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Modular forms with coefficients involving class numbers
and congruences of eigen values of Hecke operators

Masatoshi YAMAUCHI
(Received May 12, 1995)

Abstract. Following F. Hirzebruch and D. Zagier’s method, we construct a modular
form \Phi_{D}(z) of level D , weight 2 and of Nebentype, whose Fourier coefficients involve
class numbers of orders of imaginary quadratic fields and the trace of elements of the real
quadratic field \mathbb{Q}(\sqrt{D}) . As one of apllications, we can prove two types of congruences,
one is Shimura type and the other Doi-Brumer type of eigen values a_{p} of Hecke operators
of cusp forms of Neben type by numerical data for primes D\leq 97 .
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Introduction

In their paper [4], F. Hirzebruch and D. Zagier constructed elliptic
modular forms whose Fourier coefficients involve class numbers of orders
of the imaginary quadratic number fields, counting intersection numbers
of certain curves on Hilbert modular surfaces over the quadratic number
fields. Following their method, we can give another elliptic modular form
\Phi_{D}(z) of level D , weight 2 and of Neben type. Further, expressing \Phi_{D}(z)

as a linear combination of the Eisenstein series and cusp forms in the the
space of modular forms M_{2}(\Gamma_{0}(D), \chi_{D}) , We present two applications of our
modular form. One is to show identities which involve eigen values of Hecke
operators and solutions of the Pell equation corresponding to a quadratic
field. For example, the simplest case is as follows.

Let x= \frac{5}{4}(p+1)-\frac{1}{2}\sum {}_{t\in \mathbb{Z}}H(4p-5t^{2})4p-5t^{2}>0 ’ where H(n) denotes Hurwitz-

Kronecker class number (see \S 1), then x together with an integer y , is an
integral solution of the Pell equation x^{2}-5y^{2}=4p for primes p\equiv\pm 1 mod
5.

The other application is we can prove two types of congruences, one is
Shimura type and the other Doi-Brumer type of eigen values a_{p} of Hecke
operators by using numerical data for D\leq 97 :
(1) a_{p}\equiv\alpha+\alpha’ mod l where p=\alpha\alpha’ in \mathbb{Q}(\sqrt{D}) and l is a factor tr(\in) ,
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which was proved by Shimura [5].
(2) a_{p}\equiv p+1 mod \mathfrak{m} where \mathfrak{m} is a factor of the generalized Bernoulli

number B_{2,\chi D} ,
which was proved by Doi-Brumer [5].

The author wishes to thank H.Saito for his help with the preparation
of this paper.

Notation Throughout the paper, D is a positive integer such that D\equiv

1 mod 4, K the real quadratic field \mathbb{Q}(\sqrt{D}) , and \mathcal{O} the ring of integers of
K . For x\in Kx’ , N(x)=xx’ and tr(x)=x+x’ denote the conjugate, norm
and trace of x respectively. We denote by \chi_{D}(n) the character associated to
K , namely \chi_{D}(n)=(\frac{n}{D}) . For a complex number z , e(z) denotes e^{2\pi iz} . We
let ff) denote the complex upper half plane, and put q=e(z) for z\in fi . For
a positive integer M,we let SL_{2}(\mathbb{Z}) the group of 2\cross 2 integral matrices of

determinant 1, \Gamma_{0}(M) the subgroup of matrices (\begin{array}{ll}a bc d\end{array}) with c\equiv 0 mod M,

and \Gamma(M) the principal congruence subgroup of SL_{2}(\mathbb{Z}) with level M .

(1.1)

For an even k>0 , M_{k}(\Gamma_{0}(D), \chi_{D}) denotes the space of modular forms
of weight k , level D and Neben type \chi_{D} , i.e. it is the space of functions
f : \mathfrak{H} – C satisfying

f( \frac{az+b}{cz+d})=\chi_{D}(a)(cz+d)^{k}f(z) ( (\begin{array}{ll}a bc d\end{array})\in\Gamma_{0}(D))

and which are holomorphic on \mathfrak{H} and the cusps of \Gamma_{0}(D) . A function in
M_{k}(\Gamma_{0}(D), \chi_{D}) which vanishes at every cusp of \Gamma_{0}(D) is called a cusp form,
and we denote by S_{k}(\Gamma_{0}(D), \chi_{D}) the subspace of cusp forms in M_{k}(\Gamma_{0}(D) ,
\chi_{D}) . The space of the functions f satisfying (1.1) without the holomorphy
condition, is denoted by M_{k}^{*}(\Gamma_{0}(D), \chi_{D}) . Such functions are called non-
holomorphic modular forms.

