Positive values of inhomogeneous indefinite ternary quadratic forms of type $(2,1)$

Madhu Raka and Urmila Rani ${ }^{1}$
(Received December 8, 1993; Revised December 7, 1995)

Abstract

Let $\Gamma_{2,1}^{(k)}$ denote the $k^{\text {th }}$ successive inhomogeneous minima for positive values of real indefinite ternary quadratic forms of type (2,1). Earlier the first four minima for the class of zero forms were obtained. Here it is proved that for all the forms, whether zero or non zero, $\Gamma_{2,1}^{(2)}=8 / 3$. All the critical forms have also been obtained.

Key words: inhomogeneous minimum, quadratic forms, lattices, admissible, continued fractions.

1. Introduction

Let $Q\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a real indefinite quadratic form in n variables of determinant $D \neq 0$ and of type ($r, n-r$). Let $\Gamma_{r, n-r}$ denote the infimum of all numbers $\Gamma>0$ such that for any real numbers $c_{1}, c_{2}, \ldots, c_{n}$ there exist integers $x_{1}, x_{2}, \ldots, x_{n}$ satisfying

$$
\begin{equation*}
0<Q\left(x_{1}+c_{1}, x_{2}+c_{2}, \ldots, x_{n}+c_{n}\right) \leq(\Gamma|D|)^{1 / n} . \tag{1.1}
\end{equation*}
$$

The values of $\Gamma_{r, n-r}$ are known for various n. See for reference Aggarwal and Gupta [1]. Let $\Gamma_{r, n-r}^{(k)}$ denote the $k^{\text {th }}$ successive inhomogeneous minimum for positive values of indefinite quadratic forms of type $(r, n-r)$. Bambah et al [2] proved that $\Gamma_{2,3}^{(2)}=16$. Dumir and Sehmi [5, 6] obtained $\Gamma_{r+1, r}^{(2)}$ for all $r \geq 2$. For incommensurable forms (forms that are not multiple of rational forms) (1.1) is true with arbitrary small constant by a result of Watson [13] and Oppenheim's conjecture proved by Margulis [10]. Rational forms in $n \geq 5$ variables are zero forms by Meyer's Theorem. Ternary and quaternary forms are not necessarily zero forms. So Dumir and Sehmi [5, 6] just needed to consider zero forms. Raka [9] obtained the first four minima for ternary forms of the type $(2,1)$ for the class of zero forms. For zero forms there is a standard method using a result of Macbeath [8].

[^0]In this paper we prove $\Gamma_{2,1}^{(2)}=8 / 3$ for all forms. We apply a different method using the work of Barnes and Swinnerton Dyer, which contained a mistake. For a complete and elaborate proof of their work see Grover and Raka [7]. For ternary and quaternary forms our method is more powerful than the ones used earlier. In another paper [12] we will prove that $\Gamma_{3,1}^{(2)}=4$, giving a correct proof of a result of R. Rieger.

Definition We say that $(x, y, z) \equiv\left(x_{0}, y_{0}, z_{0}\right)(\bmod 1)$ if and only if $x-x_{0}, y-y_{0}, z-z_{0}$ are integers.

Thus the statement that given any real numbers x_{0}, y_{0}, z_{0} there exist integers x, y, z satisfying

$$
\alpha<Q\left(x+x_{0}, y+y_{0}, z+z_{0}\right)<\beta
$$

is equivalent to saying that there exist $(x, y, z) \equiv\left(x_{0}, y_{0}, z_{0}\right)(\bmod 1)$ satisfying

$$
\alpha<Q(x, y, z)<\beta
$$

Here we prove:
Theorem 1 Let $Q(x, y, z)$ be a real indefinite quadratic form of type (2,1) and determinant $D<0$. Then for any real numbers x_{0}, y_{0}, z_{0}, there exist $(x, y, z) \equiv\left(x_{0}, y_{0}, z_{0}\right)(\bmod 1)$ such that

$$
\begin{equation*}
0<Q(x, y, z)<(8|D| / 3)^{1 / 3} \tag{1.2}
\end{equation*}
$$

except for the forms $Q \sim \rho Q_{i}, i=1,2,3, \rho>0$; further for $Q_{i},(1.2)$ is solvable unless $\left(x_{0}, y_{0}, z_{0}\right) \equiv\left(x_{0}^{(i)}, y_{0}^{(i)}, z_{0}^{(i)}\right)(\bmod 1)$ where Q_{i} and $\left(x_{0}^{(i)}, y_{0}^{(i)}, z_{0}^{(i)}\right)$ are given in the following table:

i	Q_{i}	$\left(x_{0}^{(i)}, y_{0}^{(i)}, z_{0}^{(i)}\right)$	$\Gamma\left(Q_{i}\right)$
1	$x y+z^{2}$	$(0,0,0)$	4
2	$\left(x+\frac{1}{2} y\right) y+z^{2}$	$\left(\frac{1}{2}, 0,0\right)$	4
3	$2 x y+y^{2}+y z+3 z^{2}$	$\left(\frac{1}{2}, 0,0\right)$	$8 / 3$

where $\Gamma\left(Q_{i}\right)$ is the positive inhomogeneous minimum of Q_{i}.
Note that $Q_{i}, i=1,2,3$ are all inequivalent and are zero forms.

