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Remark on fundamental solution for vorticity equation of
two dimensional Navier — Stokes flows
(Dedicated to Professor Kéji Kubota on his sixtieth birthday)
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Abstract. In this paper we treat a perturbed heat equation related to the vorticity
equation for the Navier—Stokes flow in R?. We get estimate for the fundamental solution
of this equation. We note that estimate like ours played the essential role in the paper
by Giga, Miyakawa and Osada [4] where they discussed existence of solution for Navier-

Stokes equation in R? with measure as initial vorticity.
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1. Introduction and Results

Consider the incompressible Navier-Stokes equations in two dimen-
sional Euclidean space R?:

(NS) ur — vAu+ (u, V)u+Vp=0, divu =0 in (0,00) x R?

u‘t:() = Up in R2,

where u = u(t,z) = (u1(t,x),us2(t,z)) is the velocity vector field, p =
p(t,x) is the pressure, v > 0 is the kinematic viscosity, u; = du/0t, V
(0/0x1,0/0x9) and divu = Ouy/dz1 + Ouz/Oz,.

For the vorticity w(t,x) = rotu(t,z) = duy/0xy — dus/Ox1, we reduce
to the following equations by the well known Biot—Savart law:

w — VAw + (u, V)w =0, wu(t,z) =Kx*xw(t, x)
(NSR) in (0,00) x R?,

Wt=0 = wo = rot ug in R?
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where the kernel K(z) = z+/(27|2|?) with &+ = (—z9,z;). The symbol
* means a convolution with respect to space variable x. That is, for two
functions f = f(t,x) and g = ¢(t,z) which may be independent of time
variable ¢, we define

fxg(t) = [ f(to=y)-glt.y) dy.

Here we note that rot (K * f) = f and div (K % f) = 0 formally.

Here we summarize notations which we need throughout this paper. A
function or a vector field f = f(¢,z) is denoted by f(¢t) for simplicity. If
f = f(z), we denote only f. The Banach space LP(R?) represents scalar or
R? valued Lebesgue’s space with exponent p and we use || - ||, for its norm.
We say that a vector field f(t,z) = (f1, f2) is in BL1((0,T] x R?), if f(t)
and all its derivatives are bounded and continuous in (0,T] x R? and f(t)
satisfies div f = 0 in (0,7] x R?.

In [4] Giga, Miyakawa and Osada constructed a global solution to
when initial vorticity wp is a integrable function (i.e. wy € L'(R?)) or more
generally a finite Radon measure by solving [NSR). Note that no smallness
assumption on wy was imposed there and that uyp may not be square in-
tegrable even locally. They also proved that their solution is unique when
wo € L?(R?). However for general finite Radon measure wy the uniqueness
of solution seems to be a still open problem. Later their proof was sim-
plified by Kato [5]. A difference proof was given by Ben-Artzi when
wo € L'(R?). An extention to bounded domain with zero boundary vortic-
ity was given in Miyakawa and Yamada .

The method in [4] is based on the delicate estimates from above for the
fundamental solution of the equation:

wi — VAw + (1, V)w =0 in (0,T] x R?,

w |

w‘t:() = Wo in R2
with a given coefficient u(t). To obtain their estimates, they assumed that
divu =0 and |lv(t)|]1 £ My

with My > 0 independent of ¢, where v(t) = rot u(t) so that u(t) = Kx*uv(t).
They used the special structure of K in u(t) = K % v(t) to obtain their
estimate. However, it is not clear in what may their constant depend on
My. The purpose of our paper is to establish similar estimate under the
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assumptions that divu = 0 and

sup V1 - |[u(t)|loo < M (L1)
0<t<T

for some positive constant M (instead of ||v(t)||1 < My) with explicit de-

pendence of constants in M. Our main result is

Theorem 1 Assume that the coefficient u € BL1((0,T] x R?) satisfies
(1.1). Then the fundamental solution Ty (t,z;s,y) for (RE) satisfies:

CeK1M? K|z — y|2
Lu(t,@;s,y) < ———— - —
(t,;5.9) vo(t —s) P vt —s)

for 0 < s <t <T and z,y € R* with a numerical constant C, where the
constants K1 and Ko are obtained as

2(1 + 6) o
T I e

forany 0 <v, § <1 and any N > 4.

K| =

Note that one can take Ky < 1/4 as close as 1/4 which is the constant
appeared in exponent of the standard Gauss kernel. Here and hereafter we
denote by C or C; numerical positive constants (j = 0,1,---). Their value
may differ from one occasion to another.

Similar estimate was given in [4] with assumption ||v(t)|]; < My. How-
ever, so just mentioned before K| and K, may depend on M in [4]. To
show [Theorem 1|, we essentially use the methods developed by Nash [7] and
prove it along the way in Fabes and Strook (see also [2]) with some
simplification. Although our result applies to the general dimension with
standard modification, we restrict ourselves into two dimensional case.

