uniformizing parameter and v_{P} the order function at P .

Here is a main theorem.

Theorem 4 Let R/K have no movable algebraic branches and be included
in a decomposable differential fifield extension of K Then R/K is a PU-
extension

2. Basic facts

Differential field extensions with no movable algebraic branches possess
some simple properties similar to those depending rationally on arbitrary
constants.

Proposition 1 Let R/K have no movable algebraic branches and S be a

differential subfifield of R including K Then S/K and R/S have no movable
algebraic branches.

Proof. We shall prove that S/K has no movable algebraic branches.
We may assume that K is algebraically closed in R. Any finite branch
of S/K is readily seen to be regular because by the definition it has an
extension to a finite branch of R/K , being regular. Let L/K be a differential
field extension, and f a finite branch of L/K There is a finite branch
of LR extending f , whose restriction to LS also extends f . It is more
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straightforward from the definition to show R/S has no movable algebraic
branches. \square

Proposition 2 Let R/K and S/K have no movable algebraic branches.
Then RS/K is no movable algebraic branches.

Proof. Any finite branch of RS/K is regular because its restrictions to
R and S are regular. Now let L/K be a differential field extension, and f
be a finite branch of L/K . It can be extended to LR/K , and further to
LRS/K. This proves the proposition. \square

Proposition 3 If a differential fifield extension R/K has no movable al-
gebraic branches, then LR/L has no movable algebraic branches for any
differential fifield extension L/K1

Proof. Any finite branch of LR/L is regular because its restriction to
R/K is regular. Now let f be a finite branch of a differential field extension
M/L. Regarding f as that of M/K, we have a finite branch g of MR/K
extending f . which satisfies g(L)=f(L)\subset U . \square

Lemma 1 Let F be a differential subfifield of U over which U remains
universal and let y be an element of a fifinite extension U((t^{1/n})) , n being a
positive integer, of U((t)) that is differentially algebraic over F Then the
differential fifield generated by the coefficients of y over F is fifinitely generated
over F

Proof. Let us be in the case where y is in U((t)) . Then all the coefficients
of sufficiently higher terms are determined recursively, by the same method
as in [H]. It therein must be noticed that the derivative of each series at
t=0 takes value expressed, in our case, by a linear differential polynomial
of its coefficients. In the case of y\not\in U((t)) , consider the conjugates of y over
U((t)) , which also are differentially algebraic over F_{\sim} Thus y is algebraic
over L((t)) , L being a differential field extension of F . The coefficients of y

are all in a finite extension of L. \square

Lemma 2 Let f be a fifinite branch of a differential fifield extension R/K .
Let L/K be a differential fifield extension from which R is free over K. Then

f can be extended to a fifinite branch of LR/L . If f is regular, then the
extension of f is regular.

Proof. We may assume that K is algebraically closed in U . Let M be the
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differential field generated by the coefficients of all elements of f(R) over
f(K) . By Lemma 1, it is finitely generated. It is known from the universal-
ity of U that there is a differential isomorphism of L into U extending f|_{K} ,
say the same f . The differential field extension \langle M\otimes_{f(K)}f(L)\rangle/f(K) , the
quotient field of M\otimes_{f(K)}f(L) , being finitely generated, it is regarded as a
differential subfield of U . This enables us to extend f to LR. \square

Proposition 4 Let R/K and L/K be two differential fifield extensions such
that L and R are free over K and LR/L has no movable algebraic branches.
Then R/K has no movable algebraic branches.

Proof. We may assume that K is algebraically closed in U , because K^{a}L

and K^{a}R are still free over K^{a} and K^{a}LR/K^{a}L has no movable algebraic
branches. A finite branch of R/K is regular since by Lemma 2 it has an
extension g to LR/L, which is regular by assumption. Now let f be a finite
branch of a differential field extension M/K . We may assume that L and
MR are linearly disjoint over K , if necessary, taking an isomorphic one
to L . Then LR/L satisfies the assumption of the proposition, and LM is
regarded as \langle L\otimes_{K}M\rangle . Hence we can extend f to LM/L , and furthermore
to LMR/L because LR/L has no movable algebraic branches, completing
the proof. \square

3. Proofs of Theorems 1 and 2

We first give a proof of Theorem 2. The fact that 4) is equivalent to 1)
is known.