2. Some Lemmas and general Reduction

Lemma 1 Let $Q(x, y, z)$ be as in Theorem 1. Then there exist integers x, y, z such that

$$
\begin{equation*}
0<Q(x, y, z) \leq(9|D| / 4)^{1 / 3} \tag{2.1}
\end{equation*}
$$

except for the form $Q_{\sim} \rho Q_{1}=\rho\left(x y+z^{2}\right)$.
This is a result of Oppenheim [11].
Lemma 2 Let α, β, γ be real numbers with $\gamma>1$. Let p be an integer such that $p<\gamma \leq p+1$. Then given any real number x_{0}, there exist $x \equiv x_{0}$ $(\bmod 1)$ such that

$$
\begin{equation*}
0<(x+\alpha)^{2}+\beta<\gamma \tag{2.2}
\end{equation*}
$$

provided that

$$
-p^{2} / 4<\beta<\gamma-1 / 4
$$

This follows from Lemma 6 of Dumir [4].
Lemma 3 Let $\varphi(y, z)$ be an indefinite binary quadratic form of discriminant Δ. Let ν be any positive real number. Then for any real number y_{0}, z_{0}, there exist $(y, z) \equiv\left(y_{0}, z_{0}\right)(\bmod 1)$ satisfying

$$
-\Delta / 4 \nu<\varphi(y, z)<\nu \Delta / 4
$$

This is Theorem 1 of Blaney [3].
For a matrix V, we use the same symbol V to denote the transformation defined by the matrix V.

Lemma 4 Let U be a 2×2 unimodular matrix of infinite order and \mathcal{R} be a bounded set in \mathbb{R}^{2}. Let \mathcal{R} have the property

$$
U(\mathcal{R}) \cap(\mathcal{R}+A) \neq \emptyset \quad \text { for some } \quad A \in \mathbb{Z}^{2}
$$

but

$$
U(\mathcal{R}) \cap(\mathcal{R}+\beta)=\emptyset \quad \forall B \in \mathbb{Z}^{2}, \quad B \neq A
$$

If P is a point such that for each integer n positive or negative, $U^{n}(P)$ is congruent $(\bmod 1)$ to a point of \mathcal{R}, then P is the unique fixed point of \mathcal{R} given by $U(P)-A=P$.

This is a result of Cassels stated as Lemma 18 in Raka [9].
If Q is an incommensurable form in $n \geq 3$ variables, it takes arbitrary small values by a result of Margulis [10]. For such a form the inequality (1.1) is true for arbitrary small Γ by Watson [13]. So we can assume that Q is a multiple of a rational form and hence a multiple of an integral form. Dividing (1.2) throughout by that multiple, if necessary, we can suppose that Q is an integral form.

Let

$$
\begin{align*}
M=M(Q)= & \inf Q(x, y, z) \tag{2.3}\\
& x, y, z \in \mathbb{Z} \\
& Q(x, y, z)>0
\end{align*}
$$

By Lemma 1,

$$
0<M \leq(9|D| / 4)^{1 / 3}
$$

except for the form $Q \sim \rho Q_{1}, \rho>0$.
Lemma 5 If $Q \sim \rho Q_{1}=\rho\left(x^{2}+y z\right), \rho>0$ then (1.2) is solvable in $(x, y, z) \equiv\left(x_{0}, y_{0}, z_{0}\right)(\bmod 1)$ except when $\left(x_{0}, y_{0}, z_{0}\right) \equiv(0,0,0)(\bmod 1)$.

Proof. Because of homogeneity we can suppose that $\rho=1$. Let $d=$ $(8|D| / 3)^{1 / 3}=(2 / 3)^{1 / 3}$.

If y_{0} or z_{0} is not congruent to $0(\bmod 1)$, say without loss of generality $y_{0} \not \equiv 0(\bmod 1)$, choose $y \equiv y_{0}(\bmod 1)$ such that $0<|y| \leq 1 / 2, x \equiv x_{0}$ $(\bmod 1)$ arbitrarily and $z \equiv z_{0}(\bmod 1)$ such that:

$$
0<x^{2}+y z \leq|y| \leq 1 / 2<d
$$

Therefore let $\left(y_{0}, z_{0}\right) \equiv(0,0)(\bmod 1)$. Take $y=z=0$, and choose $x \equiv x_{0}$ $(\bmod 1)$ such that $0 \leq|x| \leq 1 / 2$. Then

$$
0 \leq x^{2}+y z \leq 1 / 4<d
$$

Thus (1.2) is solvable unless $x_{0} \equiv 0(\bmod 1)$.
Let now $Q \nsim \rho Q_{1}$. Since the set $\{Q(x, y, z): x, y, z \in \mathbb{Z}, Q(x, y, z)>$ $0\}$ consists of positive integers, the infimum M is attained at some point $\left(x_{1}, y_{1}, z_{1}\right)$ with $\operatorname{gcd}\left(x_{1}, y_{1}, z_{1}\right)=1$. i.e.

$$
Q\left(x_{1}, y_{1}, z_{1}\right)=M \leq(9|D| / 4)^{1 / 3}
$$

Applying a suitable unimodular transformation we can suppose that

$$
Q(1,0,0)=M
$$

and write

$$
\begin{equation*}
\left.Q(x, y, z)=M\{x+h y+g z)^{2}+\varphi(y, z)\right\} \tag{2.4}
\end{equation*}
$$

where $|h| \leq 1 / 2,|g| \leq 1 / 2$ and $\varphi(y, z)$ is a rational indefinite binary quadratic form of discriminant

$$
\Delta^{2}=4|D| M^{-3} \geq 16 / 9 . \quad(\text { using }(2.4))
$$

Also by definition of M, we have for all integers x, y, z either $Q(x, y, z) \leq 0$ or $Q(x, y, z) \geq M$.