For a positive integer n , let H(n) denote the number of equivalence
classes of all positive definite binary quadratic forms of discriminant -n,
where the equivalence classes of m(x^{2}+y^{2}) and m(x^{2}+xy+y^{2}) are counted
with multiplicity \frac{1}{2} and \frac{1}{3} respectively. In other words, H(n) is given by

1. Statement of the theorem

H(n)= \sum_{f^{2}|n}\frac{h(\triangle)}{w(\triangle)} (1.1)
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where h(\triangle) (resp. w(\triangle) ) denotes the class number (resp. half of the num-
ber of units) of the order of the discriminant \triangle in the imaginary quadratic
field \mathbb{Q}(\sqrt{\triangle}) with \triangle=-n/f^{2} and the summation is over all positive in-
tegers f such that -n/f^{2}\equiv 0,1 mod 4. H(n) is called Hurwitz-Kronecker
class number, we put H(0)=- \frac{1}{12} and H(n)=0 for negative integers n
conventionally. For small n , H(n) is given by

\frac{n034781112151619202324}{H(n)-\frac{1}{12}\frac{1}{3}\frac{1}{2}111\frac{4}{3}2\frac{3}{2}1232}

Now for an integer N>0 we define J_{D}(N) as

J_{D}(N)=4N-Dt^{2} \geq 0\sum_{t\in \mathbb{Z}}H(4N-Dt^{2})

, (1.3)

then we obtain

Theorem 1 For a prime D such that D\equiv 1 mod 4 the function

\Phi_{D}(z)=-\frac{1}{12}+\sum_{N=1}^{\infty}J_{D}(N)q^{N}+\frac{1}{tr(\in)}\sum_{a=(\alpha)}tr(\alpha)q^{N(\alpha)}

belongs to M_{2}(\Gamma_{0}(D), \chi_{D}) , where \in>1 is the fundamental unit of K=
\mathbb{Q}(\sqrt{D}) , a runs over all integral principal ideals of K, and \alpha is the unique
totally positive generator of a such that \Xi^{\prime 2}\leq\frac{\alpha}{\alpha}, <\in^{2} .

The proof of this theorem will be completed in \S 5.

2. The modular form h_{D}(z)

We know by ([2] 2.4) that the function \mathcal{F}(z) defined by

\mathcal{F}(z)=\sum_{n=0}^{\infty}H(n)q^{n}+y^{-1/2}\sum_{u\in \mathbb{Z}}\beta(4\pi u^{2}y)q^{-u^{2}} (y={\rm Im}(z)) , (2.1)

satisfies

\mathcal{F}(\frac{az+b}{cz+d})=(\frac{-1}{d})(\frac{c}{d})(cz+d)^{3/2}\mathcal{F}(z)

for (\begin{array}{ll}a bc d\end{array})\in\Gamma_{0}(4D) (c\neq 0) .
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Here we mean:

( \frac{c}{d})=\{

-( \frac{c}{|d|}) c<0 , d<0
( \frac{c}{|d|}) otherwise,

( \frac{-1}{d})^{1/2}=\{\begin{array}{l}1 d\equiv 1mod4i d\equiv 3mod4.\end{array}

For a complex number w , we take the argument of w^{1/2} so that -\pi/2<
\arg(w)\leq\pi/2 and w^{k/2}=(w^{1/2})^{k}(k\in \mathbb{Z}) . The function \beta(x) is defined by

\beta(x)=\frac{1}{16\pi}\int_{1}^{\infty}u^{-3/2}e^{-xu}du ({\rm Re}(x)\geq 0) . (2.2)

Now the function \theta(z)=\sum_{t\in \mathbb{Z}}q^{t^{2}} satisfies

\theta(\frac{az+b}{cz+d})=(\frac{-1}{d})^{-1/2}(\frac{c}{d})(cz+d)^{1/2}\theta(z)

for (\begin{array}{ll}a bc d\end{array})\in\Gamma_{0}(4) . For a positive integer D , we put

f_{D}(z)= \mathcal{F}(z)\theta(Dz)=\sum_{N=-\infty}^{\infty}c_{N}(y)q^{N} (2.3)

then we have

f_{D}( \frac{az+b}{cz+d})=\mathcal{F}(\frac{az+b}{cz+d})\theta(D \frac{az+b}{cz+d})

