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Modular forms with coefficients involving class numbers
and congruences of eigen values of Hecke operators

Masatoshi YAMAUCHI
(Received May 12, 1995)

Abstract. Following F. Hirzebruch and D. Zagier's method, we construct a modular
form ®p(z) of level D, weight 2 and of Nebentype, whose Fourier coefficients involve
class numbers of orders of imaginary quadratic fields and the trace of elements of the real
quadratic field Q(\/ﬁ) As one of apllications, we can prove two types of congruences,
one is Shimura type and the other Doi-Brumer type of eigen values a,, of Hecke operators
of cusp forms of Neben type by numerical data for primes D < 97.
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Introduction

In their paper [4], F. Hirzebruch and D. Zagier constructed elliptic
modular forms whose Fourier coefficients involve class numbers of orders
of the imaginary quadratic number fields, counting intersection numbers
of certain curves on Hilbert modular surfaces over the quadratic number
fields. Following their method, we can give another elliptic modular form
®p(z) of level D, weight 2 and of Neben type. Further, expressing ®p(z)
as a linear combination of the Eisenstein series and cusp forms in the the
space of modular forms My(T'o(D), xp), We present two applications of our
modular form. One is to show identities which involve eigen values of Hecke
operators and solutions of the Pell equation corresponding to a quadratic
field. For example, the simplest case is as follows.

Letz = 2(p+1)—3 > ez H(4p—5t2), where H(n) denotes Hurwitz-

4p—5t2>0
Kronecker class number (see §1), then = together with an integer y, is an

integral solution of the Pell equation x? — 5y = 4p for primes p = +1 mod
5.

The other application is we can prove two types of congruences, one is
Shimura type and the other Doi-Brumer type of eigen values a, of Hecke
operators by using numerical data for D < 97:

(1) ap=a+ o modl where p = ad’ in Q(v/D) and | is a factor tr(e),
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which was proved by Shimura [5].
(2) ap = p+ 1 modm where m is a factor of the generalized Bernoulli
number Ba
which was proved by Doi-Brumer[2].
The author wishes to thank H.Saito for his help with the preparation
of this paper.

Notation Throughout the paper, D is a positive integer such that D =
1 mod 4, K the real quadratic field Q(v/D), and O the ring of integers of
K. For z € K 2/, N(z) = zz’ and tr(z) = z+2’ denote the conjugate, norm
and trace of = respectively. We denote by xp(n) the character associated to
K, namely xp(n) = (%). For a complex number z, e(z) denotes e2™*. We
let $ denote the complex upper half plane, and put ¢ = e(z) for z € §. For
a positive integer M ,we let SLy(Z) the group of 2 X 2 integral matrices of

2) with ¢ = 0 mod M,

and I'(M) the principal congruence subgroup of SLs(Z) with level M.

determinant 1, I'g(M) the subgroup of matrices (CCL

1. Statement of the theorem

For an even k > 0, My(T'o(D), xp) denotes the space of modular forms
of weight k, level D and Neben type xp, i.e. it is the space of functions
f : 9 — C satisfying

F(ETD) =@+t (4] enm) oy

and which are holomorphic on $ and the cusps of I'g(D). A function in
My (I'o(D), xp) which vanishes at every cusp of I'g(D) is called a cusp form,
and we denote by Si(I'o(D), xp) the subspace of cusp forms in My (T'o(D),
xD). The space of the functions f satisfying (1.1) without the holomorphy
condition, is denoted by M;(I'o(D),xp). Such functions are called non-
holomorphic modular forms.

