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1.

where A; are real symmetric m X m matrices which are linearly indepen-
dent. Since we are interested in hyperbolic systems we assume that £(0) is
positive definite with some © € R™. We may suppose that £(©) = I con-
sidering £(©)~Y2L(z)L(©)"'/2. The range £L = {L(z) | = € R"} of L(x)
is a linear subspace in M?*(m,R), the space of all real symmetric m x m
matrices. Note that the range contains the identity I and of n dimensional
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Introduction

Let

L(z)=) Ajz;, z=(x1,...,%n),
j=1

because A; are linearly independent.

We study the symbol P(x) of a hyperbolic system which is close to L(x)

near r = 0;

P(z) = L(z) + R(x)
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where R(z) = O(|z|*) as # — 0 which is real analytic near the origin and
all eigenvalues X\ of P(z + A®) are real near x = 0.

By Theorem 4.2 in [9], every hyperbolic perturbation is trivial if the
dimension of the range £ is maximal, that is n = m(m+1)/2 = d(m) in the
sense that there are real analytic A(z), B(z) defined near the origin with
A(0)B(0) = I such that A(z)P(x)B(z) becomes symmetric. Our aim in
this note is to study symmetric systems £(z) whose range have dimension

less than d(m).

Theorem 1.1 Assume d(m) —m + 3 < n < d(m). Then in the (d(m) —
n)(n — 1) dimensional Grassmannian of n dimensional subspaces of
M?®(m,R) containing the identity, the subset for which hyperbolic pertur-
bations are trivial is an open and dense subset.

Here we have identified a symmetric matrix £(z) with its range £ be-
cause the assertion is independent of linear changes of coordinates x.

In Section 2, reexamining the proof and the hypotheses of the above
mentioned result in [9] we show that: Let us denote by S £(x) the linear map
sending a H € M*(m,R) with zero diagonal elements to an anti-symmetric

[L(z), H]. Let
det Sg(z) = f[g]- (x)"

be the irreducible factorization of det Sy (z) in R[x]. Then assuming that
{z]gj(xz) =0}, 1 < j < s, contains a regular point (1.2)

and that every characteristic of order less than m of £(z) is non-degenerate
(see Definition 2.1) we can conclude that all hyperbolic perturbations are
trivial (Theorem 2.1]).

To check these two conditions, in Section 3, we study characteristics of

L(x) and we prove that, in the Grassmannian of n dimensional subspaces
of M#*(m,R) containing the identity, the subset for which every character-
istic of order less than m is non-degenerate is an open and dense subset
(Proposition 3.3).

In Section 4, in this Grassmannian of n dimensional subspaces, we show
that the set for which the condition (1.2) is fulfilled is an open and dense
subset if n > d(m) — m + 3 (Proposition 4.1)).

The last restriction on n comes from purely technical reasons in proving
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IProposition 4.1 and it is plausible that it could be weakened. Indeed, if
m = 3, [[Theorem 1.1 holds for n > 4:

Theorem 1.2 Assume that m = 3 and 4 < n < 6 = d(3). Then in the
(6 — n)(n — 1)-dimensional Grassmannian of n dimensional subspaces of
M?(3,R) containing the identity, the subset for which hyperbolic perturba-
tions are trivial 1s an open and dense subset.

The proof will be given in Section 5. We can find detailed studies on
the structure of 6-dimensional Grassmannian of 4-dimensional subspaces of
M*(3,R) containing the identity in Theorems 3.5 and 3.6 in [4].

2. Non-degenerate characteristics

We first make precise the notion of non-degenerate characteristics of
order greater than two (see [8], [9]). Let P(x) be a real analytic function
with values in M (m,R), the set of all real matrices of order m, defined
near the origin of R"™ with coordinates x = (z1,...,z,). Let x = T be a
characteristic of P(z), that is Z is a zero of det P(z). Assume that

KerP(z) NIm P(z) = {0}. (2.1)

In this case we can define the localization Pz(z) of P(x) at = as follows
(see Definition 3.1 in [8], see also [10], [1]). The assumption (2.1) identifies
Coker P(z) and KerP(z). Since dP(x), the differential of P at z, is a
well defined map going from Ker P(Z) to Coker P(Z) then the map followed
by the canonical map to Coker P(z) is identified with a map Ker P(z) —
KerP(z), which is the localization Pz(z). For later references we give a
representation of Pz(x) in local coordinates. Set s = dimKerP(z). Let
{v1,...,vs} be a basis for KerP(Z) and let {¢1,...,0s}, ¢; € (C™)* be
linearly independent and vanish on Im P(Z) such that ((¢;,v;)) = I;. Then
Pz(x) is given by

({¢5, P(Z + px)vj)) = n(Pz(x) + O(w))
as u — 0.