= \mathcal{F}(\frac{az+b}{cz+d})\theta(\frac{aDz+bD}{c/DDz+d})

=( \frac{-1}{d})(\frac{c}{d})(cz+d)^{3/2}\mathcal{F}(z)

\cross(\frac{-1}{d})^{-1/2}(\frac{c/D}{d})(cz+d)^{1/2}\theta(Dz)

=\chi_{D}(d)(cz+d)^{2}f_{D}(z) ,

for (\begin{array}{ll}a bc d\end{array})\in\Gamma_{0}(4D)(c\neq 0) , and f_{D}(z+b)=f_{D}(z) for b\in \mathbb{Z} . So f_{D}(z)

belongs to M_{2}^{*}(\Gamma_{0}(4D), \chi_{D}) and

c_{N}(y)= \sum_{N-Dt^{2}\geq 0}H(N-Dt^{2})+y^{-1/2}t\in \mathbb{Z} _{t,u\in \mathbb{Z}}^{\sum_{Dt^{2}-u^{2}=N}\beta(4\pi u^{2}y)},\cdot

(2.4)
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Assume N\equiv 2 mod 4. Since D\equiv 1 mod 4, we see that H(N-Dt^{2})=0
and Dt^{2}-u^{2}=N has no solution, so we have c_{N}(y)=0 . Hence by [2]
Lemma 2, the function

\frac{1}{4}\sum_{r=1}^{4}f_{D}(\frac{z+r}{4})=\sum_{N=-\infty}^{\infty}c_{4N}(\frac{1}{4}y)q^{N} (2.5)

belongs to M_{2}^{*}(\Gamma_{0}(D), \chi_{D}) . Here c_{4N}( \frac{1}{4}y) becomes

c_{4N}( \frac{1}{4}y)=4N-Dt^{2}\geq 0\sum_{t\in \mathbb{Z}}H(4N-Dt^{2})+2^{-1/2}y ^{\sum_{t,u\in \mathbb{Z}}\beta(\pi u^{2}y)}Dt^{2}-u^{2}=’ 4N

= \sum_{4N-Dt^{2}\geq 0}H(4N-Dt^{2})+2^{-1/2}yt\in \mathbb{Z} ^{\sum_{\lambda\lambda=-N}\beta(\pi tr(\lambda)^{2}y)}\lambda,\in \mathcal{O},\cdot

Now we define by h_{D}(z) the function given in (2.5).
Recalling the definition of J_{D}(N) in (1.3), we obtain

Proposition 2 The function

h_{D}(z)=- \frac{1}{12}+\sum_{N=1}^{\infty}J_{D}(N)q^{N}

+2y^{-1/2} \sum_{N=-\infty}^{\infty}

\lambda\lambda’=-,N\sum_{\lambda\in \mathcal{O}}\beta(\pi(\lambda+\lambda’)^{2}y)q^{N}

belongs to M_{2}^{*}(\Gamma_{0}(D), \chi_{D}) . Here \beta(x) is given by (2.2).

3. Non-holomorphic modular form Z(z)

Now we shall investigate the second term of h_{D}(z) in Proposition 2. For
z\in \mathfrak{H} , we define complex valued functions X_{z}(\lambda, \lambda’) , Y_{z}(\lambda, \lambda’) and Z_{z}(\lambda, \lambda’)

on \mathbb{R}^{2} by

X_{z}(\lambda, \lambda’)=2y^{-1/2}\beta(\pi(\lambda+\lambda’)^{2}y)e(-\lambda\lambda’z) ,

Y_{z}(\lambda, \lambda’)=\{

\frac{1}{2}\min(|\lambda|, |\lambda’|)e(-\lambda\lambda’z) if \lambda\lambda’<0 ,

0 if \lambda\lambda’\geq 0 ,
(3.1)

Z_{z}(\lambda, \lambda’)=X_{z}(\lambda, \lambda’)-Y_{z}(\lambda, \lambda’) .

Then
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Lemma 3 We have

\tilde{Z}_{z}(\mu, \mu)=z^{-2}Z_{-1/z}(\mu, \mu’) ,

where \tilde{Z}_{z} denotes the Fourier transform of Z_{z} .