For a positive integer n, let H(n) denote the number of equivalence
classes of all positive definite binary quadratic forms of discriminant —n,
where the equivalence classes of m(z%+y?) and m(z? +zy+y?) are counted
with multiplicity % and —:1,; respectively. In other words, H(n) is given by

H(n) = Z W) (1.2)

w
f2n



Modular forms with coefficients involving class numbers 151

where h(A) (resp. w(A)) denotes the class number (resp. half of the num-
ber of units) of the order of the discriminant A in the imaginary quadratic
field Q(v/A) with A = —n/f? and the summation is over all positive in-
tegers f such that —n/f? = 0,1 mod 4. H(n) is called Hurwitz-Kronecker
class number. we put H(0) = —1; and H(n) = 0 for negative integers n
conventionally. For small n, H(n) is given by

7 8 11 12 15 16 19 20 23 24

4
1 4 3
't 11 & 2 3 1 2 3 2

3
H(n) -3 3

-

Now for an integer N > 0 we define Jp(N) as

Jp(N)= >  H(4N - Dt?), (1.3)
4N—t%%220

then we obtain

Theorem 1 For a prime D such that D =1 mod 4 the function

Y tr(e)gM

a=(a)

1 o0

®p(z)=-15+ Y Ip(N)g™ +
N=1

tr(e)

belongs to M2(T'o(D), xp), where € > 1 is the fundamental unit of K =
Q(\/I_D), a runs over all integral principal ideals of K, and o is the unique
totally positive generator of a such that € < o < €2,

The proof of this theorem will be completed in §5.

2. The modular form hp(z)
We know by ([2] 2.4) that the function F(z) defined by

F(2) =3 Hm) +y2 Y flamy)e™  (y=Im(z)), (2.1)
n=0 =y

satisfies
az+b . —_1 c 3/2
f(cz+d> _ ( _ ) (d) (c2 + d)*/2F (2)

for((z Z)ero(w) (c£0).
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Here we mean:

d d ¢ d= 3 modA4.

c
(E)_ _(m) c<0,d<0 (_—1)1/2~{1 d=1mod 4
otherwise,

|d]

For a complex number w, we take the argument of w!/2 so that /2 <
arg(w) < 7/2 and w*/? = (w'/2)* (k € Z). The function B(z) is defined by

B(z) = -I—é; /1 T w2 gy (Re(z) > 0). (2.2)

Now the function §(z) = > ;5 ¢" satisfies

(558) - () (o

b
for (a ) € I'y(4). For a positive integer D, we put

c d

(o ¢}

fo(z) = F(2)8(Dz) = Y en(y)g". (2.3)

N=—oc0

then we have

i(ra) - 7 (a) (o 550)
(e
() Qo

= xp(d)(cz +d)* fp(2),

for (i 2) € I'0(4D) (¢ #0), and fp(z+b) = fp(z) for b € Z. So fp(z)
belongs to M5 (I'o(4D), xp) and
en()= Y, H(N-D&)+y™'? 3 Blmdly).  (24)

teZ t,u€Z
N-Dt2>0 Dt2_u2=N
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Assume N = 2 mod 4. Since D = 1 mod 4, we see that H(N —Dt?) =0
and Dt? — u? = N has no solution, so we have cy(y) = 0. Hence by
Lemma 2, the function

13 z+T s 1
— N
1 z_:fD ( 1 ) = > C4N(Zy)q (2.5)
r=1 N=-x
belongs to Mj(I'o(D), xp). Here can(3y) becomes
1
av(7y) = Y HEN - D#) +2y7 V2N B(muPy)
teZ t,ucZ
4N-Dt2>0 Dt2 —u2=4N
= Y HUN-Dt*)+2y7'2 Y B(mtr(A
teZ A€O
4N—-Dt2>0 AM=—N

Now we define by hp(z) the function given in [2.5).
Recalling the definition of Jp(N) in [1.3), we obtain

Proposition 2 The function

+ 2y~ /2 Z Yo Br(A+ X))

N=—00 €O
AN =—N

belongs to M5 (Lo(D),xp). Here B(x) is given by (2.2).

3. Non-holomorphic modular form Z(z)

Now we shall investigate the second term of hp(z) in [Proposition 2. For
z € $, we define complex valued functions X, (A, \), Y,(A\, X) and Z, (A, X)
on R? by

X (X)) = 2y 2B(m(A + X)y)e(—AN'z2),

Y.(AX) = { pmin(Al, X)e(=ANz) - if AN <0,

3.1
if AN >0, (3.1)

Z, (W N) = X,(AN) = Yo(AN).