Definition 2.1 Let x = Z be a characteristic of P(z). We say that Z is
non degenerate if the following conditions are verified;

(1) KerP(z) nImP(z) = {0},

(2) dim{Pz(z) |z € R"} = s(s + 1)/2 with s = dimKer P(z),
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(3) Pz(x) is diagonalizable for every x.
We call s the order of the characteristic z.

We return to £(x) mentioned in Introduction. By a linear change of
coordinates x we may suppose that © = (1,0,...,0) so that

L(z)=2,]+ Zijcj =] + L(z') (2.2)
j=2
where F/ € M*(m,R), ' = (v2,...,2,) and {F2,... F™ I} are linearly
independent.

Theorem 2.1 Assume that every characteristic of L(x) of order less than
m 1s non degenerate. Suppose that det Sp(x) satisfies (1.2). Then for every
hyperbolic perturbation P(x) = L(x)+R(x) of L(x) we can find real analytic
A(z), B(x) defined near the origin with A(0)B(0) = I so that

A(z)P(z)B(z)
becomes symmetric.

Proof. By a preparation theorem for systems proved in [3, Theorem 4.3],
generalizing the Weierstrass preparation theorem, one can write

Pz + AO) = C(x,\) (M + Q(x))

where C(z, ) is real analytic near (0,0), det C(0,0) # 0 and Q(x) is real
analytic with values in M (m,R), Q(0) = O. Comparing the first order
term in the Taylor expansion at (0,0) of both sides we see that C(0,0) = I
and Q(x) = L(z)+ R(z) where R(z) = O(|z|?). Taking 2/ =0, A = —z; we
get that O = C(z1,0, —z1)R(21,0) and hence R(x1,0,...,0) = O. Since

C(x,0) 'P(x) = L(z) + R(z)

it is enough to study a perturbation term R(x) which verifies R(z1,0, ..
0) = O. We also note that C(e0,0)"!P(e©) = eI for small e. We set

‘Y

P(z',z1) = L(2) + R(z1,2"), L(z') = Zijj
j=2

where S (2') verifies the assumption (1.2) because L(x) — L(x') = z11.
Introducing the polar coordinates 2’ = rw, we blow up P(x’,z;) at 2/ = 0
so that 7= P(rw,z1) will be studied. We first show that, for every fixed
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w # 0, there is a real analytic positive definite H,(r,0,x;) with diagonal
elements 1 defined near (0,w,0) such that

P(rf,z1)H,(r,0,21) = H,(r,0,21) P(rf, zy). (2.3)

To prove the above assertion we can follow the same proof of Proposition
4.3 in [9] except for that of Lemma 4.7 in [9] which was proved assuming
that x = 0 is non-degenerate. We examine that the assertion of Lemma
4.7 holds under the assumptions of [[heorem 2.1. We fix w # 0 and take
an orthogonal Ty so that To_lL(w)To = @"_; \iI, just as in the proof of
Proposition 4.3. Set L(#) = Ty *L(0)Ty = (Li;(9))1<i.j<p and

FI =T FITy = (F)))1<ka<p,  Lii(0) =Y Fl0;
=2

where the block decomposition corresponds to that of ®A;I;,. Then it is
easy to see that to prove the assertion of Lemma 4.7 it is enough to show
the following. []

Lemma 2.2 {Isi,}%%} span M*(s;, R).