1)\Leftrightarrow 2) : Suppose that R/K has no movable singularity. Then any
valuation ring of R over K is stable under D . If f is a finite branch of R/K
there associates a valuation ring O of R/K with it. Hence O is stable under
D . This shows f to be regular. Suppose 2). If O is a valuation ring of R/K,
R is embedded into the field of formal Laurent series in a prime element u
with the coefficients algebraic from K^{a} , K^{a}((u)) , where the differentiation
D is continuous with respect to the topology associated with the valuation
ring. (See, for example, p.4 in [4].) Let lJ denote the discrete valuation
associated with O , and p=\nu(Du) . If p is non-negative, O turns out to
be a differential algebra. Suppose p<0 . Then, due to p.95 in [4], we
may assume Du=\gamma u^{p} , \gamma\neq 0 . Furthermore we may take a prime element
t\in K^{a}((u)) with Dt^{n}=1 , where n=1-p>1 . In fact, the coefficients a_{i}
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of

u= \sum_{i=1}^{\infty}a_{i}t^{i} . a_{1}\neq 0 ,

are determined by the relation

a_{1}^{n}=-n\gamma ,
\sum_{j_{1}+\cdots+j_{n}=i}a_{j_{1}}

. . a_{j_{n}}=0(i>1) .

By assumption n must be 1, this is absurd.
2)\Leftrightarrow 3) : By definition, 3) implies 2). As pointed out in the introduc-

tion, we may assume that K is algebraically closed in U . Suppose 2) and let
f be a finite branch of a differential field extension L/K, f : Larrow U((t^{1/n})) .
Suppose L and R are free, and hence linearly disjoint over K There is a dif-
ferential isomorphism g of LR to U which extends f|_{K} . Then g(L) and g(R)
are linearly disjoint over g(K)=f(K) . Let M be the differential field gener-
ated by the coefficients of the elements of f(L) over f(K) . Then there exists
a differential isomorphism of R\otimes_{K}L to g(R)\otimes_{g(K)}(M((t^{1/n})))\subset U((t^{1/n})) ,
which gives an extension of f to LR. If LR is algebraic over L , there is a
finite branch of LR extending f . This completes the proof.

Proof of Theorem 1. Let R/K be a differential field depending rationally
on arbitrary constants. There is a differential field extension L/K such that
L and R are free over K and LR=LC_{LR} , C_{LR} the field of constants, holds.
If c is a constant the differential field extension L(c)/L has no movable
algebraic branches by Theorem 2. By Proposition 2, LR/L is seen to have
no movable algebraic branches. By Proposition 4, R/K itself has no movable
algebraic branches. \square

4. Proof of Theorem 3

Theorem 3 can be proved readily from the following fact concerning
exponentials.

Proposition 5 Let S/K be no movable algebraic branches and y be an
element satisfying Dy/y\in S . Then, in order that S(y)/K be no movable
algebraic branches, it is necessary and sufficient that for every regular fifinite
branch f of S/K, Dy/y in U((t))dt is of at least-1 order in t , having the
residue in rational integers.
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Proof. Suppose that S(y)/K is no movable algebraic branches. Let g be
an extension of f to S(y)/K which is regular. Via g , S(y) is regarded as a
subset of U((t)) . We then have the expression

y= \sum_{i=p}^{\infty}a_{i}t^{i} .

Taking the logarithmic derivative of y , we get our assertion.
Let us show the sufficient part. We first show that S(y)/K has no

movable algebraic branches. Let g be a finite branch of S(y)/K , g:S(y) –

U((t^{1/n})) . Let f denote the restriction of g to S . If f is trivial, since
S(y)/S is no movable algebraic branches, g is regular. Next assume that f
is non-trivial. This time, it being regular, we have

\frac{Dy}{y}=\sum_{i=-1}^{\infty}a_{i}t^{i} ,

with a_{-1} an integer. The right member describes the logarithmic derivative
of some element z of U((t)) . As y/z is a constant of U((t^{1/n})) , hence of
U((t)) , y is contained in U((t)) . This shows that g is regular. We next
show that for any finite branch f of a differential field extension L/K it
has an extension to LS(y)/K . By assumption it has an extension g to
LS/K . We think of LS as a differential subfield of U((t^{1/n})) . In the case
where y is algebraic over LS we are done. If y is transcendental over LS,
solving the equation Dy/y\in S\subset U((t)) , using the assumption, we may
have y\in U((t)) . This completes the proof. \square

For the primitives a like fact holds true: Let S/K have no movable alge-
braic branches and y be an element satisfying Dy\in S . Then, in order that
S(y)/K have no movable algebraic branches, it is necessary and sufficient
that for every regular finite branch f of S/K . the principal part of Dy has a
primitive in U((t)) . The proof goes by the same argument as in the above.

