On contracted codes: an extension of Pless' theorem on codes

Tsuyoshi Atsumi

(Received September 22, 1994; Revised April 3, 1995)

Abstract

Using Higman's algebra homomorphism, we prove an extension of Pless' theorem on self-orthogonal symmetry codes. Let C be a self-orthogonal code over F, where F is one of $\operatorname{GF}(2), \mathrm{GF}(3), \mathrm{GF}(4)$, or $\mathrm{GF}\left(p^{a}\right)$. Let τ be an automorphism of C. Then, under some additional conditions on τ, the code can be mapped onto a code of a smaller length that is still self-orthogonal.

Key words: contracted code, dual code, group, algebra homomorphism.

1. Introduction

Pless [10] proved the following interesting result on self-orthogonal symmetry codes:

Result 1 Let C be a symmetry code over $\mathrm{GF}(3)$ and τ an automorphism of C. Under some additional conditions on τ, the code can be mapped onto a code of a smaller length which is still self-orthogonal.

In this paper we shall extend Result 1 so that we can apply it to a wider class of orthogonal codes with automorphism groups. Our result will be given in Theorem 1 of Section 4.

Our proof of the main theorem in Section 5 is based on the fact that a contraction map given in [4] and [10] is nothing but Higman's algebra homomorphism (Section 2), which puts contraction of codes in a new perspective.

In Section 6 we study the contracted codes of the Golay code G_{24} and the extended binary quadratic residue code of length 48 as examples. Furthermore, we shall prove the useful lemma 5 which can be applied to decide the contracted code of a given code with a large automorphism group. (This lemma is interesting because it is related to Research Problem (16.4) of MacWilliams-Sloane's book [7].)

The method of attack is based on Higman's algebra homomorphism.

[^0]
2. Contraction of Matrices

Here we shall state Higman's result and a few lemmas on contraction of matrices. Let R be a commutative ring with identity and X, Y, Z all finite non-empty sets. Let $M_{R}(X, Y)$ be the totality of maps $A: X \times Y \mapsto R$. A is called an $X \times Y$ matrix over R. For $A \in M_{R}(X, Y)$ and $B \in M_{R}(Y, Z)$, define $A B \in M_{R}(Y, Z)$ by

$$
A B(x, z)=\sum_{y \in Y} A(x, y) B(y, z) \quad(x \in X, z \in Z)
$$

The transpose of a matrix A is denoted by A^{t}. If \mathbf{P}, \mathbf{Q} are partitions of X, Y, respectively, then we say that $A \in M_{R}(X, Y)$ has property (\mathbf{P}, \mathbf{Q}) if for all $S \in \mathbf{P}, T \in \mathbf{Q}$,

$$
\sum_{t \in T} A(s, t) \text { is independent of } s \in S
$$

Assume that $A \in M_{R}(X, Y)$ has property (\mathbf{P}, \mathbf{Q}). Then for $S \in \mathbf{P}, T \in \mathbf{Q}$, we set $\delta(A)(S, T)=\sum_{t \in T} A(s, t)$ for some $s \in S$. Higman [5, p. 1] proved the following proposition.

Proposition 1 If $A \in M_{R}(X, Y)$ has property (\mathbf{P}, \mathbf{Q}) and $B \in M_{R}(Y, Z)$ has property (\mathbf{Q}, \mathbf{U}), then $A B \in M_{R}(X, Z)$ has property (\mathbf{P}, \mathbf{U}) and $\delta(A B)$ $=\delta(A) \delta(B)$.

Proof. See Higman [5].
We call δ in Proposion 1, Higman's algebra homomorphism. Let $\mathbf{P}=$ $\left\{S_{1}, \ldots, S_{l}\right\}$ be a partition of X or Y. We define an $\mathbf{P} \times \mathbf{P}$ matrix $D(\mathbf{P})$ as follows: Let $S_{i}, S_{j} \in \mathbf{P}$,

$$
D(\mathbf{P})\left(S_{i}, S_{j}\right)=\left\{\begin{array}{cl}
\left|S_{i}\right| & \text { if } S_{i}=S_{j} \\
0 & \text { otherwise }
\end{array}\right.
$$

Then we have
Proposition 2 Suppose that $\mathbf{P}=\left\{S_{1}, \ldots, S_{l}\right\}$ and $\mathbf{Q}=\left\{T_{1}, \ldots, T_{m}\right\}$ are partitions of X and Y, respectively. If A and A^{t} have property (\mathbf{P}, \mathbf{Q}) and property (\mathbf{Q}, \mathbf{P}), respectively, then

$$
D(\mathbf{Q}) \delta\left(A^{t}\right)=\delta(A)^{t} D(\mathbf{P}) .
$$

Proof. See Atsumi [2].
The following lemma plays an important part in the calculations of the dimension of contracted codes.