Proof. Let L(z) = Ty 'L(x)Ty. Since (z1,2') = (—\;,w) is a characteristic
of L(x) of order less than m it is non-degenerate by assumption. It is clear
that the localization of L(z) at (—\;,w) is

ﬁ(—/\i,w) (m) =15, + Z Fz]zxj
=2

because £(—\;,w) is diagonal. Noting that the non-degeneracy of char-
acteristics is invariant under changes of basis for C” we conclude that the
matrices {I, , F7} span M (s;, R) since the image E(_/\i’w) is s;-dimensional.
This proves the assertion. []

Thus we get H,(r,0,x1) near every w # 0 verifying with diagonal
elements 1. Since det Sy (6) # 0 on a dense subset then H,, can be continued
analytically to a neighborhood of {0} x S"~2x {0} yielding H(r, 6, z1) which
verifies there (see Lemma 4.8 in [9]). We then show that there is a
real analytic G(z’,z1) defined near the origin such that

H(r,0,z1) = G(rf,z1), G(0)=1 (2.4)

which proves that T'(z) ~'P(z)T'(z') becomes symmetric with T'(z) = G(z)/2.
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Taking A(z) = T'(x) " *C(x,0)"!, B(z) = T(z) we obtain [Theorem 2.1. Here
we note that A(e©)P(eO)B(e®) = el for small €. To see we make the
following observation. Let f(6), g() be homogeneous polynomials in 6 of
degree p, q respectively where p > q. Let

o(6) = T o,(0)"

be the irreducible factorization of g(#) in R[f]. We assume that f(6)/g(0) is
C*° apart from the origin and that V; = {0|g;(§) = 0}, 1 < j < s contains
a regular point. Then applying Lemma 2.5 in [6] repeatedly, we conclude
that f(6)/g(0) is a homogeneous polynomial in 6 of degree p — q.

Then, in the proof of Proposition 4.5 in @, replacing Lemma 4.9 by
the assumption (1.2) and the argument applying Lemma 2.5 in [6] by the
above observation, we conclude easily.

Since the non-degeneracy of characteristics is invariant under orthogo-
nal changes of basis for C™ we have

Corollary 2.3 Assume that every characteristic of L(z) of order less
than m is mnon-degenerate and there is an orthogonal T € O(m) such that

det Sp-1,.7(x) verifies (1.2). Then the same conclusion as in [Theorem 2.1
holds.

Remark. The condition (1.2) is not invariant under orthogonal changes of
basis for C™. Let

0 I
L(z)=z115 + ( ) .
o 0

Then it is obvious that det Sg(z) = 0. But it is easy to see that there is an
orthogonal T' € O(2) so that det Sp-1,p(x) verifies (1.2).

We remark here that the definition of non-degenerate characteristics
given here is equivalent to that used in the previous papers [4], for
double characteristics. Let

L(z)=zI+ L(z"), 2’ =(z9,...,2,),

where L(z') is real analytic with values in M (m,R) defined near 2’ = 7’
which is not necessarily linear in z’.

Lemma 2.4 Assume that all eigenvalues of L(z") are real near ¥’ = ¥'.
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Let z = (z1,%") be a double characteristic of L(x). Then T is non degener-
ate if and only if

dimKer £(Z) = 2 and rankHess h(Z) = 3
where h(z) = det L(x).

Proof.  Take a constant matrix T so that

T 'L(z)T = (‘3 g)

where G is a non singular matrix of order m — 2 and the two eigenvalues
of A are zero. Assume that dimKer £(Z) = 2 and rankHess h(Z) = 3. Then
it follows that A = O and hence Ker £(Z) N Im £(z) = {0}. Let Lz(x) be
the localization of £(z) at Z. Denoting T~ 'L(z)T = (L;j(z))1<ij<2 we get
L11(Z 4 px) = p(Lz(z) + O(p)) as uw — 0. Then it follows that

Wz +z) = det L(Z + z) = (det G) det Lz(z) + O(|z[3) (2.5)

asx — 0. Since Lz () is a 2x 2 hyperbolic system and rankHess det £;(0) =
3 by (2.5) then it can be symmetrized by a constant matrix by Lemma 4.1
in [7]. In particular £; () is diagonalizable for every = and dim{Lz(z) | x €
R"} = 3. Conversely we assume that Z is non degenerate in the sense of
Definition 2.1. From Ker £(Z) NIm £(Z) = {0} it follows that A = O and
hence dimKer £(Z) = 2. Since £z(z) is diagonalizable and dim £; = 3 then
Lz(x) is symmetrizable (see [2]). Thus rankHess det £z(0) = 3 and hence
rankHess h(Z) = 3 by (2.5). []

3. Non-degenerate characteristics for symmetric systems

For symmetric systems with constant coefficients the description of non
degeneracy of characteristics becomes simple. Let £(x) be

£($) = Z Ajl’j
j=1
where A; € M?®(m,R). We denote by M?(m,R) theset of all A € M3(m,R)

with rank m — k. Then we have

Lemma 3.1 Let T be a characteristic of L(x) of order k. Then T is non-
degenerate if and only if the range L intersects M;(m,R) at L(Z) transver-
sally.