Using these we have an example from Weierstrass’ form of elliptic func-
tions. In fact, let \sigma denote the sigma function of Weierstrass

\wp^{\prime 2}=4\wp^{3}-g_{2}\wp-g_{3}(g_{2}, g_{3}\in C, 27g_{2}-s8g_{3}^{2}\neq 0) , (\sigma’/\sigma)’=-\wp ,

where C denotes the complex number field, and let R=C\langle\sigma\rangle . Then R/C
has no movable algebraic branches.
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5. PU-extensions

To prove Theorem 4 we exploit some facts from [7]. We shall first
verify that the definition of PU-extensions mentioned in the introduction
agrees with that in [7]. The latter is this: a differential field extension
R/K is a PU-extension iff there exists a finite chain of differential field
extensions of K:K=R_{0}\subset R_{1}\subset , . \subset R_{m} such that R_{m}=R and R_{i+1}/R_{i}

depends rationally on arbitrary constants. Let R/K be a PU-extension
in this sense. Then it includes a differential field extension S/K which
depends rationally on arbitrary constants with tr.deg. S/K\geq 1 , according
to the Theorem therein. Using Proposition 1 in [7], we have a differential
field extension L/K free from R over K and LS=LC_{LS} , which works as
the one appearing in the present definition. Conversely if R/K is a PU-
extension in the present sense, then there exist a differential field extension
L/K and an intermediate differential field M between LR and L such that
L and R are free over K , tr.deg. M/L=1 , M=LC_{M} . By Proposition 3 in
[7], there is a differential field extension S/K included in R which depends
rationally on arbitrary constants. Since R/S is PU in the present sense, by
induction on the transcendence degree, it is found that R/K is PU in the
old sense.

Proposition 6 Let R/K have no movable algebraic branches and Sa
fifinite extension of R. Suppose there is a differential fifield extension F/K
included in S with transcendence degree 1 over K. Then F/K depends
algebraically on arbitrary constants, that is, F\cap R/K depends rationally on
arbitrary constants with [F : F\cap R]<\infty . (cf. [6].)

Proof. The proof goes on by induction on the transcendence degree of
S over K . If tr.deg.S/K=1 , then S/K itself depends algebraically on
arbitrary constants by Theorem 2. Assume tr.deg.S/K>1 and the prop0-

sition holds for the lower transcendence degree. We may assume that S/R
is normal and let G be the Galois group. If there is an element g\in G such
that F and gF are free over K , then RgF/gF has no movable algebraic
branches, having the lower transcendence degree by 1. By the induction
hypothesis FgF/gF and therefore F/K depends algebraically on arbitrary
constants. Suppose that F and gF is not free over K for every element g of
G . Without loss of generality we may assume that F is algebraically closed
in S . In this case, F is stable under the action of G , and [F:F\cap R]<\infty .
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It is seen that F\cap R/K has no movable algebraic branches. \square

Proof of Theorem 4. We may limit ourselves to the case where K is al-
gebraically closed. The proof proceeds by induction on the transcendence
degrees of decomposable differential field extensions. Let S/K be a decom-
posable differential field extension including R , and n=tr.deg. S/K. If
n=0 then R is the same as K , there is nothing to prove. Assume n>0 .
Let L/K denote the differential field extension and an intermediate differ-
ential field M between LS and L be such that L and S are free over K ,
tr.deg. M/L=1 and LS/M is decomposable. Then MR/M has no movable
algebraic branches, by the induction hypothesis, MR/M is a PU-extension.
If M and LR are free over L then LR/L is PU, hence so is R/K\tau If this
is not the case, M\cap LR/L depends rationally on arbitrary constants with
[M : M\cap LR]<\infty according to Proposition 6. Since L and R are free over
K , R\cap M/K turns out a differential field extension with no movable alge-
braic branches and tr.deg. R\cap M/K=1 . Considering the differential field
extension S/R\cap M , by the induction hypothesis, we complete the proof.

\square
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