Then
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Lemma 3 We have

Z(py ) = 2722y, (s, 1),
where Z, denotes the Fourier transform of Z,.

Proof. We denote by X,,Y, and Z, Fourier transforms of X 2, Y, and
Z, respectively. Now X,(A,X) = U,(\,=X), Y;(\,X) = V,(\,—)X) and
Z,(\X) =W, (A, —X), where U,, V, and W, is defined by [4] Proposition
1.1, we have

Xo(pp') = Uyp, —4)
22Uy o (s 1) + 8w 2e(up! 1 2) B(m (1 + )2 fw),

}‘;:z(.u?l/) = f/z:(,ua —,U,,)
AV (o ) + 8w e (i [2)B(m (s + )2 fw),

where we put w = 2z/i. (|Jarg(w)| < 7/2). The relation between U,
(resp. V,) and U, (resp. V,) has been stated in [4] Proposition 1.1. Hence
Z, =X, —Y, and its Fourier transform Z, satisfies

Zz(,ua 'U") = Z_ZZ—I/Z(/J', Nl)- ]

For v € 07!, we define functions of theta-series type

2,(z) = Z Z, A+ v, X+, (3.2)
€0

where 97! is the inverse different (1/v/D) of K. We obtain D distinct
functions Z,(z) with 2y = Z. Now

Z,(z+1)=e(-)Z,(2),

and by the Poisson summation formula

= D~1/? Z e(tr(uv)).
ueo—1
Thus we obtain

222,(-1/z) = 272DV N Z(u, )e(tr ()
peo—1
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— DY 2, (i eltr(uv)

ueo—1
= D™1/2 Z Z,(z)e(tr(uv)).
ped—1/0
1 1 0 1
For T = (0 1) and J = (_1 0) we have
ZI/|T = e(_yyl)a ZVIJ =D'/? Z Zﬂ(z)e(tr(ﬂl/))a (3'3)
ped~1/0
where Z,,| a b denotes the function (cz + d)™2Z (M)
iINe d V\czt+d )"
For A = (Z Z) € Io(D), we put R = T*JT?JT*J then R =

(g 2) mod D. We can choose z € Z so that A = A;T*R with A; € I'(D)

the principal congruence subgroup.
Proposition 4 We have

Z)|R = xp(d)Z_qv-
In particular, Zy(z) belongs to M3 (To(D), xD).
Proof.  From (3.3) we find

Z,|T*] = D™V2e(—aup') Y Zye(tr(uv)).
I

Therefore

Z,R = D_?’/ZZZZ tr(pv+Au+rd)—avy —dpp' —ad\) 2,
= D_3/2ZZ ZZ —dN(p—aX —av')+tr(adv/+kX))

= D7 lxp(- ZZ Z (tr(A(x + av'))
= XD(d)Z—-au .
Here we used the well known property of the Gauss sum,

Z e(—dN(p — aX — av')) = DY2xp(—d).
pev~1/0
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In particular, putting v = 0 we obtain Zy4|R = xp(d)Zy, which means
2Z0|A = xp(d)Zy for A = <CCL 2) € I'o(D) since we know by (3] that

Z,|A; = 2, for Ay € T(D). [

4. The modular form ¢ p(z)
Recalling definitions (3.1) and [3.2), we have

Zy(z) —2—1/22 Y Br(A+ N)?y)gY

N=—o00 X€0
A=—N

o o]

—%Z S min(Al |V])g (4.1)

= A€O
AM——N

Now we define the function ®p(z) by

®p(2) = hp(z) — Zo(2). (4.2)

Then by [Proposition 2 and [Proposition 4, we see ®p(z) belongs to
M3 (To(D), xp). Further we can prove

Proposition 5 The function

1 > 1 &
Pp(e)= -5+ Y Io(Ng" +5 3 Y min(Al ¥
N=1

N=1 X€O
AN =—N

belongs to My(T'o(D), xDp).