In [5] Kato obtained the unique global solution w(t) of which is

smooth for ¢t > 0, w(0) = wp and satisfeis
lw()[[p < Cv - 1717 jwo

for 1 < p < oo. By the Calderén-Zygmund inequality ||Vu||, < Csl|rot ull,
for 1 < r < oo and the Gagliardo—Nierenberg inequality this estimates

implies with u(t) = K xw(t), M = Cyl|lwp|ly and T = oo. Our
Theorem 1 yields

Theorem 2 Let w(t) be the unique global solution for (NSR) and u(t) =
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K x w(t). Then we obtain

CeCK1||WO||% K2|JJ _y|2
Lu(t, z; s, S T Cou(t-s)
(t,z;8,y) 50— 3) exp v(t — s)

for 0 < s <t<ooandz,yc R% where Ky, Ky, v and 6 are in Theorem
1.

2. Proof of Theorem 1

Here we prove along the way in [3]. Let A = vA — (u(t), V)
and Ay, = eV Ae¥ for ¥(z) = - (the inner product of vectors a, z € R?).
Then we have

Lemma 2.1 Let f be a non negative rapidly decreasing function in R?, p
be a natural number and 0 < t < T. Then we obtain

- cv |Ifl1
A, f- 2P 1y - P
/R2 AR [1£11°

2
+ap(t) - [1f 112,

here q,(t) = pv|a|? + M|a|/v/t.

Proof. By simple calculus we have
. £2p—1 _ —p P . p2p—1
/R2 Apf - f dr = I//R2€ A (e f) f dx

—/ (u, V) (e‘bf) -e_¢f2p_1d:c
R2
= UV- Il - IQ.

In I; we use the integral by parts, then we have

- _ Yry. — 2p—1

I = /sz(e £)-V (e da
— —@p-1) [ SR da

R2
—2(p—1)/ f2p_1a-Vfdx+|a]2/ 2 de.
R2 R2
If p > 2, we get [ |Vf|" = |V (f7)]" /p* and

20— 1) |/ 'a- VS| < 20— 1) {lalf - 71V}
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< (p=1) [+ (p-1)- fP2|VS
p—1
= (p—1)-|a]*f* + 2 : W(fp)|2-
Thus I; satisfies

1
L<— [ VP dotplal [ frde
P JR? R?

Since the case p = 1 is trivial, this estimate is valid for p > 1.
For I we obtain

I = /122 e’ f{—(u-a)e VP 4 (2p = 1) fP 2V (u, V) f} da
- _/ (u-a)f2pdx+(2p—1)/ N u, V) fdz
R? R?

_ ../ (u- ) f? dz,
R2

here we use divu = 0. So by the assumption (1.1) we get

Io] < ‘LQ(u.a)fQde‘ < %/ﬁ % dx

Combining these estimates, we arrive at
. £2p—1
/R2 Apf- f dz

<2 [ VR a0 [ 1o (2.1)

Furthermore by Gagriado—Nirenberg inequality

1F1I3 < ClIfll - 11V £ll2

holds. Replacing f by fP, we get
1£ll2p < CIAR - IV ()l

Hence we obtain (see, [7])

P (12 = e g s LIl
IVUMIE= [ VG ez &

This and prove our lemma. [
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For a non negative rapidly decreasing function f = f(x) we put
F(t) = F(t.) = [ Tu(t,20,)" f(y) dy,
R

Since Iy, is the fundamental solution of (RE), F'(t) satisfies

dF

d 2
—I||F@)||5E = 2 —
FOI =2v | =

(1) - (F(H)*" da

= 2% / AGE() - (F()*" da
R
for any natural number p. On the other hand, we have
d % op—1 d
FFOll2 = 20l E@)llp - —1F(0)]]2-

Thus, by Lemma 2.1, we obtain

: cv PO
E.‘F(t)HQp < - S FOIP +qp(t) - [|F ()2 (2.2)

If p = 1, neglecting the first term in the right hand side of and
applying the Gronwall’s inequality, implies

1Ol < exo ([ anls)ds) 151l = €20 |11l 23)

where we use F(0) = f and we define a new function Q(t) = v|a|*t +
2M |a|V/t.

In the case of p > 2, we apply the following lemma on differential
inequality to .

Lemma 2.2 Assume that g(t) € L'(0,T) and h(t) on [0,T] hold

/Ot h(s) - exp (Qp /OS g(0) dG) ds >0

for any t € [0,T] and a natural number p. If a function u € C([0,T])
satisfies

() < =h(t) - u TP (E) + g(t) - u(t)
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for any t € [0,T], then we obtain

(u(t))? < t exp <2p/0tg(ss) d3>
219/0 h(s) - exp <2p/0 g(0) d9> s

Proof.  Putting v(t) = u(t) - e~ fosg(s)ds, then the differential inequality
for u(t) implies
d

%(U—Zp) _ _2pv—2p—l (u/ _ g) e fot g(s)ds

for any t € [0,T].