Lemma 1 (Block) Assume that R is a field. Suppose that $\mathbf{P}=\left\{S_{1}\right.$, $\left.\ldots, S_{l}\right\}$ and $\mathbf{Q}=\left\{T_{1}, \ldots, T_{m}\right\}$ are partitions of X and Y, respectively. If $A \in M_{R}(X, Y)$ has property (\mathbf{P}, \mathbf{Q}), then $\operatorname{rank} A-\operatorname{rank} \delta(A) \leq|Y|-m$.
Proof. See Hughes and Piper [6, p. 43].

3. Terminology

Let F be a finite field $\operatorname{GF}\left(p^{a}\right)$, where p is a prime. Let C be a k dimensional subspace of F^{n}. Then C is called an (n, k) code over F. A vector in C is called a codeword. The weight of a vector of F^{n} is defined to be the number of its non-zero coordinates. The minimum weight $d(C)$ of a code C is the weight of the non-zero codeword of smallest weight.

Conjugation in $F=\operatorname{GF}\left(p^{a}\right)$ is defined by $x \mapsto \bar{x}=x^{p}$ for $x \in F$. For vectors \mathbf{u}, \mathbf{v} of F^{n}, the usual inner product (\mathbf{u}, \mathbf{v}) of \mathbf{u} and \mathbf{v} is defined by

$$
\begin{equation*}
(\mathbf{u}, \mathbf{v})=u_{1} \bar{v}_{1}+, \ldots,+u_{n} \bar{v}_{n} \tag{1}
\end{equation*}
$$

where $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right)$ and $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$. The dual code of C, denoted by C^{\perp}, is the subspace of F^{n} consisting of all vectors $\mathbf{v} \in F^{n}$ with $(\mathbf{v}, \mathbf{c})=0$ for all $\mathbf{c} \in C . C^{\perp}$ has dimension $n-k . C$ is called self-orthogonal if $C \subseteq C^{\perp}$ and self-dual if $C=C^{\perp}$.

A monomial transformation on F^{n} is a linear map given by a monomial matrix, that is, a map of the form

$$
\tau:\left(v_{1}, \ldots, v_{n}\right) \mapsto\left(\epsilon_{1} v_{(1) \pi}, \ldots, \epsilon_{n} v_{(n) \pi}\right),
$$

where π is a permutation $\{1, \ldots, n\}$ and $\epsilon_{1}, \ldots, \epsilon_{n}$ are non-zero elements of F. Two codes C and C^{\prime} in F^{n} is called equivalent if there exists a monomial transformation τ such that $C^{\prime}=C \tau$. Let C be a code over F in F^{n}. The group $G(C)$ consisting of all monomial transformations which send C onto itself is called the automorphism group of the code C. For further information on coding theory, see MacWilliams-Sloane [7]. For codes with automorphism groups, see Yoshida [13] which contains several interesting problems.

4. Contracted codes

Let C be an (n, k) code and τ an element in $G(C)$. As in [3], we call $\tau \in G(C)$ orderly if the order of τ equals the order of its induced permutation π. From now on we assume that $\tau \in G(C)$ is orderly and its induced permutation π is a product of disjoint r cycles of length m with no fixed points. (Note that τ is order $m, n=m r$ and π is conjugate to τ in the monomial transformation group of F^{n}.) In order to define the contracted code of C with respect to $\tau \in G(C)$, we need a lot of notations. Let $\pi=\pi_{1} \cdots \pi_{r}$ be a cycle decomposition of the permutation associated to the monomial automorphism τ of the code C, so that every π_{i} is a cycle of length m by the above assumption. For each cycle π_{i}, there is a unique non-zero vector \mathbf{w}^{i} of F^{n} which has 1 at the smallest coordinate index of the given cycle and 0 's elsewhere. Clearly