Proof. We denote by \tilde{X}_{z},\tilde{Y}_{z} and \tilde{Z}_{z} Fourier transforms of X_{z} , Y_{z} and
Z_{z} respectively. Now X_{z}(\lambda, \lambda’)=U_{z}(\lambda, -\lambda’) , Y_{z}(\lambda, \lambda’)=V_{z}(\lambda, -\lambda’) and
Z_{z}(\lambda, \lambda’)=W_{z}(\lambda, -\lambda’) , where U_{z} , V_{z} and W_{z} is defined by [4] Proposition
1.1, we have

\tilde{X}_{z}(\mu, \mu’)=\tilde{U}_{z}(\mu, -\mu’)

=z^{-2}U_{-1/z}(\mu, \mu’)+8w^{-3/2}e(\mu\mu’/z)\beta(\pi(\mu+\mu’)^{2}/w) ,

\tilde{Y}_{z}(\mu, \mu’)=\tilde{V}_{z}(\mu, -\mu’)

=z^{-2}V_{-1/z}(\mu, \mu’)+8w^{-3/2}e(\mu\mu’/z)\beta(\pi(\mu+\mu’)^{2}/w) ,

where we put w=2z/i . (|\arg(w)|<\pi/2) . The relation between \tilde{U}_{z}

(resp. \tilde{V}_{z} ) and U_{z} (resp. V_{z} ) has been stated in [4] Proposition 1.1. Hence
Z_{z}=X_{z}-Y_{z} and its Fourier transform \tilde{Z}_{z} satisfies

\tilde{Z}_{z}(\mu, \mu’)=z^{-2}Z_{-1/z}(\mu, \mu’) .
\square

For \nu\in v^{-1} . we define functions of theta-series type

Z_{1J}(z)= \sum_{\lambda\in \mathcal{O}}Z_{z}(\lambda+\nu, \lambda’+\nu’)
, (3.2)

where 0^{-1} is the inverse different (1/\sqrt{D}) of K . We obtain D distinct
functions Z_{\nu}(z) with Z_{0}=Z . Now

Z_{\nu}(z+1)=e(-\nu\nu’)Z_{\nu}(z) ,

and by the Poisson summation formula

Z_{\nu}(z)=D^{-1/2} \sum_{\mu\in 0-1}\tilde{Z}_{z}(\mu, \mu’)e(tr(\mu\nu))
.

Thus we obtain

z^{-2}Z_{\nu}(-1/z)=z^{-2}D^{-1/2} \sum_{\mu\in 0^{-1}}\tilde{Z}_{z}(\mu, \mu’)e(tr(\mu\nu))
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=D^{-1/2} \sum_{\mu\in 0^{-1}}Z_{z}(\mu, \mu’)e(tr(\mu\nu))

=D^{-1/2} \sum_{\mu\in v^{-1}/\mathcal{O}}Z_{\mu}(z)e(tr(\mu\nu))
.

For T=(\begin{array}{ll}1 10 1\end{array}) and J=(\begin{array}{ll}0 1-1 0\end{array}) we have

Z_{\nu}|T=e(-\nu\nu’) ,
Z_{\nu}|J=D^{-1/2} \sum_{\mu\in 0^{-1}/O}Z_{\mu}(z)e(tr(\mu\nu))

, (3.3)

where Z_{\nu}| (\begin{array}{ll}a bc d\end{array}) denotes the function (cz+d)^{-2}Z_{\nu}( \frac{az+b}{cz+d}) .

For A= (\begin{array}{ll}a bc d\end{array}) \in\Gamma_{0}(D) , we put R=T^{a}JT^{d}JT^{a}J then R\equiv

(\begin{array}{ll}a 00 d\end{array}) mod D . We can choose x\in \mathbb{Z} so that A=A_{1}T^{x}R with A_{1}\in\Gamma(D)

the principal congruence subgroup.

Proposition 4 We have

Z_{\nu}|R=\chi_{D}(d)Z_{-a\nu’} .

In particular, Z_{0}(z) belongs to M_{2}^{*}(\Gamma_{0}(D), \chi_{D}) .

Proof. From (3.3) we find

Z_{\nu}|T^{a}J=D^{-1/2} e(-a\mu\mu’)\sum_{\mu}Z_{\mu}e(tr(\mu\nu)) .

Therefore

Z_{\nu}|R=D^{-3/2} \sum_{\mu}\sum_{\lambda}\sum_{\kappa}e(tr(\mu\nu+\lambda\mu+\kappa\lambda)-a\nu\nu’-d’\mu\mu-a\lambda\lambda’)Z_{\kappa}

=D^{-3/2} \sum_{\kappa}Z_{\kappa}\sum_{\lambda}\sum_{\mu}e(-dN(\mu-a\lambda’-a\nu’)+tr(a\lambda\nu’+\kappa\lambda))

=D^{-1} \chi_{D}(-d)\sum_{\kappa}Z_{\kappa}\sum_{\lambda}e(tr(\lambda(\kappa+a\nu’))

=\chi_{D}(d)Z_{-a\nu’} .

