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Stability of symmetric systems under
hyperbolic perturbations
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Abstract. Let L(x) be the symbol of a m\cross m symmetric first order hyperbolic system
with real constant coefficients. The range of L(x) is a subspace, containing a positive
definite L(\theta) , in the linear space of dimension d(m)=m(m+1)/2 of all m\cross m real

symmetric matrices. We study a hyperbolic perturbation \overline{L}(x)=L(x)+R(x) of L(x) ,

that is R(x) is O(|x|^{2})(xarrow 0) which is real analytic and all eigenvalues \lambda of \overline{L}(x+\lambda\theta) are
real near the origin. We prove that if the dimension of the range of L(x) is greater than

d(m)-m+2 , then generically, every such hyperbolic perturbation is trivial, namely there
are real analytic A(x) , B(x) near the origin with A(0)B(0)=I such that A(x)\overline{L}(x)B(x)

becomes symmetric. When m=3, the same conclusion holds if the range is greater
than 3.

Key words: hyperbolic perturbation, symmetric system, non-degenerate.

1. Introduction

Let

\mathcal{L}(x)=\sum_{j=1}^{n}A_{j}x_{j} , x=(x_{1 },. , x_{n}) ,

where A_{j} are real symmetric m\cross m matrices which are linearly indepen-
dent. Since we are interested in hyperbolic systems we assume that \mathcal{L}(\ominus) is
positive definite with some \ominus\in R^{n} . We may suppose that \mathcal{L}(\ominus)=I con-
sidering \mathcal{L}(\ominus)^{-1/2}\mathcal{L}(x)\mathcal{L}(\Theta)^{-1/2} . The range \mathcal{L}=\{\mathcal{L}(x)|x\in R^{n}\} of \mathcal{L}(x)

is a linear subspace in M^{s}(m, R) , the space of all real symmetric m\cross m

matrices. Note that the range contains the identity I and of n dimensional
because A_{j} are linearly independent.

We study the symbol \mathcal{P}(x) of a hyperbolic system which is close to \mathcal{L}(x)

near x=0;

7^{2}(x)=\mathcal{L}(x)+R(x)
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where R(x)=O(|x|^{2}) as xarrow 0 which is real analytic near the origin and
all eigenvalues \lambda of \mathcal{P}(x+\lambda\Theta) are real near x=0.

By Theorem 4.2 in [9], every hyperbolic perturbation is trivial if the
dimension of the range \mathcal{L} is maximal, that is n=m(m+1)/2=d(m) in the
sense that there are real analytic A(x) , B(x) defined near the origin with
A(0)B(0)=I such that A(x)\mathcal{P}(x)B(x) becomes symmetric. Our aim in
this note is to study symmetric systems \mathcal{L}(x) whose range have dimension
less than d(m) .

Theorem 1.1 Assume d(m)-m+3\leq n\leq d(m) . Then in the (d(m) -
n)(n – 1 ) dimensional Grassmannian of n dimensional subspaces of
M^{s}(m, R) containing the identity, the subset for which hyperbolic pertur-
bations are trivial is an open and dense subset.

Here we have identified a symmetric matrix \mathcal{L}(x) with its range \mathcal{L} be-
cause the assertion is independent of linear changes of coordinates x .

In Section 2, reexamining the proof and the hypotheses of the above
mentioned result in [9] we show that: Let us denote by S_{\mathcal{L}}(x) the linear map
sending a H\in M^{s}(m, R) with zero diagonal elements to an anti-symmetric
[\mathcal{L}(x), H] . Let

det S_{\mathcal{L}}(x)= \prod_{j=1}^{s}g_{j}(x)^{r_{j}}

be the irreducible factorization of det S_{\mathcal{L}}(x) in R[x] . Then assuming that

\{x|g_{j}(x)=0\} , 1\leq j\leq s , contains a regular point (1.2)

and that every characteristic of order less than m of \mathcal{L}(x) is non-degenerate
(see Definition 2.1) we can conclude that all hyperbolic perturbations are
trivial (Theorem 2.1).

To check these two conditions, in Section 3, we study characteristics of
\mathcal{L}(x) and we prove that, in the Grassmannian of n dimensional subspaces
of M^{s}(m, R) containing the identity, the subset for which every character-
istic of order less than m is non-degenerate is an open and dense subset
(Proposition 3.3).

In Section 4, in this Grassmannian of n dimensional subspaces, we show
that the set for which the condition (1.2) is fulfilled is an open and dense
subset if n\geq d(m)-m+3 (Proposition 4.1).

The last restriction on n comes from purely technical reasons in proving
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Proposition 4.1 and it is plausible that it could be weakened. Indeed, if
m=3 , Theorem 1.1 holds for n\geq 4 :

Theorem 1.2 Assume that m=3 and 4\leq n\leq 6=d(3) . Then in the
(6-n)(n-1) -dimensional Grassmannian of n dimensional subspaces of
M^{s}(3, R) containing the identity, the subset for which hyperbolic perturba-
tions are trivial is an open and dense subset.

The proof will be given in Section 5. We can find detailed studies on
the structure of 6-dimensional Grassmannian of 4-dimensional subspaces of
M^{s}(3, R) containing the identity in Theorems 3.5 and 3.6 in [4].