Because of homogeneity, it suffices to prove.
Theorem A Let $Q(x, y, z)=(x+h y+g z)^{2}+\varphi(y, z)$, where $\varphi(y, z)$ is an indefinite binary quadratic form of discriminant

$$
\begin{equation*}
\Delta^{2}=4|D| \geq 16 / 9 \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
-1 / 2<h \leq 1 / 2, \quad-1 / 2<g \leq 1 / 2 . \tag{2.6}
\end{equation*}
$$

Suppose for integers x, y, z we have

$$
\begin{equation*}
\text { either } Q(x, y, z) \leq 0 \text { or } Q(x, y, z) \geq 1 \text {. } \tag{2.7}
\end{equation*}
$$

Let

$$
\begin{equation*}
d=(8|D| / 3)^{1 / 3} . \tag{2.8}
\end{equation*}
$$

Then either there exist $(x, y, z) \equiv\left(x_{0}, y_{0}, z_{0}\right)(\bmod 1)$ satisfying

$$
\begin{equation*}
0<Q(x, y, z)<d \tag{2.9}
\end{equation*}
$$

or $Q_{\sim} \rho Q_{i}$. Further for Q_{i}, (2.9) is solvable unless $\left(x_{0}, y_{0}, z_{0}\right) \equiv$ $\left(x_{0}^{(i)}, y_{0}^{(i)}, z_{0}^{(i)}\right)(\bmod 1), i=1,2,3$, where Q_{i} and $\left(x_{0}^{(i)}, y_{0}^{(i)}, z_{0}^{(i)}\right)$ are as listed in Theorem 1.

Lemma 6 Let $Q(x, y, z)$ be as defined in Theorem A. Then for integers y, z we have either

$$
\begin{equation*}
\varphi(y, z)=0 \text { or } \varphi(y, z) \leq-1 / 4 \text { or } \varphi(y, z) \geq 3 / 4 . \tag{2.10}
\end{equation*}
$$

The proof is similar to that of Lemma 8 of Dumir [4].
From (2.5) and (2.8) we get $d \geq(32 / 27)^{1 / 3}>1$. Let n be an integer (≥ 1) such that $n<d \leq n+1$. If there exist $(y, z) \equiv\left(y_{0}, z_{0}\right)(\bmod 1)$, such that

$$
\begin{equation*}
-n^{2} / 4<\varphi(y, z)<d-1 / 4 \tag{2.11}
\end{equation*}
$$

then by Lemma 2, there exists $x \equiv x_{0}(\bmod 1)$ satisfying (2.9).
Lemma 7 If $n \geq 2$, then (2.11) and hence (2.9) is solvable in $(x, y, z) \equiv$ $\left(x_{0}, y_{0}, z_{0}\right)(\bmod 1)$.

Proof. Apply Lemma 3, with $\nu=\Delta / n^{2}$ to get

$$
-n^{2} / 4=-\Delta / 4 \nu<\varphi(y, z)<\nu \Delta / 4=\Delta^{2} / 4 n^{2}
$$

Then (2.11) will be satisfied if

$$
\Delta^{2} /(4 d-1)=3 d^{3} / 2(4 d-1)<n^{2}
$$

This is easily seen to be true for $d \leq n+1$ and $n \geq 2$.
Lemma 8 Let $n=1$, so that $(32 / 27)^{1 / 3} \leq d \leq 2$. Suppose (2.11) i.e.

$$
-1 / 4<\varphi(y, z)<d-1 / 4
$$

has no solution in $(y, z) \equiv\left(y_{0}, z_{0}\right)(\bmod 1)$, then we have

$$
\varphi \sim \rho \varphi_{4}=\rho\left(y^{2}-2 z^{2}\right), \quad \text { or } \quad \varphi \sim \rho \varphi_{5}=\rho\left(3 y^{2}+11 z^{2}+18 y z\right)
$$

$\rho>0$, and $\left(y_{0}, z_{0}\right) \equiv(1 / 2,1 / 2)(\bmod 1)$.

3. Proof of Lemma 8

Let \mathcal{L} be the inhomogeneous lattice associated with $4 \varphi(y, z)$ with determinant $\Delta(\mathcal{L})=4 \Delta$. i.e. \mathcal{L} is given by the set of points

$$
\xi=\alpha y+\beta z, \quad \eta=\gamma y+\delta z
$$

where (y, z) run through all numbers congruent to $\left(y_{0}, z_{0}\right)(\bmod 1)$, and $4 \varphi(y, z)=(\alpha y+\beta z)(\gamma y+\delta z)$. We say that \mathcal{L} is admissible for the region $R_{m}:-1 \leq \xi \eta \leq m$, if it has no point in the interior of R_{m}. To prove Lemma 8, it is enough to prove that if \mathcal{L} is admissible for the region R_{m} with $m=4 d-1$, then \mathcal{L} must correspond to the special forms φ_{4} and φ_{5}.