$$
\begin{equation*}
\mathbf{w}^{1}, \mathbf{w}^{1} \tau, \ldots, \mathbf{w}^{1} \tau^{m-1}, \mathbf{w}^{2}, \mathbf{w}^{2} \tau, \ldots, \mathbf{w}^{r}, \mathbf{w}^{r} \tau, \ldots, \mathbf{w}^{r} \tau^{m-1} \tag{2}
\end{equation*}
$$

form a basis of F^{n}. For each vector $\mathbf{v} \in F^{n}$, we denote by $\tilde{\mathbf{v}}$ the coordinate vector of \mathbf{v} with respect to the above basis (2). For vectors \mathbf{u}, \mathbf{v} of F^{n}, another inner product $(\mathbf{u}, \mathbf{v})_{\tau}$ is defined by

$$
\begin{equation*}
(\mathbf{u}, \mathbf{v})_{\tau}=\sum_{i=1}^{r} \sum_{j=0}^{m-1} x_{i j} \bar{y}_{i j} \tag{3}
\end{equation*}
$$

where $\mathbf{u}=\sum_{i=1}^{r} \sum_{j=0}^{m-1} x_{i j} \mathbf{w}^{i} \tau^{j}$ and $\mathbf{v}=\sum_{i=1}^{r} \sum_{j=0}^{m-1} y_{i j} \mathbf{w}^{i} \tau^{j}$. As in [10], we define a linear transformation σ on F^{n} by

$$
\mathbf{u} \sigma=\mathbf{u}+\mathbf{u} \tau+\cdots+\mathbf{u} \tau^{m-1} \quad \text { for } \mathbf{u} \in F^{n}
$$

and set

$$
F^{n} \sigma=\left\{\mathbf{u} \sigma \mid \mathbf{u} \in F^{n}\right\} \text { and } C \sigma=\{\mathbf{u} \sigma \mid \mathbf{u} \in C\} .
$$

For $i=1, \ldots, r$, set

$$
\mathbf{v}^{i}=\mathbf{w}^{i}+\mathbf{w}^{i} \tau+\cdots+\mathbf{w}^{i} \tau^{m-1}
$$

Then $\mathbf{v}^{1}, \ldots, \mathbf{v}^{r}$ form a basis of vector subspace $F^{n} \sigma$. Every element \mathbf{w} of $F^{n} \sigma$ is of the form

$$
\mathbf{w}=\sum_{i=1}^{r} x_{i} \mathbf{v}^{i} \quad \text { for some } x_{i} \in F
$$

The linear transformation φ defined by $(\mathbf{w}) \varphi=\left(x_{1}, \ldots, x_{r}\right)$ for $\mathbf{w} \in F^{n} \sigma$, is an isomorphism from $F^{n} \sigma$ onto F^{r} (compare with the definition of φ in Section 3 in [10]).

Now we define contracted code \tilde{C}_{τ} of code C with automorphism τ to be the subspace

$$
\tilde{C}_{\tau}=\left\{\left(x_{1}, \ldots, x_{r}\right) \mid \mathbf{w}=\sum_{i=1}^{r} x_{i} \mathbf{v}^{i} \quad \text { for all } \mathbf{w} \in C \sigma\right\} .
$$

Note that $\tilde{C}_{\tau}=(C \sigma) \varphi=(C) \sigma \varphi$, the image of C under $\sigma \varphi$.
Clearly \tilde{C}_{τ} is an subspace of F^{r}, which is endowed with the usual inner product,

$$
\begin{equation*}
(\mathbf{u}, \mathbf{v})=u_{1} \bar{v}_{1}+\cdots+u_{r} \bar{v}_{r} \tag{4}
\end{equation*}
$$

where $\mathbf{u}=\left(u_{1}, \ldots, u_{r}\right)$ and $\mathbf{v}=\left(v_{1}, \ldots, v_{r}\right)$. Our main purpose in this paper is to prove the following

Theorem 1 If C is self-orthogonal with respect to the inner product (1) and for $\tau \in G(C)$, its induced permutation π has r cycles of equal length m and no fixed points, then \tilde{C}_{τ} is also self-orthogonal with respect to the inner product (4) under one of the following conditions. (a) F is $\mathrm{GF}(2)$, (b) F is $\mathrm{GF}(3)$, (c) F is $\mathrm{GF}(4)$, (d) F is $\mathrm{GF}\left(p^{a}\right)$ and τ is a permutation, i.e., $\tau=\pi$.