2. Non-degenerate characteristics

We first make precise the notion of non-degenerate characteristics of
order greater than two (see [8], [9]). Let \mathcal{P}(x) be a real analytic function
with values in M(m, R) , the set of all real matrices of order m , defined
near the origin of R^{n} with coordinates x= (x_{1}, . . , x_{n}) . Let x=\overline{x} be a
characteristic of \mathcal{P}(x) , that is \overline{x} is a zero of det \mathcal{P}(x) . Assume that

Ker 7^{\supset}(\overline{x})\cap{\rm Im} \mathcal{P}(\overline{x})=\{0\} . (2.1)

In this case we can define the localization \mathcal{P}_{\overline{x}}(x) of \mathcal{P}(x) at \overline{x} as follows
(see Definition 3.1 in [8], see also [10], [1]). The assumption (2.1) identifies
Coker \mathcal{P}(\overline{x}) and Ker \mathcal{P}(\overline{x}) . Since d\mathcal{P}(x) , the differential of \mathcal{P} at \overline{x} , is a
well defined map going from Ker \mathcal{P}(\overline{x}) to Coker 7^{\supset}(\overline{x}) then the map followed
by the canonical map to Coker \mathcal{P}(\overline{x}) is identified with a map Ker \mathcal{P}(\overline{x})arrow

Ker \mathcal{P}(\overline{x}) , which is the localization \mathcal{P}_{\overline{x}}(x) . For later references we give a
representation of \mathcal{P}_{\overline{x}}(x) in local coordinates. Set s=dimKer\mathcal{P}(\overline{x}) . Let
\{v_{1}, \ldots, v_{s}\} be a basis for Ker \mathcal{P}(\overline{x}) and let \{\phi_{1}, \ldots, \phi_{s}\} , \phi_{i}\in(C^{m})^{*} be
linearly independent and vanish on Im \mathcal{P}(\overline{x}) such that (\langle\phi_{i}, v_{j}\rangle)=I_{s} . Then
\mathcal{P}_{\overline{x}}(x) is given by

(\langle\phi_{i}, \mathcal{P}(\overline{x}+\mu x)v_{j}\rangle)=\mu(\mathcal{P}_{\overline{x}}(x)+O(\mu))

as \mu-*0 .

Definition 2.1 Let x=\overline{x} be a characteristic of \mathcal{P}(x) . We say that \overline{x} is
non degenerate if the following conditions are verified;
(1) Ker \mathcal{P}(\overline{x})\cap{\rm Im} \mathcal{P}(\overline{x})=\{0\} ,
(2) \dim\{\mathcal{P}_{\overline{x}}(x)|x\in R^{n}\}=s(s+1)/2 with s=dimKer\mathcal{P}(\overline{x}) ,
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(3) \mathcal{P}_{\overline{x}}(x) is diagonalizable for every x .
We call s the order of the characteristic \overline{x} .

We return to \mathcal{L}(x) mentioned in Introduction. By a linear change of
coordinates x we may suppose that \ominus= (1, 0, \ldots, 0) so that

\mathcal{L}(x)=x_{1}I+\sum_{j=2}^{n}F^{j}x_{j}=x_{1}I+L(x’) (2.2)

where F^{j}\in M^{s}(m, R) , x’=(x_{2}, . . , x_{n}) and \{F^{2}, . , F^{n}, I\} are linearly
independent.

Theorem 2.1 Assume that every characteristic of \mathcal{L}(x) of order less than
m is non degenerate. Suppose that det S_{\mathcal{L}}(x) satisfifies (1.2). Then for every
hyperbolic perturbation \mathcal{P}(x)=\mathcal{L}(x)+R(x) of \mathcal{L}(x) we can fifind real analytic
A(x) , B(x) defifined near the origin with A(0)B(0)=I so that

A(x)\mathcal{P}(x)B(x)

becomes symmetric.

Proof. By a preparation theorem for systems proved in [3, Theorem 4.3],
generalizing the Weierstrass preparation theorem, one can write

\mathcal{P}(x+\lambda\ominus)=C(x, \lambda)(\lambda I+Q(x))

where C(x, \lambda) is real analytic near (0, 0) , det C(0,0)\neq 0 and Q(x) is real
analytic with values in M(m, R) , Q(0)=O . Comparing the first order
term in the Taylor expansion at (0, 0) of both sides we see that C(0,0)=I
and Q(x)=\mathcal{L}(x)+\tilde{R}(x) where \overline{R}(x)=O(|x|^{2}) . Taking x’=0 , \lambda=-x_{1} we
get that O=C(x_{1},0, -x_{1})\tilde{R}(x_{1},0) and hence \tilde{R}(x_{1},0, \ldots, 0)=O . Since

C(x, 0)^{-1}\mathcal{P}(x)=\mathcal{L}(x)+\tilde{R}(x)

it is enough to study a perturbation term R(x) which verifies R(x_{1},0 ,
0)=O. We also note that C(\epsilon\Theta, 0)^{-1}\mathcal{P}(\epsilon\Theta)=\epsilon I for small \epsilon . We set

P(x’, x_{1})=L(x’)+R(x_{1}, x’) , L(x’)= \sum_{j=2}^{n}F^{j}x_{j}

where S_{L}(x’) verifies the assumption (1.2) because \mathcal{L}(x)-L(x’)=x_{1}I .
Introducing the polar coordinates x’=r\omega , we blow up P(x’, x_{1}) at x’=0
so that r^{-1}P(r\omega, x_{1}) will be studied. We first show that, for every fixed
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\omega\neq 0 , there is a real analytic positive definite H_{\omega}(r, \theta, x_{1}) with diagonal
elements 1 defined near (0, \omega, 0) such that

P(r\theta, x_{1})H_{\omega}(r, \theta, x_{1})=H_{\omega}(r, \theta, x_{1})^{t}P(r\theta, x_{1}) . (2.3)

To prove the above assertion we can follow the same proof of Proposition
4.3 in [9] except for that of Lemma 4.7 in [9] which was proved assuming
that x=0 is non-degenerate. We examine that the assertion of Lemma
4.7 holds under the assumptions of Theorem 2.1. We fix \omega\neq 0 and take
an orthogonal T_{0} so that T_{0}^{-1}L(\omega)T_{0}=\oplus_{i=1}^{p}\lambda_{i}I_{s_{i}} just as in the proof of
Proposition 4.3. Set \tilde{L}(\theta)=T_{0}^{-1}L(\theta)T_{0}=(\tilde{L}_{ij}(\theta))_{1\leq i,j\leq p} and

\overline{F}^{j}=T_{0}^{-1}F^{j}T_{0}=(\overline{F}_{kl}^{j})_{1\leq k,l\leq p} , \tilde{L}_{ii}(\theta)=\sum_{j=2}^{n}\tilde{F}_{ii}^{j}\theta_{j}

where the block decomposition corresponds to that of \oplus\lambda_{i}I_{s_{i}} . Then it is
easy to see that to prove the assertion of Lemma 4.7 it is enough to show
the following. \square

Lemma 2.2 \{I_{s_{i}},\tilde{F}_{ii}^{j}\} span M^{s}(s_{i}, R) .