Here we used the well known property of the Gauss sum,

\sum e(-dN(\mu-a\lambda’-a\nu’))=D^{1/2}\chi_{D}(-d) .
\mu\in v^{-1}/0
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In particular, putting \nu=0 we obtain Z_{0}|R=\chi_{D}(d)Z_{0} , which means
Z_{0}|A=\chi_{D}(d)Z_{0} for A= (\begin{array}{ll}a bc d\end{array}) \in\Gamma_{0}(D) since we know by [3] that
Z_{\nu}|A_{1}=Z_{\nu} for A_{1}\in\Gamma(D) . \square

4. The modular form \Phi_{D}(z)

Recalling definitions (3.1) and (3.2), we have

Z_{0}(z)=2y \sum_{N=-\infty}^{\infty}-1/2
\lambda\lambda’=-,N\sum_{\lambda\in \mathcal{O}}\beta(\pi(\lambda+\lambda’)^{2}y)q^{N}

- \frac{1}{2}\sum_{N=1}^{\infty}

\lambda\lambda’=-,N\sum_{\lambda\in \mathcal{O}}\min(|\lambda|, |\lambda’|)q^{N}

. (4.1)

Now we define the function \Phi_{D}(z) by

\Phi_{D}(z)=h_{D}(z)-Z_{0}(z) . (4.2)

Then by Proposition 2 and Proposition 4, we see \Phi_{D}(z) belongs to
M_{2}^{*}(\Gamma_{0}(D), \chi_{D}) . Further we can prove

Proposition 5 The function

\Phi_{D}(z)=-\frac{1}{12}+\sum_{N=1}^{\infty}J_{D}(N)q^{N}+\frac{1}{2}\sum_{N=1}^{\infty}

\lambda\lambda’=-,N\sum_{\lambda\in \mathcal{O}}

min (|\lambda|, |\lambda’|)q^{N}

belongs to M_{2}(\Gamma_{0}(D), \chi_{D}) .

Proof. The N-th Fourier coefficient of \Phi_{D}(z) is independent of y and is
O(N^{r}) for some r>0 , \Phi_{D}(z) is holomorphic on {?} , and also holomorphic
at the cusps of \Gamma_{0}(D) , and \Phi_{D}(z) is O(y^{-r}) as yarrow 0 , which implies \Phi_{D}(z)

belongs to M_{2}(\Gamma_{0}(D), \chi_{D}) . \square

5. Proof of Theorem 1

For a principal integral ideal a of K=\mathbb{Q}(\sqrt{D}) , where we assume D is
a prime number, we put

r(a)= \lambda\lambda’<0(\lambda)-\sum_{-Q}\min(|\lambda|, |\lambda’|)

. (5.1)
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Then

Lemma 6 We have

r(a)=2 \frac{tr(\alpha)}{tr(\epsilon)} ,

where\in>1 is the fundamental unit of K and \alpha is the unique totally positive
generator of a such that \in^{\prime 2}\leq\frac{\alpha}{\alpha}, <\in^{2} .

Proof. Since D is a prime number congruent to 1 modulo 4, we have
N(\in)=-1 . So we can take \lambda_{0}\in O so that a=(\lambda_{0}) , \lambda_{0}>0 and \lambda_{0}’<0

by multiplying a unit to \lambda_{0} suitably. Such \lambda_{0} is unique under the condition
6_{0}^{2} \leq|\frac{\lambda_{0}}{\lambda_{0}}, |<1 where \in 0 is the generator of the group of totally positive units
which satisfies 0<\in 0<1 and \Xi_{0}’>1 . For any \lambda such that a =(\lambda) , \lambda>0

and \lambda’<0 we can write \lambda=\lambda_{0}\in_{0}^{n}(n\in \mathbb{Z}) , and | \frac{\lambda}{\lambda}, |=|, \frac{\lambda_{0}\epsilon_{0}^{n}}{\lambda_{0}\epsilon_{0^{n}}},|=|\frac{\lambda_{0}}{\lambda_{0}}, |\in_{0}^{2n} .
Since \min(|\lambda|, |\lambda’|) is equal to |\lambda| or |\lambda’| according as n\geq 0 or n<0 , we
have

\{\min(|\lambda|, |\lambda’|)|a=(\lambda), \lambda>0\lambda’<0\}

=\{\lambda_{0}\in_{0}^{m}|m\geq 0\}\cup\{-\lambda_{0}’\epsilon_{0}^{n}|n>0\} .