Remark. This theorem implies that the linear transformation $\sigma \varphi$ preserves the property of self-orthogonality.

For contracted codes, see Conway and Pless [3] and Pless [10].

5. Proof of Theorem

Now we start to prove our theorem. From now on suppose that F will denote one of $\operatorname{GF}(2), \operatorname{GF}(3), \operatorname{GF}(4)$, or $\operatorname{GF}\left(p^{a}\right)$ in Theorem 1. We shall divide our proof of the theorem into several lemmas. Let us set

$$
C_{\tau}=\{\tilde{\mathbf{v}} \mid \text { for all } \mathbf{v} \in C\} .
$$

(Here recall that $\tilde{\mathbf{v}}$ denotes the coordinate vector of \mathbf{v} with respect to the basis (2).) Then we have the following.

Lemma 2 (a) C_{τ} is self-orthogonal with respect to the inner product (3).
(b) Permutation π sends C_{τ} onto itself.

Proof. When F is $\operatorname{GF}(2), \operatorname{GF}(3)$ or $\mathrm{GF}(4),(\mathbf{u}, \mathbf{v})=(\mathbf{u}, \mathbf{v})_{\tau}$. Also, when F is $\operatorname{GF}\left(p^{a}\right)$ and τ is a permutation, $(\mathbf{u}, \mathbf{v})=(\mathbf{u}, \mathbf{v})_{\tau}$. These equations imply part (a). We next prove part (b). Let $\mathbf{u}=\sum_{i=1}^{r} \sum_{j=0}^{m-1} x_{i j} \mathbf{w}^{i} \tau^{j}$ be a codeword. Clearly $\mathbf{u} \tau=\sum_{i=1}^{r} \sum_{j=0}^{m-1} x_{i j} \mathbf{w}^{i} \tau^{j+1}$. Since τ is of order m, we have $\tilde{\mathbf{u}} \pi^{-1}=\widetilde{\mathbf{u} \tau}$. This equation proves part (b).

If $F=\mathrm{GF}(4)$, then the lemma above is Theorem 2 of Conway and Pless [4].

Lemma 3 Let $\mathbf{u}=\sum_{1}^{r} x_{i} \mathbf{v}^{i} \in C \sigma$. That is, $\left(x_{1}, \ldots, x_{r}\right) \in \tilde{C}_{\tau}$. Then, there exists $\mathbf{u}^{\prime} \in C$ such that $\mathbf{u}=\mathbf{u}^{\prime}+\mathbf{u}^{\prime} \tau+\cdots+\mathbf{u}^{\prime} \tau^{m-1}$. Let $\tilde{\mathbf{u}}^{\prime}=$ $\left(x_{11}, \ldots, x_{1 m}, x_{21}, \ldots, x_{r 1}, \ldots, x_{r m}\right)$ be the coordinate vector of \mathbf{u}^{\prime} with respect to the basis (2). Then the following hold:
(a) For $i=1, \ldots, r, x_{i}=x_{i 1}+\cdots+x_{i m}$.
(b) $\tilde{\mathbf{u}}=\tilde{\mathbf{u}}^{\prime}+\tilde{\mathbf{u}}^{\prime} \pi^{-1}+\cdots+\tilde{\mathbf{u}}^{\prime}\left(\pi^{-1}\right)^{m-1}$.

Proof. Clear.
Let R be a principal ideal domain such that (a) F is a homomorphic image of R and (b) the quotient field K of R has characteristic 0 . (For existence proof for such a principal ideal domain R, see Theorem 13.13 in [8, p. 81] and Theorem 13.27 in [8, p. 91].) So let ${ }^{*}: R \mapsto F$ be the ring homomorphism and the kernel of ${ }^{*} \wp . \Lambda(C)$ in R^{n} is defined by taking as its elements all $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right) \in R^{n}$ such that $u_{i} \in R$ and $\mathbf{u}^{*}=$ $\left(u_{1}^{*}, \ldots, u_{n}^{*}\right) \in C_{\tau}$, where $u_{i}^{*} \in F$.