Proof. Let \tilde{\mathcal{L}}(x)=T_{0}^{-1}\mathcal{L}(x)T_{0} . Since (x_{1}, x’)=(-\lambda_{i}, \omega) is a characteristic
of \tilde{\mathcal{L}}(x) of order less than m it is non-degenerate by assumption. It is clear
that the localization of \tilde{\mathcal{L}}(x) at (-\lambda_{i}, \omega) is

\tilde{\mathcal{L}}_{(-\lambda_{i},\omega)}(x)=x_{1}I_{s_{i}}+\sum_{j=2}^{n}\tilde{F}_{ii}^{j}x_{j}

because \tilde{\mathcal{L}}(-\lambda_{i}, \omega) is diagonal. Noting that the non-degeneracy of char-
acteristics is invariant under changes of basis for C^{m} we conclude that the
matrices \{I_{s_{i}},\tilde{F}_{ii}^{j}\} span M^{s}(s_{i}, R) since the image \tilde{\mathcal{L}}_{(-\lambda_{i},\omega)} is s_{i}-dimensional.
This proves the assertion. \square

Thus we get H_{\omega}(r, \theta, x_{1}) near every \omega\neq 0 verifying (2.3) with diagonal
elements 1. Since det S_{L}(\theta)\neq 0 on a dense subset then H_{\omega} can be continued
analytically to a neighborhood of \{0\}\cross S^{n-2}\cross\{0\} yielding H(r, \theta, x_{1}) which
verifies (2.3) there (see Lemma 4.8 in [9]). We then show that there is a
real analytic G(x’, x_{1}) defined near the origin such that

H(r, \theta, x_{1})=G(r\theta, x_{1}) , G(0)=I (2.4)

which proves that T(x)^{-1}P(x)T(x) becomes symmetric with T(x)=G(x)^{1/2} .
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Taking A(x)=T(x)^{-1}C(x, 0)^{-1} , B(x)=T(x) we obtain Theorem 2.1. Here
we note that A(\epsilon\ominus)\mathcal{P}(\epsilon\ominus)B(\epsilon\ominus)=\epsilon I for small \epsilon . To see (2.4) we make the
following observation. Let f(\theta) , g(\theta) be homogeneous polynomials in \theta of
degree p , q respectively where p\geq q . Let

g( \theta)=\prod_{j=1}^{s}g_{j}(\theta)^{r_{j}}

be the irreducible factorization of g(\theta) in R[\theta] . We assume that f(\theta)/g(\theta) is
C^{\infty} apart from the origin and that V_{j}=\{\theta|g_{j}(\theta)=0\} , 1\leq j\leq s contains
a regular point. Then applying Lemma 2.5 in [6] repeatedly, we conclude
that f(\theta)/g(\theta) is a homogeneous polynomial in \theta of degree p-q.

Then, in the proof of Proposition 4.5 in [9], replacing Lemma 4.9 by
the assumption (1.2) and the argument applying Lemma 2.5 in [6] by the
above observation, we conclude (2.4) easily.

Since the non-degeneracy of characteristics is invariant under orthog0-
nal changes of basis for C^{m} we have

Corollary 2.3 Assume that every characteristic of \mathcal{L}(x) of order less
than m is non-degenerate and there is an orthogonal T\in O(m) such that
det S_{T\mathcal{L}T}-1(x) verififies (1.2). Then the same conclusion as in Theorem 2.1
holds.

Remark. The condition (1.2) is not invariant under orthogonal changes of
basis for C^{m} . Let

\mathcal{L}(x)=x_{1}I_{2}+ (\begin{array}{ll}0 x_{2}x_{2} 0\end{array})

Then it is obvious that det S_{\mathcal{L}}(x)=0 . But it is easy to see that there is an
orthogonal T\in O(2) so that det S_{T^{-1}\mathcal{L}T}(x) verifies (1.2).

We remark here that the definition of non-degenerate characteristics
given here is equivalent to that used in the previous papers [4], [2] for
double characteristics. Let

\mathcal{L}(x)=x_{1}I+L(x’) , x’=(x_{2}, \ldots, x_{n}) ,

where L(x’) is real analytic with values in M(m, R) defined near x’=\overline{x} ’

which is not necessarily linear in x’

Lemma 2.4 Assume that all eigenvalues of L(x^{/}) are real near x^{/}=\overline{x} ’
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Let \overline{x}= (\overline{x}_{1},\overline{x}’) be a double characteristic of \mathcal{L}(x) . Then \overline{x} is non degener-
ate if and only if

dimKer \mathcal{L}(\overline{x})=2 and rankHess h(\overline{x})=3

where h(x)=\det \mathcal{L}(x) .

Proof Take a constant matrix T so that

T^{-1}\mathcal{L}(\overline{x})T=(\begin{array}{ll}A OO G\end{array})

where G is a non singular matrix of order m-2 and the two eigenvalues
of A are zero. Assume that dimKer \mathcal{L}(\overline{x})=2 and rankHess h(\overline{x})=3 . Then
it follows that A=O and hence Ker \mathcal{L}(\overline{x})\cap{\rm Im} \mathcal{L}(\overline{x})=\{0\} . Let \mathcal{L}_{\overline{x}}(x) be
the localization of \mathcal{L}(x) at \overline{x} . Denoting T^{-1}\mathcal{L}(x)T=(L_{ij}(x))_{1\leq i,j\leq 2} we get
L_{11}(\overline{x}+\mu x)=\mu(\mathcal{L}-(x)+O(\mu)) as \muarrow 0 . Then it follows that

h(\overline{x}+x)=\det \mathcal{L}(\overline{x}+x)=(\det G) det \mathcal{L}-(x)+O(|x|^{3}) (2.5)

as x –0. Since \mathcal{L}_{\overline{x}}(x) is a 2\cross 2 hyperbolic system and rankHess det \mathcal{L}_{\overline{x}}(0)=