516 T. Nishitans

Proof.  Since L£(z) and Lz(z) are symmetric, the conditions (1) and (3)
in [Definition 2.1 are automatically satisfied. Without restrictions we may
assume that £ = (0,...,0,1). Then A, is of rank m — k. We can make
an orthogonal transformation of the matrices to attain that with a block
matrix notation

O O
A"‘(O G)

where G is a (m — k) x (m — k) non-singular matrix. The tangent space of
M;(m,R) at A, consists of matrices of the form

((j I) (3.1)

with the corresponding block decomposition. On the other hand, with the
same block decomposition of L(z)

E(gc) _ (LH(I) Lm(l’))
Lgl(x) LQQ(.T)

it is clear that Lz(x) = L;1(z). Thus the transversality of intersection means
that dimLq; = d(k) that is, dim£; = d(k) and hence Z is non-degenerate.
The converse follows in the same way. []

Taking [Lemma 2.4 into account one sees that generalizes
Lemma 3.2 in [4].

We continue to study non-degenerate characteristics for £(z) in [2.2).
We start with the special case that dim £ = d(m) — 1. Since £ has codi-
mension one in M*(m,R) then L is defined by

L:tr(AX)=0, X = (CE‘ij), Tij = Ty (3.2)

with some A € M?*(m,R). Note that tr A = 0 because £ contains the
identity. Now we have

Proposition 3.2 Assume that L is given by (3.2) with A € M*(m,R)
and that the rank of A is greater than k. Then every characteristic of order
k of L(x) is non-degenerate.

Proof.  Let T be a characteristic of order k of £(z) and hence H = L(Z) €

LN MZ(m,R). Here we note that dim Ty M (m,R) = d(m) — d(k) which
is seen by the proof of Lemma 3.1. To show Z is non-degenerate it suffices
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to prove that
dim(£LNTyM;(m,R)) =d(m) — d(k) — 1 (3.3)
by Lemma 3.1. As in the proof of [Lemma 3.1, considering T~' LT with a

suitable 7' € O(m) we may assume that

H = (g g) (3.4)

where G is a (m — k) X (m — k) non-singular matrix. Recalling that the
tangent space Ty M;}(m,R) is spanned by matrices of the form (3.1) we see
that £N Ty M;(m,R) consists of matrices of the form

X = < O QZU) , tr (AX) = Z (2 — (5Z~j)aijxij =0
Tij Lig k+1<5,i<

where A = (a;;) and 6;; is the Kronecker’s delta. Since A is symmetric
and the rank of A is greater than k by assumption then it follows that
(aij)k+1<ji<j # O. This proves and hence the assertion. ]

We turn to the general case that 1 < dim £ < d(m) — 1.

Proposition 3.3 In the Grassmannian Gg(m)l of n dimensional sub-
spaces of M*(m,R) containing the identity I, the subset for which every
characteristic of order less than m is non-degenerate is an open and dense
subset.

Let PV (R) be the N dimensional real projective space and let X C
PY(R) be a non-singular algebraic manifold of dimension r and assume
that xo € T, X for all z € X. Let us denote

~fv,x0 = {W c PY(R) | W; linear space, dim W = s,zy € W}
and set s = N — s. Then we have
Lemma 3.4 A generic W € éfv 2, ntersects X transversally.

Proof. ' LetY = {(z,W) € X X éj‘vmo | z € W} and denote by pq, ps the
projections onto X and G}, respectively. Note that dimY = s's — s’ +r

and dim éf\,xo = s's. Then if r < s’ a generic W € é?\fa:o does not intersect

'The author owes this simple proof to A.Gyoja
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X and hence the result. Thus it is enough to study the case r > s’. Let us
set
Z={(z,W)eY |dim(T, X + W) <N —1}.
It is not difficult to see that
dim(p1|Z2) Hz)=ss' —r—1, z€X

so that dimZ = ss’ — 1 = dim é?\/aso — 1. Thus for every W belonging to

the open dense subset éf\,,xo \ p2(Z), W intersects X transversally. This
proves the assertion. []

Proof of |Proposition 3.3 Take X and é?v s @s the projective spaces

M (m,R)P" and (G%TIL) ;)7 based on Mj(m,R) and Gfl(trll) ; respectively.