Barnes and Swinnerton Dyer have developed a general theory to obtain the critical determinant of R_{m} i.e. the lower bound of $\Delta(\mathcal{L})$ over all R_{m}-admissible lattices \mathcal{L}. For this see Grover and Raka [7]. For any inhomogeneous lattice \mathcal{L} of determinant $\Delta(\mathcal{L})$ with no points on the co-ordinate axis, there corresponds a chain of divided cells and a sequence of non-zero integral pairs $\left(h_{n}, k_{n}\right)$ for $-\infty<n<\infty ; h_{n}$ and k_{n} having the same sign. The condition that the chain does not break off is simply that \mathcal{L} has no lattice vector parallel to a co-ordinate axis. Set $a_{n+1}=h_{n}+k_{n}$ for all n, so that $\left|a_{n+1}\right| \geq 2$. If $h_{n}=k_{n}>0$ for each n, the lattice \mathcal{L} is called a symmetrical lattice, otherwise nonsymmetrical. For a symmetrical lattice, it follows that $a_{n} \geq 4$ for arbitrarily large values of $|n|$ for n of each sign.

Let $\left[b_{1}, b_{2}, b_{3}, \ldots\right]$ denote the continued fraction

$$
b_{1}-\frac{1}{b_{2}-\frac{1}{b_{3}-\cdots}}
$$

where b_{i} 's are integral and $\left|b_{i}\right| \geq 2$.
We need the following Lemmas $9-12$ due to Barnes and Swinnerton Dyer stated as Lemmas $1,2,3 \& 5$ in Grover and Raka [7].

Lemma 9 Let $b_{i}>0$ for all i and $b_{i} \geq 4$ for some arbitrary large i, then

$$
\begin{equation*}
\left[b_{1}, b_{2}, \ldots, b_{n}, b_{n+1}, \cdots\right]<\left[b_{1}, b_{2}, \ldots, b_{n}, b_{n+1}^{\prime}, \ldots\right] \tag{3.1}
\end{equation*}
$$

provided that $b_{n+1}<b_{n+1}^{\prime}$. In particular

$$
\begin{equation*}
\left[b_{1}, b_{2}, \ldots, b_{n}-1\right]<\left[b_{1}, b_{2}, \ldots, b_{n}, \ldots\right]<\left[b_{1}, b_{2}, \ldots, b_{n}\right] \tag{3.2}
\end{equation*}
$$

Lemma 10 Let $\left\{a_{n}\right\}_{-\infty}^{\infty}$ be a sequence associated to a symmetrical lattice \mathcal{L}. Let

$$
\begin{equation*}
\theta_{n}=\left[a_{n}, a_{n-1}, a_{n-2}, \ldots\right], \quad \phi_{n}=\left[a_{n+1}, a_{n+2}, \ldots\right] \tag{3.3}
\end{equation*}
$$

so that $\theta_{n}>1, \phi_{n}>1$ by Lemma 9 above. Then the lattice \mathcal{L} is given by the set of points (ξ, η)

$$
\begin{align*}
& \xi=\alpha_{n}(y-1 / 2)+\beta_{n}(z-1 / 2), \\
& \eta=\gamma_{n}(y-1 / 2)+\delta_{n}(z-1 / 2) \tag{3.4}
\end{align*}
$$

where $\delta_{n} / \gamma_{n}=\phi_{n}$ and $\alpha_{n} / \beta_{n}=\theta_{n}$ and y, z are integers. The quadratic
form associated with \mathcal{L} is given by

$$
\begin{align*}
& \frac{\Delta(\mathcal{L})}{\theta_{n} \phi_{n}-1}\left[\left(\theta_{n} y+z\right)\left(y+\phi_{n} z\right)\right] \\
& \left(y_{0}, z_{0}\right) \equiv(1 / 2,1 / 2) \quad(\bmod 1) \tag{3.5}
\end{align*}
$$

Lemma 11 A symmetrical lattice \mathcal{L} is admissible for R_{m} if and only if the inequalities

$$
\begin{equation*}
\frac{\Delta}{m} \geq \frac{4\left(\theta_{n} \phi_{n}-1\right)}{\left(\theta_{n}+1\right)\left(\phi_{n}+1\right)}=\Delta_{n}^{+} \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta \geq \frac{4\left(\theta_{n} \phi_{n}-1\right)}{\left(\theta_{n}-1\right)\left(\phi_{n}-1\right)}=\Delta_{n}^{-}, \quad \text { hold for all } n \tag{3.7}
\end{equation*}
$$

Lemma 12 If $0<L<2(k+1)$ and for any n

$$
\Delta_{n}^{+} \leq L / k, \quad \Delta_{n}^{-} \leq L
$$

then

$$
\begin{equation*}
\frac{L\left(\theta_{n}-1\right)-4}{L\left(\theta_{n}-1\right)-4 \theta_{n}} \leq \phi_{n} \leq \frac{4+(L / k)\left(\theta_{n}+1\right)}{4 \theta_{n}-(L / k)\left(\theta_{n}+1\right)} \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\theta_{n}-\frac{2(k-1)}{2(k+1)-L}\right| \leq \frac{\sqrt{L^{2}-16 k}}{2(k+1)-L} \tag{3.9}
\end{equation*}
$$

These inequalities also hold if θ_{n} and ϕ_{n} are interchanged.
Lemma 13 Let \mathcal{L} be a non-symmetrical lattice of $\operatorname{det} \Delta(\mathcal{L})$, which is admissible for $R_{m}, 3<m \leq 7$. Then

$$
\begin{equation*}
\Delta(\mathcal{L}) \geq(1.8251)(m+1) \tag{3.10}
\end{equation*}
$$

This follows from Lemma 8 of Grover and Raka [7].
Lemma 14 Let $\left\{a_{n}\right\}_{-\infty}^{\infty}$ be a sequence associated with a symmetrical lattice, where a_{n} 's take value among $2,4,6,8$ or 10 only. Suppose

$$
\begin{align*}
& \Delta_{n}^{-} \leq 8 \sqrt{3}=L \quad(\text { say }) \tag{3.11}\\
& \Delta_{n}^{+} \leq 8 \sqrt{3} / 7=L / k \quad(\text { say }) \text { for all } n \tag{3.12}
\end{align*}
$$