3 by (2.5) then it can be symmetrized by a constant matrix by Lemma 4.1
in [7]. In particular \mathcal{L}_{\overline{x}}(x) is diagonalizable for every x and \dim\{\mathcal{L}_{\overline{x}}(x)|x\in

R^{n}\}=3 . Conversely we assume that \overline{x} is non degenerate in the sense of
Definition 2.1. From Ker \mathcal{L}(\overline{x})\cap{\rm Im} \mathcal{L}(\overline{x})=\{0\} it follows that A=O and
hence dimKer \mathcal{L}(\overline{x})=2 . Since \mathcal{L}_{\overline{x}}(x) is diagonalizable and dim \mathcal{L}_{\overline{x}}=3 then
\mathcal{L}_{\overline{x}}(x) is symmetrizable (see [2]). Thus rankHess det \mathcal{L}_{\overline{x}}(0)=3 and hence
rankHess h(\overline{x})=3 by (2.5). \square

3. Non-degenerate characteristics for symmetric systems

For symmetric systems with constant coefficients the description of non
degeneracy of characteristics becomes simple. Let \mathcal{L}(x) be

\mathcal{L}(x)=\sum_{j=1}^{n}A_{j^{X}j}

where A_{j}\in M^{s}(m, R) . We denote by M_{k}^{s}(m, R) the set of all A\in M^{s}(m, R)

with rank m-k . Then we have

Lemma 3.1 Let \overline{x} be a characteristic of \mathcal{L}(x) of order k . Then \overline{x} is non
degenerate if and only if the range \mathcal{L} intersects M_{k}^{s}(m, R) at \mathcal{L}(\overline{x}) transver-
sally.
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Proof. Since \mathcal{L}(\overline{x}) and \mathcal{L}_{\overline{x}}(x) are symmetric, the conditions (1) and (3)
in Definition 2.1 are automatically satisfied. Without restrictions we may
assume that \overline{x}= (0, \ldots, 0, 1) . Then A_{n} is of rank m-k. We can make
an orthogonal transformation of the matrices to attain that with a block
matrix notation

A_{n}=(\begin{array}{ll}O OO G\end{array})

where G is a (m-k)\cross(m-k) non-singular matrix. The tangent space of
M_{k}^{s}(m, R) at A_{n} consists of matrices of the form

(\begin{array}{ll}O ** *\end{array}) (3.1)

with the corresponding block decomposition. On the other hand, with the
same block decomposition of \mathcal{L}(x)

\mathcal{L}(x)=(\begin{array}{ll}L_{11}(x) L_{12}(x)L_{21}(x) L_{22}(x)\end{array})

it is clear that \mathcal{L}_{\overline{x}}(x)=L_{11}(x) . Thus the transversality of intersection means
that \dim L_{11}=d(k) that is, \dim \mathcal{L}_{\overline{x}}=d(k) and hence \overline{x} is non-degenerate.
The converse follows in the same way. \square

Taking Lemma 2.4 into account one sees that Lemma 3.1 generalizes
Lemma 3.2 in [4].

We continue to study non-degenerate characteristics for \mathcal{L}(x) in (2.2).
We start with the special case that dim \mathcal{L}=d(m) –1. Since \mathcal{L} has codi-
mension one in M^{s}(m, R) then \mathcal{L} is defined by

\mathcal{L} : tr (AX)=0 , X=(x_{ij}) , x_{ij}=x_{ji} (3.2)

with some A\in M^{s}(m, R) . Note that tr A=0 because \mathcal{L} contains the
identity. Now we have

Proposition 3.2 Assume that \mathcal{L} is given by (3.2) with A\in M^{s}(m, R)

and that the rank of A is greater than k . Then every characteristic of order
k of \mathcal{L}(x) is non-degenerate.

Proof. Let \overline{x} be a characteristic of order k of \mathcal{L}(x) and hence H=\mathcal{L}(\overline{x})\in

\mathcal{L}\cap M_{k}^{s}(m, R) . Here we note that dim T_{H}M_{k}^{s}(m, R)=d(m)-d(k) which
is seen by the proof of Lemma 3.1. To show \overline{x} is non-degenerate it suffices
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to prove that

\dim(\mathcal{L}\cap T_{H}M_{k}^{s}(m, R))=d(m)-d(k)-1 (3.3)

by Lemma 3.1. As in the proof of Lemma 3.1, considering T^{-1}\mathcal{L}T with a
suitable T\in O(m) we may assume that

H= (\begin{array}{ll}O OO G\end{array}) (3.4)

where G is a (m-k)\cross(m-k) non-singular matrix. Recalling that the
tangent space T_{H}M_{k}^{s}(m, R) is spanned by matrices of the form (3.1) we see
that \mathcal{L}\cap T_{H}M_{k}^{s}(m, R) consists of matrices of the form

X=(\begin{array}{ll}O x_{ij}x_{ij} x_{ij}\end{array}) . tr
(AX)= \sum_{k+1\leq j,i\leq j}(2-\delta_{ij})a_{ij}x_{ij}=0

where A=(a_{ij}) and \delta_{ij} is the Kronecker’s delta. Since A is symmetric
and the rank of A is greater than k by assumption then it follows that
(a_{ij})_{k+1\leq j,i\leq j}\neq O . This proves (3.3) and hence the assertion. \square

We turn to the general case that 1\leq\dim \mathcal{L}\leq d(m)-1 .

Proposition 3.3 In the Grassmannian G_{d(m),I}^{n} of n dimensional sub-
space of M^{s}(m, R) containing the identity I , the subset for which every
characteristic of order less than m is non-degenerate is an open and dense
subset.

Let P^{N}(R) be the N dimensional real projective space and let X\subset

P^{N}(R) be a non-singular algebraic manifold of dimension r and assume
that x_{0}\not\in T_{x}X for all x\in X . Let us denote

\tilde{G}_{N,x_{0}}^{s}= {W\subset P^{N}(R)|W ; linear space, dim W=s , x_{0}\in W }

and set s’=N-s . Then we have

Lemma 3.4 A generic W\in\tilde{G}_{N,x_{0}}^{s} intersects X transversally.