Proof.  The N-th Fourier coefficient of ®p(z) is independent of y and is
O(NT) for some 7 > 0, ®p(z) is holomorphic on $, and also holomorphic
at the cusps of I'y(D), and ®p(z) is O(y~") as y — 0, which implies ® p(z)
belongs to M2(To(D), xp)- L]

5. Proof of Theorem 1

For a principal integral ideal a of K = Q(v/D), where we assume D is
a prime number, we put

r(a) = Z min(|A[, |N]). (5.1)

(A)=a
AN <o
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Then

Lemma 6 We have
S tr(a)
r(a) = 21:1'(5) :

where € > 1 is the fundamental unit of K and « is the unique totally positive
generator of a such that €? < & < &2,

Proof. Since D is a prime number congruent to 1 modulo 4, we have
N(e) = —1. So we can take A\g € O so that a = (Ag), Ao > 0 and A\j < 0
by multiplying a unit to A\g suitably. Such Ag is unique under the condition

€3 < |§§01| < 1 where ¢¢ is the generator of the group of totally positive units
which satisfies 0 < g9 < 1 and ¢; > 1. For any A such that a = (1), A > 0
and X' < 0 we can write A = Mg} (n € Z), and |%| |;\,05,nl = \
Since min(|A|, |\|) is equal to || or |X'| according as n > Oorn < 0 we
have

g

{min(|Al, |N]) | a=(X), A>0X <0}
= {Xoeg' | m > 0} U{—A658 | n > 0}.

Since we have two choices of the signature of A in (5.1)

r(a) = 2 Z Aoggt — 2 Z Ao€d

— 9 )\0 _9 050
1-— €0 1- €0
tr(Age) g
tr(e) (g0 =¢7)
Therefore oo = \ge satisfies the condition in Lemma 6. O

Remark. We can easily verify

(1) r(a) =7(a’) (a’: the conjugate of a).

2) () =25 (ce).

(3) r((evD) =22 (e=%D, cez).

Now combining [Lemma 6 with [Proposition 5, we conclude the function

®p(2) has the Fourier expansion stated in [Theorem 1. This completes our
proof of [Theorem 1.
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6. Numerical examples

For each positive integer n, we define the Hecke operator on Sy (To(D),
Xp) by

(T2 =51 3 3 xp(a)f((az + b)/d)d ™,

d>0 d=0
ad=n

for f(z) € Sg(I'o(D),xp). A common eigen function f(z) = 3-°°_; a,,q™ of
T, for all n is called a primitive form if a; = 1. It is well known that n-th
Fouriercoeflicient a,, of f(z) is an eigen value of of T;, for a primitive form
f(z). For a prime D = 1 mod 4, the space Mz (I'o(D),xp) is the direct
sum of S3(I'g(D), xp) and the Eisenstein space spanned by two Eisenstein
series Ep 1(z) and Ep 2(2):

Epa(z Z(ZXD (n/t) )

n=1 tjn

and

Epa(2) = ~ 3 Baxo £ (o) )t)g",

n=1 tln
where Bs , , is the second generalized Bernoulli number, or

4 (D—-1)/2

Bz,XD = XD Z XD

The function ®p(z) is expressed as a linear combination of cusp forms and
these Eisenstein series. In this section we shall give two types of numerical
applications stated in Introuction.

First, since p-th Fourier coefficients of ®p(z) contain tr(a) where p =
N(a), we can express tr(a) by eigen values of Hecke operators. We only
state here the simplest case, namely we take D = 5. The dimension of
S2(lo(5), xs5) is 0. Thus ®5(z) is a linear combination of F51(z) and FEs .
We find easily

@5(2) = —Fx 1(2) + —FEs59(2). (6.1)

We know the fundamental unit ¢ > 1 of K = Q(+/5) is 1%@ Hence
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comparing p-th coefficients of both sides of for primes x5(p) = 1, we
obtain

tr(a) = Z(IH- 1) - %Js(P),

where a = ﬁzﬁ is the generator of an ideal a of norm p in K and «
satisfies the condition in [Theorem 1. In other words,

Proposition 7 For primes p = =1 mod 5, we put x as

5% 1
mzz(p+1)—§ E H(4p — 5t2).
teZ
4p—5t2>0

Then with a suitable integer y, (z,y) gives an integral solution of the Pell
equation =2 — 5y? = 4p.