Applying Lemma 3.4 with N =d(m) — 1, r = N — d(k), xg = I we get the
desired result. [ ]

4. Condition (1.2)

As mentioned in Introduction we study Sz (x) for symmetric £(x) when
dim £ = d(m) — v where 1 < v < m — 3. We first examine a matrix
representation of Sg(x). Let

Fp = {H = (hi;) € M*(m,R) | hy; = 0}

then S, (z) is defined as the linear map between two d(m — 1)-dimensional
linear subspaces F,, and M%(m,R)

Fn>Hw— [L(z),H = K€ M*(m,R)

where M % (m, R) denotes the set of all real anti-symmetric matrices of order
m. Let us write

L(z) = (¢5(x))i<ijem, 6i(x) = ¢l(x). (4.1)

For H € F,, we write H = t(hlg, h1s, ha3, h14, hog, hag, . .. 7h'm—1m) €
R4~ Then the equation [£(x), H] = K can be written as

SE(ZU)F] = K



Stability of symmetric systems under hyperbolic perturbations 519

where Sg(z) is a d(m — 1) x d(m — 1) matrix. For instance when m = 3 we
have

oi(x) — di(z)  —¢i(a’) ¢3(x')
Sc(e) = |  —43(")  ¢1(z) - ¢i(x) 3(x') - (42)
—¢3() ¢5(a') $3(x) — ¢3(z)

We turn to the case £(x) is a m x m matrix. Let

L(z) U(a')
L(x) (tl 2') ¢m($))

A\
where (z') = Y(¢l,(2'),...,¢" (z')) and L(z) stands for £(z) in
with m — 1. For H € F,,, and K € M*(m,R) we write

Hl h Kl k
"= (th o)’ K_<tk 0)
with Hy € F—q, K1 € M®*(m — 1,R) and h = *(hyp, ..., hyu_1m). Then
it is easy to see that the equation [L(z), H] = K is written as

(5 ) (1) (5)-5
d(l) L(z)— oI h k
and hence we get

(4.3)

Se(x) = (SL(:I:) c(l) > |

() L(x) — ol
Our aim in this section is to prove

Pr(op)osition 4.1 Assume thatl < v <m-—3. Then in the Grassmannian
d(m)—v

Gd(m),l , the subset of L for which the condition (1.2) is fulfilled for T~1LT
with some T € O(m) is an open and dense subset.

We first give a parametrization of the Grassmannian Gg(m) ; of n di-
mensional subspaces of M*®(m,R) containing the identity. Take a map

o Lo vt = {7 1< < < m,(5,) # (m,m)}

which is injective. Denote by U, the set of all v-tuples of m x m symmetric
matrices A = (Ay,...,A,) such that tr A; = 0 and the element o (k) of A,
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is zero unless k = j and the element o(j) of A; is 1. Let

G5 : Uy > A L,
L={XeMmR)[tr(4;X)=0,1<j<v}

and set Q, = ¢,(U,) then with all such injective o, (¢;1,Q,) give charts
of the Grassmannian Gy, ;. We set A = {(4,7) | 1 < ¢ < m} and let
1 <k<m-—1. We first remark that

Lemma 4.2 Assume that 1 < k < m — 1. Then there are finitely many

Si,...,Sn € O(m) such that for any £ € Gy " one can find S; so that

STILS; € Q, with some o verifying o({1,...,k}) N A = 0.

Proof.  In this proof we denote |C| = max; j |c;;| for a matrix C = (¢;).
Let Tpq(€) be the orthogonal matrix obtained replacing p-th and g-th, p < g,
rows of the identity matrix by