Proof. 1 Let Y=\{(x, W)\in X\cross\tilde{G}_{N,x_{0}}^{s}|x\in W\} and denote by p_{1} , p_{2} the
projections onto X and \tilde{G}_{N,x_{0}}^{s} respectively. Note that dim Y=s’s-s’+r
and dim \tilde{G}_{N,x_{0}}^{s}=s’s . Then if r<s’ a generic W\in\tilde{G}_{N,x_{0}}^{s} does not intersect

lThe author owes this simple proof to A.Gyoja
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X and hence the result. Thus it is enough to study the case r\geq s’ . Let us
set

Z=\{(x, W)\in Y|\dim(T_{x}X+W)\leq N-1\} .

It is not difficult to see that

\dim(p_{1}|Z)^{-1}(x)=ss’-r-1 , x\in X

so that dim Z=ss’-1=\dim\tilde{G}_{Nx_{0}}^{s} –1. Thus for every W belonging to
the open dense subset \tilde{G}_{N,x_{0}}^{s}\backslash \overline{p_{2}(}’ Z), W intersects X transversally. This
proves the assertion. \square

Proof of Proposition 3.3 Take X and \tilde{G}_{N,x_{0}}^{s} as the projective spaces
M_{k}^{s}(m, R)^{pr} and (G_{d(m),I}^{s+1})^{pr} based on M_{k}^{s}(m, R) and G_{d(m),I}^{s+1} respectively.
Applying Lemma 3.4 with N=d(m)-1 , r=N-d(k) , x_{0}=I we get the
desired result. \square

4. Condition (1.2)

As mentioned in Introduction we study S_{\mathcal{L}}(x) for symmetric \mathcal{L}(x) when
dim \mathcal{L}=d(m) – \nu where 1 \leq\nu \leq m –3. We first examine a matrix
representation of S_{\mathcal{L}}(x) . Let

F_{m}=\{H=(h_{ij})\in M^{s}(m, R)|h_{ii}=0\}

then S_{\mathcal{L}}(x) is defined as the linear map between two d(m-1)-dimensional
linear subspaces F_{m} and M^{as}(m, R)

F_{m}\ni H – [\mathcal{L}(x), H]=K\in M^{as}(m, R)

where M^{as}(m, R) denotes the set of all real anti-symmetric matrices of order
m . Let us write

\mathcal{L}(x)=(\phi_{j}^{i}(x))_{1\leq i,j\leq m} , \phi_{j}^{i}(x)=\phi_{i}^{j}(x) . (4.1)

For H\in F_{m} we write \check{H}= {}^{t}(h_{12}, h_{13}, h_{23}, h_{14}, h_{24}, h_{34}, \ldots, h_{m-1m}) \in

R^{d(m-1)} . Then the equation [\mathcal{L}(x), H]=K can be written as

S_{\mathcal{L}}(x)\check{H}=\check{K}
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where S_{\mathcal{L}}(x) is a d(m-1)\cross d(m-1) matrix. For instance when m=3 we
have

S_{\mathcal{L}}(x)= (\begin{array}{llll}\phi_{1}^{1}(x)- \phi_{2}^{2}(x) -\phi_{3}^{2}(x’) \phi_{3}^{1}(x’)-\phi_{3}^{2}(x,) \phi_{1}^{1}(x)-\phi_{3}^{3}(x) \phi_{2}^{1}(x’)-\phi_{3}^{1}(x,) \phi_{2}^{1}(x,) \phi_{2}^{2}(x)-\phi_{3}^{3}(x)\end{array}) (4.2)

We turn to the case \mathcal{L}(x) is a m\cross m matrix. Let

\mathcal{L}(x)=(\begin{array}{ll}L(x) l(x’){}^{t}l(x,) \phi_{m}^{m}(x)\end{array})

where l(x’)={}^{t}(\phi_{m}^{1}(x’), , \phi_{m}^{m-1}(x’)) and L(x) stands for \mathcal{L}(x) in (4.1)
with m-1 . For H\in F_{m} and K\in M^{as}(m, R) we write

H=(\begin{array}{ll}H_{1} h{}^{t}h 0\end{array}) . K=(\begin{array}{ll}K_{1} k{}^{t}k 0\end{array})

with H_{1}\in F_{m-1} , K_{1}\in M^{as} (m-1 , R) and h={}^{t}(h_{1m}, \ldots, h_{m-1m}) . Then
it is easy to see that the equation [\mathcal{L}(x), H]=K is written as

(\begin{array}{lll}S_{L}(x) c(l) c,(l) L(x)- \phi_{m}^{m}I\end{array})(\begin{array}{l}\check{H}_{1}h\end{array})=(\begin{array}{l}\check{K}_{1}k\end{array}) =\check{K}

and hence we get

S_{\mathcal{L}}(x)= (\begin{array}{lll}S_{L}(x) c(l) c,(l) L(x)- \phi_{m}^{m}I\end{array}) (4.3)

Our aim in this section is to prove

Proposition 4.1 Assume that 1\leq\nu\leq m-3 . Then in the Grassmannian
G_{d(m),I}^{d(m)-\nu} . the subset of \mathcal{L} for which the condition (1.2) is fulfifilled for T^{-1}\mathcal{L}T

with some T\in O(m) is an open and dense subset.

We first give a parametrization of the Grassmannian G_{d(m),I}^{n} of n di-
mensional subspaces of M^{s}(m, R) containing the identity. Take a map

\sigma : \{1, \ldots, \nu\}arrow\{(i, j)|1\leq i\leq j\leq m, (i, j)\neq(m, m)\}

which is injective. Denote by U_{\sigma} the set of all JJ-tuples of m\cross m symmetric
matrices A= (A_{1}, \ldots, A_{U}) such that tr A_{j}=0 and the element \sigma(k) of A_{j}
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is zero unless k=j and the element \sigma(j) of A_{j} is 1. Let

\phi_{\sigma} : U_{\sigma}\ni A\mapsto \mathcal{L} ,
\mathcal{L}= {X\in M^{s} (m , R) | tr (A_{j}X)=0,1\leq j\leq\nu }

and set \Omega_{\sigma}=\phi_{\sigma}(U_{\sigma}) then with all such injective \sigma , (\phi_{\sigma}^{-1}, \Omega_{\sigma}) give charts
of the Grassmannian G^{n} We set \triangle=\{(i, i)|1\leq i\leq m\} and let

d(m),I^{\cdot}

1\leq k\leq m-1 . We first remark that

Lemma 4.2 Assume that 1\leq k\leq m-1 . Then there are fifinitely many
S_{1} , \ldots , S_{N}\in O(m) such that for any \mathcal{L}\in G_{d(m),I}^{d(m)-k} one can fifind S_{i} so that
S_{i}^{-1}\mathcal{L}S_{i}\in\Omega_{\sigma} with some \sigma verifying \sigma( {1, . . ’

k\})\cap\triangle=\emptyset .