Then the sequence satisfies the following:

$$
\begin{align*}
& \text { if } a_{r} \geq 4 \text { for some } r, \text { then } a_{r+1}=a_{r-1}=2 \tag{3.13}\\
& \text { if } a_{r}=a_{r-1}=2 \text { for some } r, \text { then } a_{r+1} \geq 6 \text { and } a_{r-2} \geq 6 \tag{3.14}
\end{align*}
$$

Proof. Let $a_{r} \geq 4$. Suppose if possible $a_{r+1} \geq 4$, then $\theta_{r}>3, \phi_{r}>3$, Δ_{r}^{+}being an increasing function of θ_{r} and ϕ_{r} gives $\Delta_{r}^{+} \geq 2>L / k$; a contradiction to (3.12). Hence $a_{r+1}=2$. Similarly by symmetry $a_{r-1}=2$.

If $a_{r}=a_{r-1}=2$ for some r, then by (3.1) and (3.13),

$$
\theta_{r}=\left[a_{r}, a_{r-1}, \ldots\right] \leq[2, \stackrel{\times}{2}, 10 \times \sqrt{20}-3 .
$$

(The crosses denote the infinite repetition)
(3.8) gives

$$
\phi_{r} \geq \frac{L\left(\theta_{r}-1\right)-4}{L\left(\theta_{r}-1\right)-4 \theta_{r}}>3.88
$$

which implies that $a_{r+1} \geq 4$. But if $a_{r+1}=4$, then using (3.1) and (3.13)

$$
\begin{aligned}
\phi_{r} & =\left[a_{r+1}, a_{r+2}, \ldots\right] \leq[4, \stackrel{\times}{2}, \stackrel{\times}{10}]=\sqrt{20}-1 . \\
\theta_{r} & =\left[a_{r}, a_{r-1}, \ldots\right] \leq[2, \stackrel{\times}{2}, \stackrel{\times}{10}]=\sqrt{20}-3 .
\end{aligned}
$$

then Δ_{r}^{-}being a decreasing function of θ_{r} and ϕ_{r} we have

$$
\Delta_{r}^{-} \geq \frac{4((\sqrt{20}-1)(\sqrt{20}-3)-1)}{(\sqrt{20}-2)(\sqrt{20}-4)}>14.09>L
$$

a contradiction to (3.11). Therefore we must have $a_{r+1} \geq 6$. Similarly by symmetry $a_{r-2} \geq 6$.

Lemma 15 Let \mathcal{L} be the inhomogeneous lattice of determinant $\Delta(\mathcal{L})=$ 4Δ, associated with $4 \varphi(y, z)$ where (y, z) run over all numbers congruent to $\left(y_{0}, z_{0}\right)(\bmod 1)$ and $\varphi(y, z)$ is as given in Theorem A. Then either \mathcal{L} is not admissible for the region $R_{m}, m=4 d-1$ or \mathcal{L} corresponds to quadratic forms φ_{4} and φ_{5}.
Proof. Since $1<d \leq 2,3<m=4 d-1 \leq 7$.
Case I: $\quad \mathcal{L}$ is non symmetrical. One can easily check here that for $d \leq 2$,

$$
\Delta(\mathcal{L})=4 \Delta=4\left(3 d^{3} / 2\right)^{1 / 2}<(1.8251)(4 d)=(1.8251)(m+1) .
$$

Therefore by Lemma 13, \mathcal{L} is not admissible for R_{m}.
Case II: $\quad \mathcal{L}$ is a symmetrical lattice. Let \mathcal{L} be admissible for R_{m}, then by Lemma 11,

$$
\max \left(m \Delta_{n}^{+}, \Delta_{n}^{-}\right) \leq \Delta(\mathcal{L})=4 \Delta \text { for all } n
$$

Let

$$
\Delta_{n}^{+} \leq \frac{4 \Delta}{m}=\frac{4\left(3 d^{3} / 2\right)^{1 / 2}}{4 d-1} \leq 8 \sqrt{3} / 7=L / k
$$

and

$$
\Delta_{n}^{-} \leq 4 \Delta=4\left(3 d^{3} / 2\right)^{1 / 2} \leq 8 \sqrt{3}=L
$$

Then hypothesis of Lemma 12 is satisfied with $k=7$. Working up to 4 places of decimals we get from (3.9)

$$
\left|\theta_{n}-5.598\right|<4.1726
$$

This gives $1.4<\theta_{n}<9.78$.
Since $\theta_{n}<a_{n}<\theta_{n}+1$, we must have $a_{n}=2,4,6,8$ or 10 . Now by Lemma 14, the sequence $\left\{a_{n}\right\}$ satisfies (3.13) or (3.14). The quadratic form $\varphi(y, z)$ associated with the symmetric lattice \mathcal{L} is given by (from Lemma 10)

$$
\varphi(y, z)=\frac{\Delta}{\theta_{n} \phi_{n}-1}\left[\theta_{n} y^{2}+\phi_{n} z^{2}+\left(\theta_{n} \phi_{n}+1\right) y z\right] .
$$

Subcase (I): If in the sequence $\left\{a_{n}\right\}$, no two 2's are consecutive, then by (3.13) it must be of the form

$$
\ldots 2, a_{-2}, 2, a_{0}, 2, a_{2} \ldots \text { where } a_{2 r} \geq 4 \text { for all } r .
$$