Since we have two choices of the signature of \lambda in (5.1)

r(a)=2 \sum_{m=0}^{\infty}\lambda_{0}\epsilon_{0}^{m}-2\sum_{n=1}^{\infty}\lambda_{0}’\epsilon_{0}^{n}

=2 \frac{\lambda_{0}}{1-\epsilon_{0}}-2\frac{\lambda_{0}’\epsilon_{0}}{1-\epsilon_{0}}

=2 \frac{tr(\lambda_{0}\in)}{tr(\epsilon)} (\epsilon_{0}=\epsilon^{-2}) .

Therefore \alpha=\lambda_{0}\in satisfies the condition in Lemma 6. \square

Remark. We can easily verify
(1) r(a)=r(a’) ( a’ : the conjugate of a).
(2) r((c))= \frac{2|c|}{tr(\epsilon)} (c\in \mathbb{Z}) .

(3) r((c \sqrt{D}))=\frac{2b|c|D}{a} ( \in=\frac{a+b\sqrt{D}}{2} ,_{c\in \mathbb{Z})} .
Now combining Lemma 6 with Proposition 5, we conclude the function
\Phi_{D}(z) has the Fourier expansion stated in Theorem 1. This completes our
proof of Theorem 1.
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6. Numerical examples

For each positive integer n , we define the Hecke operator on S_{k}(\Gamma_{0}(D) ,
\chi_{D}) by

(f|T_{n})(z)=n^{k-1}
\sum_{ad=n}\sum_{dd>0=0}^{n-1}\chi_{D}(a)f((az+b)/d)d^{-k} ,

for f(z)\in S_{k}(\Gamma_{0}(D), \chi_{D}) . A common eigen function f(z)= \sum_{m=1}^{\infty}a_{m}q^{m} of
T_{n} for all n is called a primitive form if a_{1}=1 . It is well known that n-th
Fouriercoefficient a_{n} of f(z) is an eigen value of of T_{n} for a primitive form
f(z) . For a prime D\equiv 1 mod 4, the space M_{2}(\Gamma_{0}(D), \chi_{D}) is the direct
sum of S_{2}(\Gamma_{0}(D), \chi_{D}) and the Eisenstein space spanned by two Eisenstein
series E_{D,1}(z) and E_{D,2}(z) :

E_{D,1}(z)= \sum_{n=1}^{\infty}(\sum_{t|n}\chi_{D}(n/t)t)q^{n} ,

and

E_{D,2}(z)=- \frac{1}{4}B_{2,\chi D}+\sum_{n=1}^{\infty}(\sum_{t|n}\chi_{D}(t)t)q^{n} ,

where B_{2,\chi D} is the second generalized Bernoulli number, or

B_{2,\chi D}= \frac{4}{\chi_{D}(2)-4} \sum_{k=1}^{(D-1)/2}\chi_{D}(k)k .

The function \Phi_{D}(z) is expressed as a linear combination of cusp forms and
these Eisenstein series. In this section we shall give two types of numerical
applications stated in Introuction.

First, since p-th Fourier coefficients of \Phi_{D}(z) contain tr(\alpha) where p=
N(\alpha) , we can express tr(\alpha) by eigen values of Hecke operators. We only
state here the simplest case, namely we take D=5. The dimension of
S_{2}(\Gamma_{0}(5), \chi_{5}) is 0. Thus \Phi_{5}(z) is a linear combination of E_{5,1}(z) and E_{5,2} .
We find easily

\Phi_{5}(z)=\frac{25}{12}E_{5,1}(z)+\frac{5}{12}E_{5,2}(z) . (6.1)

We know the fundamental unit \in>1 of K=\mathbb{Q}(\sqrt{5}) is \frac{1+\sqrt{5}}{2} . Hence
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comparing p-th coefficients of both sides of (6.1) for primes \chi_{5}(p)=1 , we
obtain

tr(\alpha)=\frac{5}{4}(p+1)-\frac{1}{2}J_{5}(p) ,

where \alpha=\frac{x+y\sqrt{5}}{2} is the generator of an ideal a of norm p in K and \alpha

satisfies the condition in Theorem 1. In other words,

Proposition 7 For primes p\equiv\pm 1 mod 5, we put x as

x= \frac{5}{4}(p+1)-\frac{1}{2}

4p-5t^{2}’>0 \sum_{t\in \mathbb{Z}}H(4p-5t^{2})

.