Proof. In this proof we denote |C|= \max_{i,j}|c_{ij}| for a matrix C=(c_{ij}) .
Let T_{pq}(\epsilon) be the orthogonal matrix obtained replacing p-th and q-th, p<q ,
rows of the identity matrix by

(0, . . , 0, f(\epsilon), 0, . , 0, \epsilon, o, . , 0) ,
(0, \ldots, 0, -\epsilon, o, . , 0, f(\epsilon), 0, . . , 0)

where \epsilon^{2}+f(\epsilon)^{2}=1 . We show that it is enough to take \{S_{i}\} as the set of
all m times compositions of I and T_{pq}(\epsilon_{i}) , \epsilon_{i}=(C_{i}m^{2^{i-1}})^{-1} , i=1 , .
where C_{1}<C_{2}< <C_{m} will be chosen suitably. Let \mathcal{L}\in G_{d(m),I}^{d(m)-k}’ m

,

and let A_{1},\ldots.A_{k} define \mathcal{L} so that \mathcal{L} consists of all X\in M^{s}(m, R) such
that tr (A_{j}X)=0,1\leq j\leq k where A_{j} are linearly independent and
tr A_{j}=0 . We first note that we may assume (H)_{\mu} : there is an injective
\tau : \{1, \ldots, \mu\}arrow\{(i, j)|1\leq i<j\leq m\} such that the element \tau(i) of
A_{j} is zero unless i=j , the element \tau(j) of A_{j} is 1, |A_{j}|\leq a_{\mu}m^{2^{\mu-1}} for
1\leq j\leq\mu and A_{\mu+1} , , A_{k} are diagonal where a_{1}=1 , a_{\mu+1}=Ba_{\mu}C_{\mu}

with a fixed large B . In fact if some A_{j} has a non-zero off diagonal element
we may assume that the off diagonal element \tau(1) of A_{1} is 1 and |A_{1}|\leq 1 .
Replacing A_{j} by A_{j}-\alpha_{j}A_{1} , j\neq 1 , with suitable \alpha_{j} one can assume that
the element \tau(1) of A_{j} is zero if j\neq 1 . A repetition of this argument gives
the assertion. If \mu=k then \tau(\{1, \ldots, k\})\cap\triangle=\emptyset and there is nothing to
prove. Then we may assume that \mu\leq k-1 . Let A_{\mu+1}=diag (\lambda_{1}, . , \lambda_{m}) .
Since tr A_{\mu+1}=0 it is easy to see that there are at least m-1 pairs (i, j) ,
i<j such that

3|\lambda_{i}-\lambda_{j}|\geq|\lambda_{r}| , r=1 , . , m .



Stability of symmetric systems under hyperbolic perturbations 521

Since \mu\leq m-2 there exists such a (p, q) with (p, q)\not\in\tau(\{1, , \mu\}) . Let
us set

A_{j}(\epsilon_{\mu})=T_{pq}(\epsilon_{\mu})^{-1}A_{j}T_{pq}(\epsilon_{\mu}) , 1\leq j\leq k

and note that |A_{j}(\epsilon_{\mu})-A_{j}|\leq B_{1}a_{\mu}C_{\mu}^{-1},1\leq j\leq\mu . Choose C_{\mu} so that
a_{\mu}C_{\mu}^{-1} is small enough then taking \tilde{A}_{j}(\epsilon_{\mu})=\sum_{i=1}^{\mu}c_{ji}A_{i}(\epsilon_{\mu}) , 1\leq j\leq\mu , with
a non-singular C=(c_{ji}) we may suppose that the element \tau(i) of \tilde{A}_{j}(\epsilon_{\mu}) is
zero unless i=j and the element \tau(j) of \tilde{A}_{j}(\epsilon_{\mu}) is 1 and |\tilde{A}_{j}(\epsilon_{\mu})|\leq 2|A_{j}| .
Note that the off diagonal elements of A_{\mu+1}(\epsilon_{\mu}) are zero except for (p, q) ,
(q,p) elements which are \epsilon_{\mu}f(\epsilon_{\mu})(\lambda_{q}-\lambda_{p}) . Set

\tilde{A}_{\mu+1}(\epsilon_{\mu})=\{\epsilon_{\mu}f(\epsilon_{\mu})(\lambda_{q}-\lambda_{p})\}^{-1}A_{\mu+1}(\epsilon_{\mu})

and hence |\tilde{A}_{\mu+1}(\epsilon_{\mu})| \leq B_{2}C_{\mu}m^{2^{\mu-1}} Replacing \tilde{A}_{j}(\epsilon_{\mu}) by \tilde{A}_{j}(\epsilon_{\mu}) -

\alpha_{j}\tilde{A}_{\mu+1}(\epsilon_{\mu}) with suitable \alpha_{j} we can attain that the element \tau(\mu+1)=(p, q)

of \tilde{A}_{j}(\epsilon_{\mu}) is zero for 1\leq j\leq\mu and |\tilde{A}_{j}(\epsilon_{\mu})|\leq a_{\mu+1}m^{2^{\mu}} 1\leq j\leq\mu+1 . By
subtraction again we may suppose that A_{j}(\epsilon_{\mu}) , j\geq\mu+2 are diagonal and
then we get to (H)_{\mu+1} . The rest of the proof is clear. \square

Proof of Proposition 4.1 We first assume that \mathcal{L}\in\Omega_{\tau} with \tau(\{1, , \mathfrak{l}/\})\cap