To prove our theorem, we need the following simple notation. For $x \in$ R, we set $\bar{x}=x^{p}$, where p is the characteristic of F. (Note that $\bar{x}^{*}=\overline{x^{*}}$ in F, where $\overline{x^{*}}$ is the conjugate of x^{*} in F (see Section 3).) For $A \in M_{R}(X, Y)$, we define $\bar{A} \in M_{R}(X, Y)$ by

$$
\bar{A}(x, y)=\overline{A(x, y)} \quad(x \in X, y \in Y)
$$

Now we shall finish the proof. Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{l}\right\}$ is a basis of $C \sigma$. Then by Lemma 3 for $i=1, \ldots, l$, there exists $\mathbf{u}_{i}^{\prime} \in C$ such that $\tilde{\mathbf{u}}_{i}=$ $\tilde{\mathbf{u}}_{i}^{\prime}+\tilde{\mathbf{u}}_{i}^{\prime} \pi^{-1}+\cdots+\tilde{\mathbf{u}}_{i}^{\prime}\left(\pi^{-1}\right)^{m-1}$. For $i=1, \ldots, l$, let $\mathbf{w}_{i} \in \Lambda(C)$ such that $\mathbf{w}_{i}^{*}=\tilde{\mathbf{u}}_{i}^{\prime}$. The vectors, $\mathbf{w}_{1}, \mathbf{w}_{1} \pi^{-1}, \ldots, \mathbf{w}_{1}\left(\pi^{-1}\right)^{m-1}, \mathbf{w}_{2}, \mathbf{w}_{2} \pi^{-1}, \ldots$, $\mathbf{w}_{l}, \mathbf{w}_{l} \pi^{-1}, \ldots, \mathbf{w}_{l}\left(\pi^{-1}\right)^{m-1}$ form an $l m \times n$ matrix A (with rows labeled $1, \ldots m, m+1, \ldots, 2 m, \ldots,(l-1) m+1, \ldots, l m)$. Let us set $S_{i}=\{(i-$ 1) $m+1, \ldots, i m\}, T_{j}=$ the set of the coordinate indices in π_{j}, where π_{j} is a cycle of π.

Let $\mathbf{P}=\left\{S_{1}, \ldots, S_{l}\right\}, \mathbf{Q}=\left\{T_{1}, \ldots, T_{r}\right\}$. Then we see that \bar{A} and \bar{A}^{t} have property (\mathbf{P}, \mathbf{Q}) and property (\mathbf{Q}, \mathbf{P}), respectively. By Proposition 2

$$
D(\mathbf{Q}) \delta\left(\bar{A}^{t}\right)=\delta(\bar{A})^{t} D(\mathbf{P})
$$

where $D(\mathbf{Q})=m I_{r}, D(\mathbf{P})=m I_{l}$. Hence,

$$
\begin{equation*}
\delta\left(\bar{A}^{t}\right)=\delta(\bar{A})^{t} . \tag{5}
\end{equation*}
$$

By Proposition 1 we have

$$
\begin{align*}
\delta\left(A \bar{A}^{t}\right) & =\delta(A) \delta\left(\bar{A}^{t}\right) \\
& =\delta(A) \delta(\bar{A})^{t}, \quad \text { by }(5) . \tag{6}
\end{align*}
$$

It follows from Lemma 2 that every (i, j) component of matrix $A \bar{A}^{t}$ is in \wp, the kernel of ${ }^{*}$. So is that of matrix $\delta\left(A \bar{A}^{t}\right)$. So this fact and Equation (6) show that

$$
\begin{equation*}
\left\{\delta(A) \delta(\bar{A})^{t}\right\}^{*}=0 \quad \text { (zero matrix). } \tag{7}
\end{equation*}
$$

Lemma 4 The rows of matrix $\delta(A)^{*}$ generate \tilde{C}_{τ} and \tilde{C}_{τ} is self-orthogonal.

Proof. Lemma 3(a) implies that the rows of $\delta\left(A^{*}\right)\left(=\delta(A)^{*}\right)$ generates \tilde{C}_{τ}. This completes the first statement.

$$
\begin{aligned}
\left\{\delta(\bar{A})^{t}\right\}^{*} & =\left\{\delta(\bar{A})^{*}\right\}^{t} \\
& =\delta\left(\overline{A^{*}}\right)^{t} \\
& =\overline{\delta\left(A^{*}\right)} \\
& =\overline{\delta(A)^{*}}
\end{aligned}
$$

where the third equation holds since δ and ${ }^{-}$commute with one another. By this equation and (7), we have

$$
\delta(A)^{*}{\overline{\delta(A)^{*}}}^{t}=0 \quad \text { (zero matrix), }
$$

which shows that \tilde{C}_{τ} is self-orthogonal.
This lemma completes a proof of our theorem.