T/ien with a suitable integer y , (x, y) gives an integral solution of the Pell
equation x^{2}-5y^{2}=4p .

Next as second applications, we take D=61 . The dimension of
S_{2}(\Gamma_{0}(61), \chi_{61}) is 4. The coefficients a_{n} of a primitive form f(z)= \sum_{n=1}^{\infty}a_{n}q^{n}

is contained in \mathbb{Q}(\sqrt{3}) or \mathbb{Q}(\sqrt{-4-\sqrt{3}}) according as \chi_{61}(n)=1 or not. The
space S_{2}(\Gamma_{0}(61), \chi_{61}) is spanned by f, \overline{f}=\sum_{n=1}^{\infty}a_{n}^{-}q^{n} , f^{\sigma}= \sum_{n=1}^{\infty}a_{n}^{\sigma}q^{n} and
\overline{f}^{\sigma}=\sum_{n=1}^{\infty}a_{n}^{-\sigma}q^{n}where^{-denotes} complex conjugation and \sigma denotes the el-
ement of Gal (\mathbb{Q}/\mathbb{Q}) which is nontrivial on \mathbb{Q}(\sqrt{3}) (see the table for D=61
in \S 7). To avoid the ambiguity of the choice of the conjugates of a_{n} , we
take the form f(z)= \sum_{n=1}^{\infty}a_{n}q^{n} such that a_{1}=1 , a_{2}=\sqrt{-4-\sqrt{3}} and
a_{3}=-1-\sqrt{3} and fix f hereafter. We put K=\mathbb{Q}(\sqrt{61}) . Now we have two
types of the congruences for a_{p} .

Proposition 8
(1) For each prime p such that \chi_{61}(p)=1 , we have

a_{p}\equiv\alpha_{1}+\alpha_{1}\prime mod c_{13}

where \alpha_{1}\in \mathcal{O} is totally positive and p=\alpha_{1}\alpha_{1}’ , c_{13}=(4+\sqrt{3}) is the ideal
of norm 13 in \mathbb{Q}(\sqrt{3}) .
(2) For primes p\neq 61 , we have

a_{p}\equiv p+1 mod c_{11} for \chi_{61}(p)=1

and

a_{p}\equiv p-1 mod C_{11} for \chi_{61}(p)=-1
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where c_{11}=(1-2\sqrt{3}) is the ideal of norm 11 in \mathbb{Q}(\sqrt{3}) and C_{11} an ideal of
no7m11 in \mathbb{Q}(\sqrt{-4-\sqrt{3}}) dividing c_{11} .

Proof Since f,\overline{f}, f^{\sigma} and \overline{f}^{\sigma} span the space S_{2}(\Gamma_{0}(61), \chi_{61}) , we see F_{1}=

\frac{1}{4}(f+\overline{f}+f^{\sigma}+\overline{f}^{\sigma}) , F_{2}= \frac{1}{4\sqrt{3}}(f+\overline{f}-f^{\sigma}-\overline{f}^{\sigma}) , F_{3}= \frac{1}{4\theta_{1}}(f-\overline{f})+\frac{1}{4\theta_{2}}(f^{\sigma}-\overline{f}^{\sigma})

abaSisofrationa1e1’ entsofS_{2}(\Gamma_{0}(61),\chi_{61}).w_{ecanexpress\Phi_{61}(z)a}^{\theta_{2}=}andF_{4}=\frac{1}{\mathbb{Q}- 4\theta_{1}}(f-\overline{f})-\frac{1}{4\theta_{2},em}(f^{\sigma}-\overline{f}^{\sigma})(\theta_{1}=\sqrt{-4-\sqrt{3}},\sqrt{-4+\sqrt{3}})form_{S}

a \mathbb{Q}-linear combination of E_{61,i} and F_{j} , and we write

\Phi_{61}(z)=\gamma_{1}E_{61,1}+\gamma_{2}E_{61,2}+\sum_{j=1}^{4}\delta_{j}F_{j} for \gamma_{i} , \delta_{j}\in \mathbb{Q} . (6.2)

The coefficients of \Phi_{61}(z)=\sum_{n=0}^{\infty}b(n)q^{n} for small n ’s are calculated as
follows :

\Phi_{61}(z)=-\frac{1}{12}+\frac{43}{78}q^{1}+q^{2}+\frac{28}{13}q^{3}+\frac{125}{78}q^{4}+\frac{32}{13}q^{5}

+2q^{6}+2q^{7}+3q^{8}+\cdot .
1

Comparing the coefficients of q^{n} of both sides of (6.2) for several n , we find

\gamma_{1}=\frac{61}{132,nt},’\gamma_{2}=\frac{1}{W132},\delta_{1}=\frac{35}{429,ue}suffiffifficietoknoexactva1’ s’ ofb(n)n=1,,3,5\delta_{2}=-\frac{51}{for143},\delta_{3}=\frac{6}{211}an,d7 todete\min\delta_{4}=-\frac{8}{11,r’}
.