If $a_{2 r} \geq 6$ for some r, then by (3.1)

$$
\begin{aligned}
& \theta_{2 r} \geq[6, \stackrel{\times}{2}, \stackrel{\times}{4}]=4+\sqrt{2} \\
& \phi_{2 r} \geq\left[\begin{array}{r}
\times \times \\
2,4
\end{array}\right]=(2+\sqrt{2}) / 2
\end{aligned}
$$

then

$$
0<\varphi(0,1)=\frac{\Delta \cdot \phi_{2 r}}{\theta_{2 r} \phi_{2 r}-1} \leq \frac{\sqrt{12} \cdot(2+\sqrt{2}) / 2}{(4+\sqrt{2})(2+\sqrt{2}) / 2-1}
$$

$$
=\frac{\sqrt{12}(2+\sqrt{2})}{8+6 \sqrt{2}}<\frac{3}{4}
$$

as

$$
\Delta=\left(\frac{3}{2} d^{3}\right)^{1 / 2} \leq \sqrt{12} \text { for } d \leq 2
$$

This contradicts (2.10).
Therefore $a_{2 r}=4$ for all r. Then the sequence $\left\{a_{n}\right\}$ is $\{\stackrel{\times}{2}, \stackrel{\times}{4}\}$ and the quadratic form associated to it is

$$
\begin{aligned}
& \rho\left(y^{2}+2 z^{2}+4 y z\right) \sim \rho\left(y^{2}-2 z^{2}\right)=\rho \varphi_{4} ; \\
& \left(y_{0}, z_{0}\right) \equiv\left(\frac{1}{2}, \frac{1}{2}\right) \quad(\bmod 1) .
\end{aligned}
$$

Subcase (II): Let two 2's be consecutive in the sequence say $a_{r-1}=a_{r}=2$ for some r. If $a_{r+1} \geq 8$, then $\phi_{r}>7$ and $\theta_{r}>1$ already, so

$$
0<\varphi(1,0)=\frac{\Delta \theta_{r}}{\theta_{r} \phi_{r}-1} \leq \frac{\sqrt{12}}{6}<\frac{3}{4},
$$

a contradiction to (2.10). Therefore we must have $a_{r+1}=6$, by (3.14). Similarly by symmetry $a_{r-2}=6$. Now $a_{r+2}=2$ by (3.13); but if $a_{r+3} \neq 2$, we will have

$$
\begin{aligned}
& \phi_{r}=\left[a_{r+1}, a_{r+2}, a_{r+3}, \ldots\right] \geq[6,2,4, \stackrel{\times}{2}, 2, \stackrel{\times}{6}] \\
&=\frac{221+38 \sqrt{48}}{41+7 \sqrt{48}}>5.4, \\
& \theta_{r}=\left[a_{r}, a_{r-1}, a_{r-2}, \ldots\right] \geq[\stackrel{\times}{2}, 2, \stackrel{\times}{6}]=\frac{9+\sqrt{48}}{11}>1.4,
\end{aligned}
$$

and then

$$
0<\varphi(1,0)=\frac{\Delta \theta_{r}}{\theta_{r} \phi_{r}-1} \leq \frac{\sqrt{12} \cdot(1.4)}{(5.4)(1.4)-1}<3 / 4
$$

a contradiction to (2.10). Therefore we must have $a_{r+3}=2$. But then two consecutive 2 's must be followed by a 6 , and repeating the argument we must have $\left\{a_{n}\right\}=(\stackrel{\times}{2}, 2, \stackrel{\times}{6})$. The quadratic form associated to it is

$$
\varphi(y, z)=\rho\left(3 y^{2}+11 z^{2}+18 y z\right)=\rho \varphi_{5} ;
$$

$$
\left(y_{0}, z_{0}\right) \equiv(1 / 2,1 / 2) \quad(\bmod 1)
$$

where $\rho^{2}=|D| / 48=d^{3} / 128$. If $d<2$, that is if $\rho<1 / 4$, we have

$$
0<\varphi(1,0)=3 \rho<3 / 4
$$

This gives a contradiction to (2.10). Therefore for $\rho \varphi_{5}$ we must have $d=2$. This proves Lemma 15 and hence Lemma 8.

4. The Critical Forms

Lemma 16 If $\varphi=\rho \varphi_{5}=\rho\left(3 y^{2}+11 z^{2}+18 y z\right),\left(y_{0}, z_{0}\right) \equiv\left(\frac{1}{2}, \frac{1}{2}\right)(\bmod 1)$, $d=2$, then (2.9) is solvable unless $Q \sim Q_{3}$ and $\left(x_{0}, y_{0}, z_{0}\right) \sim\left(\frac{1}{2}, 0,0\right)(\bmod 1)$. Proof. Here $\varphi \sim \rho\left(3 y^{2}-16 z^{2}\right),\left(y_{0}, z_{0}\right) \sim\left(0, \frac{1}{2}\right)(\bmod 1)$. Since $\Delta=\sqrt{12}$, we get $\rho=1 / 4$. Let without loss of generality

$$
Q(x, y, z)=(x+h y+g z)^{2}+\frac{1}{4}\left(3 y^{2}-16 z^{2}\right) .
$$

Take $y=0, z=1 / 2$ and choose $x \equiv x_{0}(\bmod 1)$ such that $1 \leq|x+g / 2| \leq$ $3 / 2$, so that

$$
0=1-1 \leq Q(x, y, z) \leq 9 / 4-1<2
$$

Therefore (2.9) is solvable unless

$$
\begin{equation*}
x_{0}+g / 2 \equiv 0 \quad(\bmod 1) \tag{4.1}
\end{equation*}
$$