(0,...,0,f(€),0,...,0,¢0,...,0),
0,...,0,—€,0,...,0, f(€),0,...,0)

where €2 + f(€)? = 1. We show that it is enough to take {S;} as the set of
all m times compositions of I and Tyy(e;), € = (Cym2 )1
where C7 < Cy < --- < C), will be chosen suitably. Let L € ngzg}k
and let Ap,..., Ay define £ so that £ consists of all X € M*(m,R) such
that tr(A4;X) = 0, 1 < j < k where A; are linearly independent and
tr A; = 0. We first note that we may assume (H),: there is an injective
T:{l,...,u} = {(5,j) | 1 <1i < j < m} such that the element 7(i) of
A; is zero unless i = j, the element 7(j) of A; is 1, |A4;] < a#mwh1 for
1 <j<pand Ayyq,..., A are diagonal where a1 = 1, ay,41 = Ba,C),
with a fixed large B. In fact if some A; has a non-zero off diagonal element
we may assume that the off diagonal element 7(1) of A; is 1 and |A;| < 1.
Replacing A; by A; — «;A;, j # 1, with suitable o; one can assume that
the element 7(1) of A; is zero if j # 1. A repetition of this argument gives
the assertion. If y = k then 7({1,...,k}) N A = 0 and there is nothing to
prove. Then we may assume that p < k—1. Let A, = diag (A1,..., A\p).
Since tr A,41 = 0 it is easy to see that there are at least m — 1 pairs (3, j),
1 < j such that

,1=1,...,m,

3N — A >\, r=1,...,m.
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Since p < m — 2 there exists such a (p,q) with (p,q) € 7({1,...,u}). Let
us set

Aj(€u) = qu(eu)_lAijq(eu)y 1<5<k

and note that [A;(e,) — A4;| < BlaﬂC_1 1 < j < p. Choose C, so that
a,C, lis small enough then taking A; ilen) = 0 cjidi(en), 1 < j < p, with
a non-singular C' = (c;;) we may suppose that the element 7(i) of Ai(e,) is
zero unless i = j and the element 7(5) of A;(e,) is 1 and |4;(e,)| < 2|A4;|.
Note that the off diagonal elements of A, ;(€,) are zero except for (p,q),
(q,p) elements which are €, f(e,)(Ag — Ap). Set

A/H-l(eﬂ) = {euf(en)(Ag — )‘p>}_1Au+1(E/L)

and hence |A,1(e,)| < B,C,m* . Replacing A;(e,) by Ajle,) —
ajA#H (€,) with suitable a; we can attain that the element T(p+1) = (p,q)
of Aj(e,) is zero for 1 < j < p and |4;(e,)| < ay+1m? ;1 <j<p+1. By
subtraction again we may suppose that Aj(e,), j > u + 2 are diagonal and
then we get to (H),+1. The rest of the proof is clear. []

Proof of |Proposition 4.1 We first assume that £ € Q, with 7({1,...,v})Nn
A =0 andlet A= (A4;,...,A,) € U: be the coordinate of £. Let us denote

- Z Kjz; = (¢4(z))

where K;, 1 < j <n =d(m)—v, is a basis for £ and set g(z) = det S;(z).
Let Jo ={(@,j) [1 <4 <j <m}\7({L,...,v}) and note that ¢(x),
(i,7) € J; are linearly independent and A C J,. With A; = (ag-f)) it is
clear that the equations d);(:zz) =0, (4,4) € Jr \ A and tr (A L(z)) = 0
define a plane

m—1

ia§ ¢9 a” qu — () =0, 1<k<v (44)

and S, (x) is diagonal on the plane with the determinant

gz)= [ i(z) - (). (4.5)

1<i<g<m

We show that there is a polynomial 7(A) in agj), 1<k<p,1<j<m-1
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such that if m(A4) # 0 then no two ¢(x) — c;bg(o:), t < j are proportional on
the plane (4.4). To simplify notation we write y; for ¢i(x) — ¢ (z) so that

gw)= 1] @i—v)yyma
1<i<j<m-—1

provided that y4 = 0 where y = (Y1, -+, Ym—1) and A= (ag-l;)) which is
a (m — 1) x v matrix. Suppose that some two y; — y; are proportional on
the plane yA = 0 and hence (b,y) = 0 with some b € R™! for every y
with yA = 0. Then it is clear that rank (A,b) = rank A. Note that at
most two components of b are the constant of the proportionality ¢ and
the other components are either 0 or 1 (at most two 1 appear). Take a
(v +1) x (v + 1) submatrix of (A,b) and expand the determinant with
respect to the last column. Equating the determinant to zero we get a
linear relation of v-minors of A with coefficients which are either 1 or the
proportional constant c¢. Since v + 1 < m — 2 we have at least m — 1 such
linear relations. Elimination of ¢ gives a quadratic equation in v-minors of
A. Denote this equation by m(A) = 0. Then we conclude that the rank of
the matrix (A,b) is v 4 1 if 7(A) # 0. This shows that no two y; — y; are
proportional if 7(A) # 0.