Next as second applications, we take D = 61. The dimension of
S2(T'0(61), x61) is 4. The coeflicients a,, of a primitive form f(z)=3°°; ang™

is contained in Q(v/3) or Q(1/ —4 — v/3) according as xg1(n) = 1 or not. The
space S2(I'0(61), x61) is spanned by f, f = 300 | d,q", f7 = 322, a%q¢™ and
f7 =322, d,°q" where denotes complex conjugation and o denotes the el-
ement of Gal(Q/Q) which is nontrivial on Q(v/3) (see the table for D = 61
in §7). To avoid the ambiguity of the choice of the conjugates of a,, we
take the form f(z) = 32, a,q™ such that a; = 1,a3 = \/—4 — /3 and
a3 = —1 — /3 and fix f hereafter. We put K = Q(+v/61). Now we have two
types of the congruences for a,.

Proposition 8
(1) For each prime p such that x61(p) = 1, we have

!
ap = a1 + a; mod ¢;3

where a; € O is totally positive and p = a1}, c13 = (4 + V/3) is the ideal
of norm 13 in Q(V/3).
(2) For primes p # 61, we have

ap=p+1 mod ¢y for xe1(p) =1
and

ap=p—1 mod €;; for x61(p) = -1
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where ¢1; = (1 —2v/3) is the ideal of norm 11 in Q(v/3) and €11 an ideal of

norm 11 in Q(y/—4 — V/3) dividing c1;.

Proof._ Since_f, f, f"and f° span the space So(I'g(61), x61), We see F| =
L+ F+17+F%), By = e (f == 1), Fy = (/= )+ 1 (57 = )

andF4—491(f f)— 492(f0 fo) (01 =1/ —4— 3,00 =1/—4+/3) form

a basis of Q-rational elements of S2(I'¢(61), x61). We can express ®g; (2
a Q-linear combination of Eg; ; and F}, and we write

4
®61(2) = nFe1,1 + 12Ee12+ Y _6;F;  forv;,6; € Q. (6.2)
j=1
The coefficients of ®¢1(2) = Y oo b(n)g™ for small n’s are calculated as
follows :
1 43 28 125 32
4] _ — 1 3 Tev 4 s
61(2) =~y gl HOH O+ g

+2¢° +2¢" +3¢% +---.

Comparing the coeflicients of q of both sides of (6 2) for several n, we find
M= 1= 0= 25, 6 =—2 6==Land b= -2 (Itis
sufficient to know exact values of b(n) for n = 1, 2 3,5,7 to determine ~;,
6;.) First we consider a prime p with x61(p) = 1, then we find an integer
a € O of norm p, which satisfies the condition stated in [Theorem 1. The p-

th coefficient of ®¢;(2) is b(p) = Je1(p) + tr((a)) , where ¢ is the fundamental

unit € = %—3@. Since x61(p) = 1, a, is contained in Q(v/3) and therefore
we can write a, = u, + vp\/?; (up,vp € Z). Thus we obtain the equality

2-3%.11-13Js1(p) + 22 - 3 - 11tr(a)
3
=3-13-31(p+1)+2-3-5-Tu, —2- 3% 17,

Hence we have

up + 9vp = tr(a) mod 13,
and

up +6vp = p+ 1mod 11.
These congruences are equivalent to

ap = tr(a) mod ¢13,
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and
ap =p+1mod c;.

respectively. For any totally positive element oy € O of norm p, we can put
oy = ae® for some n € Z. Since €2 = 1 mod 13, this implies (1). Similar
arguments are also applicable to primes p satisfying xe1(p) = —1, and we
obtains the results. (]

Remark 1. Congruences of type (1) were proved by Shimura ([5] 7.7) which
was related to the theory of construction of class fields over real quadratic
fields. Congruences of the type (2) were proved by Doi-Brumer ([2] 7.5.).