Similarly taking $y=0, z=-1 / 2,(2.9)$ is solvable unless

$$
\begin{equation*}
x_{0}-g / 2 \equiv 0 \quad(\bmod 1) \tag{4.2}
\end{equation*}
$$

From (4.1), (4.2) and (2.6) we get

$$
\begin{equation*}
g=0 \quad \text { and } \quad x_{0} \equiv 0 \quad(\bmod 1) \tag{4.3}
\end{equation*}
$$

Therefore, if (2.9) is not solvable, we have

$$
Q(x, y, z)=(x+h y)^{2}+\frac{1}{4}\left(3 y^{2}-16 z^{2}\right)
$$

Take $x=1, y=1, z=1 / 2$ and using (2.6) we get

$$
0=\frac{1}{4}-\frac{1}{4}<Q(x, y, z)=(1+h)^{2}-\frac{1}{4} \leq \frac{9}{4}-\frac{1}{4}=2
$$

So (2.9) is solvable unless $h=1 / 2$. Therefore

$$
\begin{aligned}
Q(x, y, z) & =\left(x+\frac{1}{2} y\right)^{2}+\frac{1}{4}\left(3 y^{2}-16 z^{2}\right) \\
& =x^{2}+x y+y^{2}-4 z_{\sim}^{2} 2 x y+y^{2}+y z+3 z^{2}
\end{aligned}
$$

by means of the unimodular transformation

$$
x \longrightarrow-2 x+3 z, \quad y \longrightarrow 2 x+y-z, \quad z \longrightarrow-x+z .
$$

Also then $\left(x_{0}, y_{0}, z_{0}\right) \sim(1 / 2,0,0)(\bmod 1)$.
Lemma 17 If $\varphi=\rho \varphi_{4}=\rho\left(y^{2}-2 z^{2}\right),\left(y_{0}, z_{0}\right) \equiv\left(\frac{1}{2}, \frac{1}{2}\right)(\bmod 1), d \leq 2$ then (2.9) is solvable unless

$$
Q \sim 2 Q_{2},\left(x_{0}, y_{0}, z_{0}\right) \sim\left(\frac{1}{2}, 0,0\right) \quad(\bmod 1) .
$$

Proof. If $\rho<1$, take $y=1 / 2, z=1 / 2$, so that

$$
-\frac{1}{4}<\varphi(y, z)=\rho\left(-\frac{1}{4}\right)<0<d-\frac{1}{4} .
$$

Therefore (2.11) and hence (2.9) has a solution. Let now $\rho=\Delta / \sqrt{8} \geq 1$. This gives $d^{3} \geq 16 / 3$. If (2.9) has no solution, we must have for all integers p, q, r

$$
\left.\begin{array}{ll}
\text { either } & Q\left(p+x_{0}, q+1 / 2, r+1 / 2\right) \geq d \tag{4.4}\\
\text { or } & Q\left(p+x_{0}, q+1 / 2, r+1 / 2\right) \leq 0 .
\end{array}\right\}
$$

Take $q=r=0$ and choose an integer p such that

$$
\begin{equation*}
1 / 2 \leq \alpha=\left|p+x_{0}+h / 2+g / 2\right| \leq 1 . \tag{4.5}
\end{equation*}
$$

Then from (4.4) we must have

$$
\begin{array}{ll}
\text { either } & \alpha^{2} \geq d+\rho / 4 \geq(16 / 3)^{1 / 3}+1 / 4>1.9971 \\
\text { or } & \alpha^{2} \leq \rho / 4=\Delta / 4 \sqrt{8} \leq \sqrt{12} / 4 \sqrt{8}<0.3062
\end{array}
$$

i.e. either $\alpha>1.4131$ or $\alpha<0.5534$. From (4.5) we must have

$$
0.446<p+x_{0}+h / 2+g / 2<0.5534 \quad(\bmod 1)
$$

i.e.

$$
\begin{equation*}
1 / 2-0.0534<x_{0}+h / 2+g / 2<1 / 2+0.534 \quad(\bmod 1) \tag{4.6}
\end{equation*}
$$

Similarly taking $(q, r)=(-1,0)$ and $(0,-1)$, we must have

$$
\begin{array}{ll}
1 / 2-0.0534<x_{0}-h / 2+g / 2<1 / 2+0.0534 & (\bmod 1) \\
1 / 2-0.0534<x_{0}+h / 2-g / 2<1 / 2+0.0534 & (\bmod 1) \tag{4.8}
\end{array}
$$

Subtracting (4.7) and (4.8) respectively from (4.6) we get

$$
\begin{equation*}
-0.1068<h, \quad g<0.1068 \quad(\bmod 1) \tag{4.9}
\end{equation*}
$$

Since from (2.6), $|h| \leq 1 / 2,|g| \leq 1 / 2$, we have

$$
\begin{aligned}
& P=(h, g) \in \mathcal{R}, \text { where } \mathcal{R} \text { is the region given by } \\
& \mathcal{R}=\left\{(x, y) \in \mathbb{R}^{2}:-0.1068<x, y<0.1068\right\}
\end{aligned}
$$