6. Examples

To determine the contracted codes of codes given below in Examples 1 and 2, we need the following lemma (cf. Research Problem (16.4) [7, p. 498]).

Lemma 5 Let C be an (n, k) code over F, having a permutation, $\pi_{0}\left(=\tau_{0}\right)$ in $G(C)$ such that the cycle structure of π_{0} is

$$
\begin{equation*}
(1, \ldots, m)(m+1, \ldots, 2 m), \ldots,((r-1) m+1, \ldots, r m) \tag{8}
\end{equation*}
$$

Let G^{\prime} be a generator matrix for C. Let G be obtained from G^{\prime} by arranging the columns of G^{\prime} in the order $1, \ldots, m, m+1, \ldots, 2 m, \ldots,(r-1) m+$ $1, \ldots, r m$ given in (8). Suppose $G=[L \mid R]$, where L is an $k \times l m$ matrix of rank $l m, R$ is a $k \times(r-l) m$ matrix. Then, the dimension of $\tilde{C}_{\tau_{0}}$ is greater than or equal to l.

Proof. We let the vectors in the basis $G=[L \mid R]$ be denoted by \mathbf{e}_{i}. The vectors, $\mathbf{e}_{1}, \mathbf{e}_{1} \pi_{0}^{-1}, \ldots, \mathbf{e}_{1}\left(\pi_{0}^{-1}\right)^{m-1}, \mathbf{e}_{2}, \mathbf{e}_{2} \pi_{0}^{-1}, \ldots, \mathbf{e}_{k}, \mathbf{e}_{k} \pi_{0}^{-1}, \ldots, \mathbf{e}_{k}\left(\pi_{0}^{-1}\right)^{m-1}$ form an $k m \times n$ matrix $A=\left[L^{\prime} \mid R^{\prime}\right]$ (with rows labeled $1, \ldots, m, m+$ $1, \ldots, 2 m, \ldots,(k-1) m+1, \ldots, k m)$, where L^{\prime} is a $k m \times l m$ matrix, R^{\prime} is a $k m \times(r-l) m$ matrix. Let us set $S_{i}=\{(i-1) m+1, \ldots, i m\}$, $T_{j}=\{(j-1) m+1, \ldots, j m\}$. Let us set $\mathbf{P}=\left\{S_{1}, \ldots, S_{k}\right\}, \mathbf{Q}^{\prime}=\left\{T_{1}, \ldots, T_{l}\right\}$, $\mathbf{Q}^{\prime \prime}=\left\{T_{l+1}, \ldots, T_{r}\right\}$. We see that A and L^{\prime} have property $\left(\mathbf{P}, \mathbf{Q}^{\prime} \cup \mathbf{Q}^{\prime \prime}\right)$ and property $\left(\mathbf{P}, \mathbf{Q}^{\prime}\right)$, respectively. Clearly

$$
\begin{equation*}
\operatorname{rank} \delta(A) \geq \operatorname{rank} \delta\left(L^{\prime}\right) \tag{9}
\end{equation*}
$$

By Lemma 1,

$$
\begin{equation*}
\operatorname{rank} L^{\prime}-\operatorname{rank} \delta\left(L^{\prime}\right) \leq l m-l \tag{10}
\end{equation*}
$$

Since $\operatorname{rank} L^{\prime}=\operatorname{rank} L=l m$, by (10) we have

$$
\operatorname{rank} \delta\left(L^{\prime}\right) \geq l
$$

From this inequality and (9),

$$
\begin{equation*}
\operatorname{rank} \delta(A) \geq l \tag{11}
\end{equation*}
$$

Since the $\mathbf{e}_{i}+\mathbf{e}_{i} \pi_{0}^{-1}+\cdots+\mathbf{e}_{i}\left(\pi_{0}^{-1}\right)^{m-1}$'s generate $C \sigma_{0}$, it follows from Lemma 3 (a) that the rows of $\delta(A)$ generate $\tilde{C}_{\tau_{0}}$. So this and (11) prove our lemma.