Remark 2. Similarly, we can prove congruences of the same types as in
[Proposition § for 29 < D < 97, on which we don’t go further.

7. Eigen values of Hecke operators for S2(I'o(D),xp)

Once we expressed ®p(z) as a linear combination of the Eisenstein series
Epi(z), Ep2(z) and cusp forms in the form of (6.2) by virtue of Eichler-
Selberg’s trace formula, we are able to give Fourier coeffients a,, of primitive
forms f(2) = > 72 ang™ in S2(T'o(D), xp) for large p by calculating Fourier
coefficients of ® p(z). We list here values of a, for all primes p < 97 including
ap, for the prime level D < 97 (We note apap = D).

D = 29, dim52(29, X29) =2

D X29 ap p X29 ap b X29 ap
2 | — V=5 29| 0 | =3+2/-51 67| + 8
3 | — | =v/-5 31| — 3v/-5 1| + 0
5 | + -3 37| — 0 73| — 0
7T+ 2 41 | — —2¢/-5 79| — | =3v/-5

11| — V-5 | 43| - -3v/-5 83 | + -6
47 | — V-5 89 | — | —2v/-5
17| — | =2¢/-5 | 53| + -9 97 | — | 6v/-5
19| — 0 59 | + 6

23 | + 6 61 | — 6v/—5

[S
w
_|._
|
o
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D = 37, d1m52(37, X37) =2

P | X37 ap P | X37 ap P | X37 ap
2 | — | 2v/-1 (29| — —4+/—1 67 | + —12
3 | + ~1 31| — 0 1| + -3
5 | — | =2¢/—=11{37| 0 | —-146y/-1| 73| + 9
7T + 3 41 | + -3 79| — 6y/—1
11| + -3 43 | — —6y/—1 83 | + 9
13| — | —6v/-1 || 47| + 3 89 | — | —14y/—-1
17| — | 2¢/-1 |53 | + 9 97 | — | 124/-1
19| — | 6/-1 || 59| — —44/-1
23| — | 4v/-1 || 61 ] — 0
D = 41,dim52(41,x41) =2
p X41 ap P | X41 ap P | X4 Qp
2 | + -1 29 | + —4y/—2 67 | — | —6v/—2
3 | — | 2v/=2 | 31| + -8 71| — | 6v/=2
5 | + 2 37 | + 2 73| + 14
7T | — | —2v/=2| 41| — | =34+4y/=2| 79| — | —2/-2
11| — | 2¢/-2 | 43| + 4 83 | + —12
13| — | =42 47| — —2¢/—2 89 | — | 8/-2
17 | — 0 53 | — 4/=2 97 | — 0
19| — | 2¢/-2 || 59| + 4
23 | + 0 61 | + —2
D = 53,dimS3(53,xs53) =4 (We put 6; = /-3 +/2.)
p X53 ap b X53 ap D X53 ap
2 | — 6, 29 | + | -3+3vV2 | 67| — | —(6+3Vv2)6;
3 | — | (-1-v2)8, | 31| — —3/26, 1] - | (3++2)8;
5 - V264 37 | + 7T—2 73| — —3v/26,
70 + —2-42 41 | — —26, 79 — | (3+3v2)6,
11| + 3v2 43 | + —2++v2 |83 ] — | (3+4v2)4,
13| + 1—2v2 47 | + 6 89 | + 6
17 |+ -3 53 | 0 _(32__3&/5) o |97+ | THTV2
19| — —36, 59 | + —6v2
23 | — 6, 61| — | (6+3v2)6,
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D = 61,dimS3(61,x61) =4 (We put 8 = /-4 —/3.)