\triangle=\emptyset and let A= (A_{1}, . , A_{lJ})\in U_{\tau} be the coordinate of \mathcal{L} . Let us denote

\mathcal{L}(x)=\sum_{j=1}^{n}K_{j}x_{j}=(\phi_{j}^{i}(x))

where K_{j} , 1\leq j\leq n=d(m)-\nu , is a basis for \mathcal{L} and set g(x)=\det S_{\mathcal{L}}(x) .
Let J_{\tau}=\{(i, j)|1\leq i\leq j\leq m\}\backslash \tau(\{1, , \nu\}) and note that \phi_{j}^{i}(x) ,
(i, j)\in J_{\tau} are linearly independent and \triangle\subset J_{\tau} . With A_{k}=(a_{ij}^{(k)}) it is
clear that the equations \phi_{j}^{i}(x)=0 , (i, j)\in J_{\tau}\backslash \triangle and tr (A_{k}\mathcal{L}(x))=0

define a plane

\sum_{j=1}^{m}a_{jj}^{(k)}\phi_{j}^{j}(x)=\sum_{j=1}^{m-1}a_{jj}^{(k)}(\phi_{j}^{j}(x)-\phi_{m}^{m}(x))=0 , 1\leq k\leq lJ (4.4)

and S_{\mathcal{L}}(x) is diagonal on the plane with the determinant

g(x)= \prod_{1\leq i<j\leq m}(\phi_{i}^{i}(x)-\phi_{j}^{j}(x))
. (4.5)

We show that there is a polynomial \pi(A) in a_{jj}^{(k)} . 1\leq k\leq lJ , 1\leq j\leq m-1
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such that if \pi(A)\neq 0 then no two \phi_{i}^{i}(x)-\phi_{j}^{j}(x) , i<j are proportional on
the plane (4.4). To simplify notation we write y_{i} for \phi_{i}^{i}(x)-\phi_{m}^{m}(x) so that

g(y)= \prod_{1\leq i<j\leq m-1}(y_{i}-y_{j})y_{1}
. . y_{m-1}

provided that y\tilde{A}=0 where y= (y_{1}, \ldots, y_{m-1}) and \tilde{A}=(a_{jj}^{(k)}) which is
a (m-1)\cross\nu matrix. Suppose that some two y_{i}-y_{j} are proportional on
the plane y\tilde{A}=0 and hence (b, y)=0 with some b\in R^{m-1} for every y
with y\tilde{A}=0 . Then it is clear that rank (\tilde{A}, b)=rank\tilde{A} . Note that at
most two components of b are the constant of the proportionality c and
the other components are either 0 or 1 (at most two 1 appear). Take a
(\nu+1)\cross(\nu+1) submatrix of (\tilde{A}, b) and expand the determinant with
respect to the last column. Equating the determinant to zero we get a
linear relation of lJ-minors of \tilde{A} with coefficients which are either 1 or the
proportional constant c . Since lJ+1\leq m -2 we have at least m-1 such
linear relations. Elimination of c gives a quadratic equation in lJ-minors of
\tilde{A} . Denote this equation by \pi(A)=0 . Then we conclude that the rank of
the matrix (\tilde{A}, b) is lJ+1 if \pi(A)\neq 0 . This shows that no two y_{i}-y_{j} are
proportional if \pi(A)\neq 0 .

Let g(x)= \prod g_{j}(x)^{r_{j}} be the irreducible factorization in R[x] . Without
restrictions we may assume that the plane y\tilde{A}=0 is given by y_{b}=f(y_{a}) ,
after a linear change of coordinates y if necessary, where y=(y_{a}, y_{b}) is a
partition of the coordinates y . Then we have

\prod g_{j}(y_{a}, f(y_{a}))^{r_{j}}=\prod p_{i}(y_{a})

where p_{i}(y_{a}) are linear in y_{a} and no two p_{i}(y_{a}) are proportional if \pi(A)\neq 0 .
Then it follows that r_{j}=1 and g_{j}(y_{a}, f(y_{a})) is a product of some p_{i}(y_{a})

’ s :

g_{j}(y_{a}, f(y_{a}))= \prod_{i\in I_{j}}p_{i}(y_{a})
.

From this it is obvious that \{g_{j}(y_{a}, f(y_{a}))=0\} contains a regular point.
Then it follows that \{g_{j}(x)=0\} contains a regular point. This shows that,
in U_{\tau} , the set of A such that S_{\mathcal{L}}(x) does not verify (1.2) is contained in
an algebraic set. We now study \mathcal{L}\in\Omega_{\sigma} with \sigma(\{1, \ldots, \nu\})\cap\triangle\neq\emptyset . By
Lemma 4.2 there is S_{i}\in O(m) such that S_{i}^{-1}\mathcal{L}S_{i}\in\Omega_{\tau} with some \tau verifying
\tau(\{1, . , l/\})\cap\triangle=\emptyset . Since \{S_{i}\} is a finite set the proof is clear. \square

Proof of Theorem 1.1 Let d(m)-m+3\leq n\leq d(m) . Then Theorem 1.1
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follows immediately from Propositions 3.3, 4.1 and Corollary 2.3. \square

5. A special case

In this section we prove Theorem 1.2. Thus we assume m=3 through-
out the section. Let \mathcal{L}\in G_{6,I}^{n} for n=4 or 5. With a basis K_{j} for \mathcal{L} , \mathcal{L} is
the range of

\mathcal{L}(x)=\sum_{j=1}^{n}K_{j^{X}j} .

We first study the case n=5 .

Lemma 5.1 In the Grassmannian G_{6,I}^{5} , the subset of \mathcal{L} for which the
condition (1.2) is fulfifilled for T^{-1}\mathcal{L}T with some T\in O(m) is an open and
dense subset.