Let g(z) = [[g;(x)™ be the irreducible factorization in R[x]. Without
restrictions we may assume that the plane yA = 0 is given by vy, = f (Ya),
after a linear change of coordinates y if necessary, where y = (yq,yp) is a
partition of the coordinates y. Then we have

1195 Was £ (wa))7 = [] pi(va)

where p;(y,) are linear in y, and no two p;(y,) are proportional if 7(A) # 0.
Then it follows that r; =1 and g;(ya, f(ya)) is a product of some p;(y,)’s:

9i(Wa, f(ya)) = [ ] pi(ya)-
icl;
From this it is obvious that {g;(yas, f(ya)) = 0} contains a regular point.
Then it follows that {g;(x) = 0} contains a regular point. This shows that,
in U,, the set of A such that S;(x) does not verify (1.2) is contained in
an algebraic set. We now study £ € Q, with o({1,...,v}) N A # (. By
there is S; € O(m) such that S; ' £S; € Q, with some 7 verifying
7({1,...,v}) N A = 0. Since {S;} is a finite set the proof is clear. []

Proof of [Theorem 1.1 Let d(m)—m+ 3 <n <d(m). Then [Theorem 1.1
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follows immediately from Propositions B.3, 4.1 and Corollary 2.3. ]

5. A special case

In this section we prove [['heorem 1.2. Thus we assume m = 3 through-
out the section. Let £ € Gg for n =4 or 5. With a basis K for £, £ is
the range of

,C(IL') = Z Kjfl?j-
1=1

We first study the case n = 5.

Lemma 5.1 In the Grassmannian GZJ, the subset of L for which the

condition (1.2) is fulfilled for T~1LT with some T € O(m) is an open and
dense subset.

Proof. Let A = A; € U, be the coordinate of £ and assume that o(1) N
A = 0 so that the diagonal elements of L£(z) are linearly independent.
Considering T~1L(z)T with suitable permutation matrix T, if necessary,
we may assume that o(1) = (1,2) so that with L(z) = (gbz(:z:)) we have
from tr (AL(x)) = 0 that

—2¢3(x) = a11 (P} — 83) + axn(ds — ¢3) + 2a1303 + 2a2363.
From (4.2), with simplified notations, it is enough to study

L1 — T2~ Y2
Sy)=| -wn z1 ¢(z,y)
—Y2 o(z,y) L2
where ¢(z,y) = ayx1 + asze + biyy + boys. We show that if ay + as # 1
and 4ajao — 1 # 0 then the condition (1.2) is fulfilled. We first assume
that z122 — ¢(z,0)? is irreducible. Note that g(z,y) = det S(z) is then
irreducible. Indeed if g(x,y) were reducible so that g(x,y) = h(z,y)k(z,y)
then from g(x,0) = (z; — z9)¥(x) with ¥(z) = 2179 — ¢(x,0)? we may
suppose that

h(z,y) = ¥(z) +p(z,y), k(z,y) =21 — 22+ q(y)

where p(z,0) = 0, ¢(y) = ay; + By2. Equating the coefficients of y; in
both sides of g(z,y) = h(z, y)k(z,y) we see that arp(x), B (x) have a factor



524 T. Nishitani

x1—x which implies that ¢ = 0. This gives g(z,y) = h(z,y)(z1 —22) which
is a contradiction. Thus g is irreducible. It is clear that {g(z,0) = 0} has a
regular point and hence so does {g(z,y) = 0}. This proves the assertion.
Assume now that ¥ (z) = z129 — ¢(x,0)? is reducible. From the as-
sumption 4ajay — 1 # 0 it follows that ¢ (x) has no multiple factor. Note
that a1 + a2 # 1 implies that 1(z) and x; — x5 are relatively prime. The
rest of the proof is a repetition of the last part of the proof of
4.1. [

We turn to the case n = 4. We show that

Lemma 5.2 Assume that n = 4 and every double characteristic of L(x)
is non degenerate. Then the condition (1.2) is fulfilled for T™1L(z)T with
a suttable T € O(3).