Let $A=(0,0), U=\left(\begin{array}{ll}3 & 4 \\ 2 & 3\end{array}\right)$ be an automorph of φ_{4}. Then

$$
U(\mathcal{R}) \subseteq\left\{\begin{array}{ll}
(x, y) \in \mathbb{R}^{2}: & -0.75<x<0.75 \\
& -0.56<y<0.56
\end{array}\right\}
$$

Clearly $U(\mathcal{R}) \cap \mathcal{R}+B=\emptyset$ for all $B \in \mathbb{Z}^{2}, B \neq A$.
Now for all integers n positive or negative, the unimodular transformation $\left(\begin{array}{cc}1 & 0 \\ 0 & U^{n}\end{array}\right)$ transforms Q into

$$
Q(x, y, z)=\left(x+h_{n} y+g_{n} z\right)^{2}+\rho\left(y^{2}-2 z^{2}\right)
$$

The above argument shows that if (2.9) has no solution then $U^{n}(P)=$ $\left(h_{n}, g_{n}\right)$ must also satisfy (4.9) and hence must be congruent to a point of $\mathcal{R}(\bmod 1)$. Therefore by Lemma 4, we must have $U(P)-A=P$, which gives $h=0, g=0$, since $U(P)=(3 h+4 g, 2 h+3 g)$. Thus $Q(x, y, z)=$ $x^{2}+\rho\left(y^{2}-2 z^{2}\right)$ and

$$
\begin{equation*}
\frac{1}{2}-0.0534<x_{0}<\frac{1}{2}+0.0534 \quad(\bmod 1) \tag{4.10}
\end{equation*}
$$

If $1<\rho<9 / 8$, then

$$
0<Q(3,0,2)=9-8 \rho<1
$$

This contradicts (2.7).

If $9 / 8 \leq \rho=\Delta \sqrt{8} \leq \sqrt{3 / 2}$, take $y=1 / 2, z=3 / 2$ and choose $x \equiv x_{0}$ $(\bmod 1)$ such that $5 / 2-0.0534<x<5 / 2+0.0534$ so that

$$
\begin{aligned}
0< & (2.4466)^{2}-\frac{17}{4} \sqrt{\frac{3}{2}}<Q \\
& =x^{2}-\frac{17}{4} \rho \leq(2.5534)^{2}-\frac{17}{4} \cdot \frac{9}{8}<d
\end{aligned}
$$

Thus if (2.9) has no solution, we must have $\rho=1$.
Now if $x_{0} \not \equiv 1 / 2(\bmod 1)$, choose x such that $\frac{1}{2}<|x| \leq 1$, take $y=1 / 2$, $z=1 / 2$, so that $0<Q=x^{2}-1 / 4 \leq 1-1 / 4<d$. Thus for (2.9) to have no solution we must have

$$
\begin{aligned}
Q & =x^{2}+y^{2}-2 z^{2}, \quad\left(x_{0}, y_{0}, z_{0}\right) \equiv\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) \quad(\bmod 1) \\
& \sim 2 Q_{2}=2\left[\left(x+\frac{1}{2} y\right) y+z^{2}\right]
\end{aligned}
$$

by means of transformation

$$
x \longrightarrow x+2 z, \quad y \longrightarrow x+y, \quad z \longrightarrow x+z
$$

Also then $\left(x_{0}, y_{0}, z_{0}\right) \sim\left(\frac{1}{2}, 0,0\right)(\bmod 1)$. This completes the proof of the theorem.

Acknowledgments The authors are very grateful to Professors V.C. Dumir and R.J. Hans-Gill for many useful suggestions during the preparation of this paper. We are also thankful to the referee for many useful comments.

References

[1] Aggarwal S.K. and Gupta D.P., J. Number theory. 37 (1991), 260-278.
[2] Bambah R.P., Dumir V.C. and Hans-Gill R.J., Proc. Col. Classical Number theory, Budapest (Hungary) (1981), 111-170.
[3] Blaney H., Math. Proc. Camb. Phil. Soc. 46 (1950), 359-376.
[4] Dumir V.C., Math. Soc. Series A. 8 (1968), 87-101.
[5] Dumir V.C. and Sehmi Ranjeet, Indian J. Pure. Appl. Math. 23(7) (1992), 827-853.
[6] Dumir V.C. and Sehmi Ranjeet, Indian. J. Pure. Appl. Math. 23(7) (1992), 855-864.
[7] Grover V.K. and Raka Madhu, Acta Math. 167 (1991), 287-298.
[8] Macbeath, A.M., Proc. Camb. Phil. Soc. 47 (1961), 266-273.
[9] Raka Madhu, J. Aust. Math. Soc. (Series A) 55 (1993), 335-354.
[10] Margulis G.A., Comptes. Rendus Acad. Sci. Paris, Series I 304 (1987), 249-253.
[11] Oppenheim A., Proc. London. Math. Soc. 3 (1953), 328-337.
[12] Madhu R. and Rani U., Osterreich Akad. Wiss. Math. Natur. Kl. Abt II 208 (1994/95), 175-197.
[13] Watson G.L., Mathematika, (1960), 141-144.

Madhu Raka
Panjab University
Centre for Advanced Study in Mathematics
Department of Mathematics
Chandigarh-160014, India
E-mail: pulib@puchd.ren.nic.in
Urmila Rani
Panjab University
Centre for Advanced Study in Mathematics
Department of Mathematics
Chandigarh-160014, India
E-mail: pulib@puchd.ren.nic.in

[^0]: ${ }^{1}$ Research supported by C.S.I.R., India is gratefully acknowledged.
 1991 Mathematics Subject Classification : 11E20.