P | Xe1 ap P | Xe1 ap P | Xe1 ap
2 | — 0, 20 — | (1—-+3)8, [[67] — | (—6+/3)8;
3|+ | —1-v3 |31 — | (3=-v3), ||71]| — | —(1+3)b,
5 | + V3 37| — | (=3+3)6, | 73] + 4—33
7| - V36, 41 + | -34+2v3 |79 — | (3-4V3)6,
11| - —0s 43| — | (3+V3)6, | 83| + 6 +2v/3
13| + 3 47 | + 6 —4v/3 89 | — | (-2+4V3)8,
17| — | (~14+v3)8: || 53| — | (—44+2v3)8, || 97| + —-2/3
19| + 3+3 59| — | —(24v/3)6,

2+ 3v3 +
23| — | (1—-2V3)6, || 61| O (3 - v3)6,

D= 73,dim52(73,x73) =4

(We put 63 = \/(—19 +v5)/2.)

P | X73 ap P | X3 ap P | X713 ap
2 |+ | (=1++v5)/2 [29] — |[-(1++v5)/2 6367 + | —-3-4V5
31+ | (Q+v5)/2 |31] - 205 71 (—9 4+ 35)/2
—4-2V5+
5| — 05 37| + 5 73| 0 (3 vE)/2 65
7| - |-(1+V5)/2-63|l41| + 5-15 790 + | (21++/5)/2
11| — | (1-+/5)/2-63 |[43]| — |—=(5+V5)/2- 65| 83| — —/503
13] — [ (=14++5)/2-63||47| — | (5+/5)/2-63 |89 + | —-8+3v5
170 — | (1++v5)/2-63 ||53] — |(=3++5)/2-65]97| + | (=1+35)/2
19| + 1-2V5 59| — —205
23| + | (5+3v5)/2 ||61] + | (=7+3v5)/2
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D = 89, dim52(89, ng) =6
(1 satisfies n° +7° —3n — 1 =0, and we put u = /=3 + 1 — 12.)

D | X89 ap D | X89 ap
2+ ”7 43| - —(2+n)u

3 | - T 47 | + 1+ 4n +n?

5 | + 2 — 7’ 53 | + 3+n+n?

T - @-n-7)p || 59| - (=2+3n+n°)p
11| + | =3+2n+n? || 61| — (=5 +71%)u
13| — (=34+n%)u || 67| + 3 — 4n — 3n?
17| + 6 — 3n — 212 1| + —2 + 4n + 4n?
19 — | (=3+n+nHu || 73| + —10 4 61 + 312
23| — | (=1+n+7P)u | 79| + 4 — 6n — 4n?
29| — | 3=2n—n*)u | 83| — (—4—n+n*)u
31| — (20 + n?)p 89| 0 | —4—dn+n2+(-—n)p
37| — | —@+2mp | 97| + ~8 — 1+ 2n?
41 | - (3—n")u

D = 97,dimS2(97, x97) = 6
(¢ satisfies €3 — 3¢ + 1 =0, and we put v = /=3 — 4£ — 3€2.)

D | Xo7 ap D | Xot ap

2 | + —£ 43 | + 9 + 2¢ — 3¢2
3| + | —24+E+E 4T + —11 — 2¢ + 4¢2
5 | — v 53 | + 8 + & — 4€?

7| - (2 -2 59 | — (7 — 2%
11| + | —-34+&+262 | 61| + —5 + 4¢& 4 5¢2
13| — | (=3+&6+&)v |67 — —£2p

17| — (1-¢&)v 71| — &

19| — | 2-¢-v |73 + 9 — 3¢ — 7¢2
23| — | B3=€6—-€v 79| + —8 + 5¢ + 2¢2
29| — | (2+&-&%v | 83| — (-6 + 26%)v
31| + —2€ + €2 89 | + 8 — 26 — €2
37| — | (-3—¢+&Hv ||97| 0 | 665624 (4—E%)w
41 | — (2-&)v




[2]
[3]

[4]
[5]
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