Proof.  Following the proof of Theorems 3.5 and 3.6 in we choose a
specific basis for £ = T-1LT with suitably chosen T' € O(3) and show that
(1.2) is fulfilled for L using this basis. From the proof of Theorem 3.3 in [4],
if every double characteristic of £ is non-degenerate, then only two cases
occur, that is £ has either four non-degenerate double characteristics or two
non-degenerate double characteristics.

We first treat the case that £ has four non-degenerate characteristics.
Choosing a suitable T € O(3) we see from [4] that A* = a4 ® a4 and BT =
B1 ® B+ is a basis for £ = T1LT where ay = (a,*a,1), By = (b,+b,1)
and a # b, ab # 0. Now we can write

L(x)= ATz + A"z + BTa3 + B z4.
With X =21+ 29, Y =21 — 29, Z =23+ 14, W = 3 — 14 We have
a’X +b*Z a’Y + W  aX +bZ
L=|a’Y +0®W a?X +b2Z oV +bW |. (5.1)
aX +bZ aY + bW X+ Z
Therefore it follows from (4.2) and (5.1) that
0 —aY - bW  aX +bZ
Sg=|—aY —bW X +dZ %Y +b*W
—aX —bZ a’Y +0*W X +dZ

where c =a?—1,d =b*>—1. Let § = det Sz. On the plane a’Y +b*W =0,
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that is, if W = —a?Y/b? = eY we get
g=(cX +dZ)(aX +bZ + (a+be)Y)(aX +bZ — (a+ be)Y).

Note that a 4+ be # 0 because a # b and no two factors in the right-hand
side are proportional. Now, as the end of the proof of Proposition 4.2, it is
easy to conclude that g satisfies (1.2).

We next study the case £ has two non-degenerate double characteristics.
With a suitable T € O(3) we see that £ = T~1LT contains K* = aq ® ay
with a4+ = (a,£a, 1), a # 0, which are intersections with M;(3,R). Since
L contains the identity, as the third basis element in £, one can take Kj

0 0 —2a
K; = 0 0 0
—2a 0 2(a®-1)

because KT 4+ K~ + K5 = 2a%I. The fourth basis element in £ can then be
chosen of the form

0 0 O
0O p v

Thus with X =21 + 29, Y =21 — 29, Z =23, W = 24 and ¢ = a® — 1 the
matrix KTz, + K x5 + Ksx3 + Kyx4 can be written

a’X a’Y aX —2aZ
L= a’y a’X + \W aY + puW : (5.2)
aX —2aZ oY +uW X +2cZ +vW

We examine if there are other double characteristics, that is, if L is of rank
1 for some (X,Y, Z, W) with Z2 + W2 #£ 0. It is not difficult to see that six
2-minors of (5.2) vanish for such (X,Y, Z, W) if and only if the equation

40*Z* +2(a®* + DAZW + (W — pHYW? =0

has a real solution (Z,W) # (0,0). Thus in order that £ has two non-
degenerate double characteristics it is necessary and sufficient that

40’ v > 4a’p® + (a? + 1)%02 (5.3)

In particular A and v have the same signs. From (5.2) and (4.2) it follows
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that
—A\W —aY — uW aX —2aZ
Sg=| —aY —pyW X —2cZ —vW a’y
—aX + 2aZ a’y cX —2cZ+(N—v)W

If ¢ # 0 then we consider § = det S; on W = 0 so that
g=(cX —2cZ)(aX —2aZ +aY)(aX — 2aZ — aY).

The same argument as before proves that (1.2) is verified for g. If ¢ = 0
and hence a? = 1 then

g = W(-v(aX —2aZ)* + A\(v* — p?)a1Y?
+ (A —v)a(W — aua'Y)?)
= Wh(X,Y,Z, W)
where o = \v—p?. From it follows that o > 0 and v? — 42 > 0 because

v2 + A2 > Av > p? + A2, Then the quadratic form h is indefinite and hence
{h = 0} contains a regular point. This proves the assertion. []

Proof of [[heorem 1.2 If n = 6 then the assertion follows from Theorem
4.2 in [9]. If n = 5, combining [Proposition 3.3 and we get the
result by Corollary 2.3. Let n = 4. Then by virtue of [Proposition 3.3 and
one can apply [Corollary 2.3 to get the assertion. []
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