Example 1. We take for C the $(24,12)$ Golay code over GF(2). Note that when $F=\mathrm{GF}(2)$, for every $\tau \in G(C) \tau$ equals π, the induced permutation of τ. We shall use the following results (a) and (b) from [7, p. 498]. (a) A double circulant generator matrix G for this code is given by

$$
G=\left[I_{12} \mid A\right],
$$

where I is the identity matrix of order 12 , and

$$
A=\left(\begin{array}{llllllllllll}
1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right)
$$

and the columns of G are labeled $21,7,16,12,19,22,0, \infty, 14,15,18$, $2,20,17,4,6,1,5,3,11,9,13,8,10$. (b) Permutation $\pi=(21,7,16$, $12,19,22,0, \infty, 14,15,18,2)(20,17,4,6,1,5,3,11,9,13,8,10)$ is an automorphism of C.

Here in order to define the basis (2) we introduce the following convention: $\infty<0<1<\cdots<22$. Let us set $\tau=\pi^{6}$. Then, τ satisfies the assumptions of Theorem 1. So

$$
\begin{equation*}
\tilde{C}_{\tau} \text { is self-orthogonal. } \tag{12}
\end{equation*}
$$

We apply Lemma 5 with $\pi_{0}=\tau$ and $G^{\prime}=G$. Then we have

$$
\begin{equation*}
\operatorname{dim} \tilde{C}_{\tau} \geq 6 \tag{13}
\end{equation*}
$$

Hence by (12) and (13) we have that

$$
\tilde{C}_{\tau} \text { is self-dual. }
$$

Note that \tilde{C}_{τ} has no codewords of weight 2 . For if \tilde{C}_{τ} has a codeword of weight 2, then the code C has a codeword of weight 4 , which contradicts
the fact that the minimum weight of the Golay code is 8 . We see that \tilde{C}_{τ} is equivalent to B_{12} as described in [9].

Example 2. We take for C the $(48,24)$ extended quadratic residue code over GF(2). Let N denote the set of nonresidues modulo 47. Let

$$
\begin{aligned}
g(x)= & (1+x)\left(1+x+x^{2}+x^{3}+x^{5}+x^{6}+x^{7}+x^{9}\right. \\
& \left.+x^{10}+x^{12}+x^{13}+x^{14}+x^{18}+x^{19}+x^{23}\right)
\end{aligned}
$$

Then

$$
g(x)\left(1+\sum_{n \in N} x^{n}\right) \equiv g(x) \quad \bmod \left(x^{47}-1\right)
$$

By this equation and Theorem 1 in [7, p. 217],

$$
<g(x)>\subseteq<1+\sum_{n \in N} x^{n}>
$$

Since both $<g(x)>$ and $<1+\sum_{n \in N} x^{n}>$ are of 23 dimensions, we must have

$$
<g(x)>=<1+\sum_{n \in N} x^{n}>
$$

From this equation and a generator matrix (28) in [7, p. 490] it follows that a generator matrix \hat{G} for C is given by

$$
\hat{G}=\left(\begin{array}{ccccc|c}
& & & & & 0 \\
& & \bar{G} & & & \vdots \\
& & & & & 0 \\
\hline 1 & 1 & \ldots & 1 & 1 & 1
\end{array}\right)
$$

where \bar{G} is a generator matrix for the cyclic code $<g(x)>$ of length 47 and the columns of \hat{G} are labeled $0,1, \ldots, 46, \infty$. Theorem 10 in [7, p 492] states that the automorphism group of the code C contains $P S L_{2}(47)$. So, this code has a permutation τ of order 2 in $G(C)$, which is given by

$$
\tau: y \mapsto-1 / y
$$

where $y \in\{0,1, \ldots, 46, \infty\}$. The cycle structure of τ is

$$
(0, \infty)(1,46)(2,23)(3,31)(4,35)(5,28)(6,39)(7,20)(8,41)(9,26)
$$

$$
\begin{aligned}
& (10,14)(11,17)(12,43)(13,18)(15,25)(16,44)(19,42)(21,38) \\
& (22,32)(24,45)(27,40)(29,34)(30,36)(33,37)
\end{aligned}
$$

In order to define the basis (2) we make the following convention: $\infty<0<$ $1<\cdots<46$. Clearly τ satisfies the conditions of Theorem 1. So,

$$
\begin{equation*}
\tilde{C}_{\tau} \text { is self-orthogonal. } \tag{14}
\end{equation*}
$$