(Itise\gamma_{i}

,
\delta_{j}.) First we consider a prime p with \chi_{61}(p)=1 , then we find an integer
\alpha\in O of norm p, which satisfies the condition stated in Theorem 1. The p-
th coefficient of \Phi_{61}(z) is b(p)=J_{61}(p)+2 \frac{tr(\alpha)}{tr(\epsilon)} , where\in is the fundamental

unit \in=\frac{39+5\sqrt{61}}{2} . Since \chi_{61}(p)=1 , a_{p} is contained in \mathbb{Q}(\sqrt{3}) and therefore
we can write a_{p}=u_{p}+v_{p}\sqrt{3}(u_{p}, v_{p}\in \mathbb{Z}) . Thus we obtain the equality

2 \cdot 3^{2} 11 13J_{61}(p)+2^{2} 3 ( lltr(a)
=3( 1331(p+1)+2357u_{p}-2\cdot 3^{3} 17v_{p} .

Hence we have

u_{p}+9v_{p}\equiv tr(\alpha) mod 13,

and

u_{p}+6v_{p}\equiv p+1 mod 11.

These congruences are equivalent to

a_{p}\equiv tr(\alpha) mod c_{13} ,
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and

a_{p}\equiv p+1 mod c_{11} .

respectively. For any totally positive element \alpha_{1}\in O of norm p, we can put
\alpha_{1}=\alpha\in^{2n} for some n\in \mathbb{Z} . Since \in^{2}\equiv 1 mod 13, this implies (1). Similar
arguments are also applicable to primes p satisfying \chi_{61}(p)=-1 , and we
obtains the results. \square

Remark 1. Congruences of type (1) were proved by Shimura ([5] 7.7) which
was related to the theory of construction of class fields over real quadratic
fields. Congruences of the type (2) were proved by Doi-Brumer ([2] 7.5.).

Remark 2. Similarly, we can prove congruences of the same types as in
Proposition 8 for 29\leq D\leq 97 , on which we don’t go further.

7. Eigen values of Hecke operators for S_{2}(\Gamma_{0}(D), \chi_{D})

Once we expressed \Phi_{D}(z) as a linear combination of the Eisenstein series
E_{D,1}(z) , E_{D,2}(z) and cusp forms in the form of (6.2) by virtue of Eichler-
Selberg’s trace formula, we are able to give Fourier coeffients a_{p} of primitive
forms f(z)= \sum_{n=1}^{\infty}a_{n}q^{n} in S_{2}(\Gamma_{0}(D), \chi_{D}) for large p by calculating Fourier
coefficients of \Phi_{D}(z) . We list here values of a_{p} for all primes p\leq 97 including
a_{D} , for the prime level D\leq 97 (We note a_{D}a_{D}^{-}=D ).

D=29, \dim S_{2}(29, \chi_{29})=2
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D=37, \dim S_{2}(37, \chi_{37})=2

D=41 , \dim S_{2}(41, \chi_{41})=2

D=53, \dim S_{2}(53, \chi_{53})=4 (We put \theta_{1}=\sqrt{-3+\sqrt{2}}. )
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D=61 , \dim S_{2}(61, \chi_{61})=4 (We put \theta_{2}=\sqrt{-4-\sqrt{3}}. )

D=73, \dim S_{2}(73, \chi_{73})=4 (We put \theta_{3}=\sqrt{(-19+\sqrt{5})/2}. )
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D=89 , \dim S_{2}(89, \chi_{89})=6

( \eta satisfies \eta^{3}+\eta^{2}-3\eta-1=0 , and we put \mu=\sqrt{-3+\eta-\eta^{2}}. )

D=97, \dim S_{2}(97, \chi_{97})=6

( \xi satisfies \xi^{3}-3\xi+1=0 , and we put \nu=\sqrt{-3-4\xi-3\xi^{2}}. )
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