> 2pe(2p+1)fot g(s)ds, —2p=1 p. 2p+1 — fot 9(s)ds
t
= 2ph(t)e® Jo 994
Thus integrating in [0, t] and neglecting 1/u?(0), we have

2pf

2p ) do
- > ap / h(s)e Jo 90 @ g

Hence we get our assertion. []

Applying Lemma 2.2 to (2.2) with p > 2 as u(t) = ||F(t)||, and q(¢) =
¢p(t), we obtain

2 2PQp( )
1E@®)]l2p < (2.4)
/ Cvl||F( )||—2p e2PQp(s) 4g

t
for t € [0,T], where Q,(t) = / gp(s)ds = pv|al® -t + 2M|a| - Vt. Now we
0
set

wy(t) = sup{s?2/ )| [F(s)||p; 0 < s <t}

and obtain

t
/0 CVHF(S)H;QP . e2PQn(s) 4

t
> Cv (wp(t)) ./0 sP=2. 2P () 4.
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Moreover for k = 1 — §/(p?) with 0 < § < p?, we have

t t t
/ §P=2 . o2PCp(s) gg > / sP=2. 2PQp(s) g > o2PQn(Kt) | / P2 s
0 Kt

Kt

—1yp—1
erQp(fit) . (1 — KP )tp .
p—1

Hence from it follows that
(@GP =2/2CP) | F(t)]]p)

< =D @) ap@u(t)-@pst)).
-~ Crv-(1—rxpr1

(
Since 1 — k?P™1 > 1 — k = §/(p?), we have 2p(Q,(t) — Qp(kt)) < 26Q(2).
Thus we get

2 2
(t((2p)—2)/(2-(2p)) . HF(t)H2p)2p <P (p—1) - (wp(t)? . 20Q(1)

- Cvé
P’ - (wp(t))?
< p . e20Q(t)
- Cvé
This arrives at
3 \ 1/(2p)
wap(t) (P . (8/PQ) (2.5)
wp(t) — \Cvé

for 0 <t < T. Here for p = 2% we put v(t) = w,(t) provided that k is a
natural number. Now we use inductively to get

sup v(t) < sup 8% . (Cw§)Br . 2QWCk Ly (1)
k>1 k>1
< 9
RZ)
where A, = Z] 1727 G-1), B, = k 1 2-U+D and C) = Z;?:l 277,
Since vy (t) = sup s(P~2)/(2p) HF( )|, with p = 2%, this estimate and
imply that

eéQ(t) " U1 (t)>

IF (Ol < <= e 990 1], 26)

for F(t,z) = e *% [ T'u(t,2;0,y)e*Y f(y) d
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Now we prove the estimate in [Theorem 1. We define a operator F,(t) :
L*(R*) — L*®(R?*) by F,(t)f = F(t,z). From we have

170l < <920 £,

At the same time, since the fundamental solution which define the adjoint
operator (F,(t))* : L'(R?*) — L?(R?) equals to ['(_y), then we can see that
(Fu(t))* is operator from L%(R?) to L>(R?). So we also obtain

C
(Fu(®)" fllee < N VA -
Thus by duality
C
170 lle < ZZe ™340 1l
Here, we put v(-) = u(- +t). Then we have F,(2t) = F,(t) o Fy(t). Hence
we obtain
C C'2
I A ACT PR

In this we put f(y) = pc(y — z) for Friedrichs’ mollifier p. and let ¢ — 0,
then we get

2
[y (2t,2;0,2) < C—te2<1+5)Q<t>+a'<w—Z>. (2.7)
v
In we put a = —u(x — z)/t for any positive y, then we have
204+6)Q) + - (z — 2)

jz — 2|

T T—z
= {20(1 + &)u® — p} - . | |

Vi

+4(1+6)M

(2.8)

Furthermore for any positive € we have
_ 2a72 42
r = 2| < 414+ 6)°M ,u,+€u. |z — z| |
Vit £ t
Here we put 4 = 1/(2v/Nv(1+46)) and e = 1 —2/+/N for any N > 4. Then
we obtain

41+ 6)Mp

21+ 5O +a-(z— ) < 2= 20+9)

T 2Nv(1+ 6t u(V/N -2) M
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Hence by we conclude

2C26K1]\/[2

—Ka|z—z|?/(vt)
vt c ’

[u(t, z;0,2) <

where the constants Ky and K5 are as follows

2(1 + 6) 1

Klzm and ngm.

This proves our theorem 1.

Remark. From the proof we have

W%S—)'e)(p{_u(lié) <\/1N_%>
jz—y|* | 25PM |z —y?
s T VN \/E}

Fu(ta x; 37 y) S

for any N > 0. This follows from and (2.8) and p = 1/(2v/ Nv(1+6)).
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