We start to calculate the dimension of \tilde{C}_{τ}. We see that the columns of \hat{G} whose labels are in 12 cycles of $\tau,(0, \infty),(1,46),(3,31),(4,35),(5,28),(6$, $39),(8,41),(24,45),(27,40),(29,34),(30,36),(33,37)$, are independent. We apply Lemma 5 with $\pi_{0}=\tau$, and $G^{\prime}=G$. Then we have

$$
\begin{equation*}
\operatorname{dim} \tilde{C}_{\tau} \geq 12 \tag{15}
\end{equation*}
$$

Hence by (14) and(15) we have that

$$
\begin{equation*}
\tilde{C}_{\tau} \text { is self-dual. } \tag{16}
\end{equation*}
$$

In order to determine \tilde{C}_{τ} we need the following easy
Lemma $6 \quad \tilde{C}_{\tau}$ has no codewords of weight 4, but codewords of weight 6 .
Proof. If \tilde{C}_{τ} has a codeword of weight 4 , then C has a codeword of weight 8 , which contradicts the fact that the minimum weight of the code C is 12 (see [7, p. 483]). Let \mathbf{v} be the third row of \hat{G}. Since an 1×48 matrix $\mathbf{v}+\mathbf{v} \tau$ has property $(\{1\}, \mathbf{Q})$, where \mathbf{Q} is the set of the orbits of τ on $\{\infty, 0,1, \ldots$, $46\}$. So by using Proposition $1 \delta(\mathbf{v}+\mathbf{v} \tau)$ is a codeword of weight 6 in \tilde{C}_{τ}.

This lemma and (16) prove that \tilde{C}_{τ} is equivalent to Z_{24}, which is described in [11].

Remark. We see that the symmetry codes are good ones from a viewpoint of Lemma 5. The Mathematica [12] was used to compute various properties of the code in Example 2.

7. Concluding Remarks

We found that by modifying Pless' method (see the proof of Theorem 4 [10]) over a suitable principal ideal domain we can give a straightforward proof to the theorem. If we define contracted code for the code with an "orderly" automorphism group, then all results of this paper hold when
τ is replaced with an "orderly" automorphism group G which induces a semiregular permutation group on $\{1, \ldots, n\}$.

Acknowledgments I would like to thank the referee for his many suggestions that have helped to improve the paper.

References

[1] Assmus E.F. Jr. and Mattson H.F. Jr., Contractions of self-orthogonal codes. Discrete Math. 3 (1972), 21-32.
[2] Atsumi T., An elementary proof of Yoshida's inequality for block designs which admit automorphism groups. J. Math. Soc. Japan, 41 (1989), 301-310.
[3] Conway J.H. and Pless V., On primes dividing the group order of a doubly-even ($72,36,16$) code and the group order of a quaternary $(24,12,10)$ code. Discrete Math. 38 (1982), 143-156.
[4] Conway J.H. and Pless V., Monomials of orders 7 and 11 cannot be in the group of a (24, 12, 10) self-dual quaternary code. IEEE Trans. Inform. Theory 29 (1983), 137-140.
[5] Higman D.G., Combinatorial considerations about permutation groups. Mathematical Institute, Oxford, 1972.
[6] Hughes D.R. and Piper F.C., Design theory. Cambridge University Press, Cambridge, 1985.
[7] MacWilliams F.J. and Sloane N.J.A., The theory of error-correcting codes. NorthHolland, Amsterdam, 1977.
[8] Nagao H. and Tsushima Y., Representations of Finite Groups. Academic Press, New York, 1989.
[9] Pless V., A classification of self-orthogonal codes over GF(2). Discrete Math. 3 (1972). 209-246.
[10] Pless V., Symmetry codes and their invariant subcodes. J. Combin. Theory, Series A, 18 (1975), 116-125.
[11] Pless V. and Sloane N.J.A., On the classification and enumeration of self-dual codes. J. Combin. Theory, Series A, 18 (1975), 313-335.
[12] Wolfram S., Mathematica. Second Ed., Addison-Wesley, Reading MA, 1991.
[13] Yoshida T., MacWilliams identity for linear codes with group action. Kumamoto J. Math. 6 (1993), 29-45.

> Department of Mathematics
> Faculty of Science
> Kagoshima University
> Kagoshima 890, Japan
> E-mail: atsumi@sci.kagoshima-u.ac.jp

[^0]: 1991 Mathematics Subject Classification : 94B05.