Proof. Let A=A_{1}\in U_{\sigma} be the coordinate of \mathcal{L} and assume that \sigma(1)\cap

\triangle=\emptyset so that the diagonal elements of \mathcal{L}(x) are linearly independent.
Considering T^{-1}\mathcal{L}(x)T with suitable permutation matrix T_{-} if necessary,
we may assume that \sigma(1)=(1,2) so that with \mathcal{L}(x)=(\phi_{j}^{i}(x)) we have
from tr (A\mathcal{L}(x))=0 that

-2\phi_{2}^{1}(x)=a_{11}(\phi_{1}^{1}-\phi_{3}^{3})+a_{22}(\phi_{2}^{2}-\phi_{3}^{3})+2a_{13}\phi_{3}^{1}+2a_{23}\phi_{3}^{2} .

From (4.2), with simplified notations, it is enough to study

S(x, y)=(\begin{array}{lll}x_{1}-x_{2} -y_{1} y_{2}-y_{1} x_{1} \phi(x,y)-y_{2} \phi(x,y) x_{2}\end{array})

where \phi(x, y)=a_{1}x_{1}+a_{2}x_{2}+b_{1}y_{1}+b_{2}y_{2} . We show that if a_{1}+a_{2}\neq 1

and 4a_{1}a_{2}-1\neq 0 then the condition (1.2) is fulfilled. We first assume
that x_{1}x_{2}-\phi(x, 0)^{2} is irreducible. Note that g(x, y)=\det S(x) is then
irreducible. Indeed if g(x, y) were reducible so that g(x, y)=h(x, y)k(x, y)
then from g(x, 0)=(x_{1}-x_{2})\psi(x) with \psi(x)=x_{1}x_{2}-\phi(x, 0)^{2} we may
suppose that

h(x, y)=\psi(x)+p(x, y) , k(x, y)=x_{1}-x_{2}+q(y)

where p(x, 0)=0 , q(y)=\alpha y_{1}+\beta y_{2} . Equating the coefficients of y_{j} in
both sides of g(x, y)=h(x, y)k(x, y) we see that \alpha\psi(x) , \beta\psi(x) have a factor
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x_{1}-x_{2} which implies that q=0 . This gives g(x, y)=h(x, y)(x_{1}-x_{2}) which
is a contradiction. Thus g is irreducible. It is clear that \{g(x, 0)=0\} has a
regular point and hence so does \{g(x, y)=0\} . This proves the assertion.

Assume now that \psi(x)=x_{1}x_{2}-\phi(x, 0)^{2} is reducible. From the as-
sumption 4a_{1}a_{2}-1\neq 0 it follows that \psi(x) has no multiple factor. Note
that a_{1}+a_{2}\neq\pm 1 implies that \psi(x) and x_{1}-x_{2} are relatively prime. The
rest of the proof is a repetition of the last part of the proof of Proposition
4.1. \square

We turn to the case n=4. We show that

Lemma 5.2 Assume that n=4 and every double characteristic of \mathcal{L}(x)

is non degenerate. Then the condition (1.2) is fulfifilled for T^{-1}\mathcal{L}(x)T with
a suitable T\in O(3) .

Proof. Following the proof of Theorems 3.5 and 3.6 in [4] we choose a
specific basis for \tilde{\mathcal{L}}=T^{-1}\mathcal{L}T with suitably chosen T\in O(3) and show that
(1.2) is fulfilled for \tilde{\mathcal{L}} using this basis. From the proof of Theorem 3.3 in [4],
if every double characteristic of \mathcal{L} is non-degenerate, then only two cases
occur, that is \mathcal{L} has either four non-degenerate double characteristics or two
non-degenerate double characteristics.

We first treat the case that \mathcal{L} has four non-degenerate characteristics.
Choosing a suitable T\in O(3) we see from [4] that A^{\pm}=\alpha_{\pm}\otimes\alpha\pm andB^{\pm}=

\beta_{\pm}\otimes\beta_{\pm} is a basis for \tilde{\mathcal{L}}=T^{-1}\mathcal{L}T where \alpha\pm=(a, \pm a, 1) , \beta_{\pm}=(b, \pm b, 1)

and a\neq b , ab\neq 0 . Now we can write

\tilde{\mathcal{L}}(x)=A^{+}x_{1}+A^{-}x_{2}+B^{+}x_{3}+B^{-}x_{4} .

With X=x_{1}+x_{2} , Y=x_{1}-x_{2} , Z=x_{3}+x_{4} , W=x_{3}-x_{4} we have

\overline{\mathcal{L}}= (\begin{array}{lll}a^{2}X+b^{2}Z a^{2}Y+b^{2}W aX+bZa^{2}Y+b^{2}W a^{2}X+b^{2}Z aY+bWaX+bZ aY+bW X+Z\end{array}) (5.1)

Therefore it follows from (4.2) and (5.1) that

S_{\overline{\mathcal{L}}}=(\begin{array}{lll}0 -aY-bW aX+bZ-aY-bW cX+dZ a^{2}Y+b^{2}W-aX-bZ a^{2}Y+b^{2}W cX+dZ\end{array})

where c=a^{2}-1 , d=b^{2}-1 . Let \tilde{g}=\det S -. On the plane a^{2}Y+b^{2}W=0 ,
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that is, if W=-a^{2}Y/b^{2}=eY we get

\tilde{g}=(cX+dZ)(aX+bZ+(a+be)Y)(aX+bZ-(a+be)Y) .

Note that a+be\neq 0 because a\neq b and no two factors in the right-hand
side are proportional. Now, as the end of the proof of Proposition 4.2, it is
easy to conclude that \tilde{g} satisfies (1.2).

We next study the case \mathcal{L} has two non-degenerate double characteristics.
With a suitable T\in O(3) we see that \tilde{\mathcal{L}}=T^{-1}\mathcal{L}T contains K^{\pm}=\alpha\pm\otimes\alpha\pm

with \alpha\pm=(a, \pm a, 1) , a\neq 0 , which are intersections with M_{2}^{s}(3, R) . Since
\tilde{\mathcal{L}} contains the identity, as the third basis element in \tilde{\mathcal{L}} , one can take K_{3}

K_{3}=(\begin{array}{lll}0 0 -2a0 0 0-2a 0 2(a^{2}-1)\end{array})

because K^{+}+K^{-}+K_{3}=2a^{2}I . The fourth basis element in \tilde{\mathcal{L}} can then be
chosen of the form

K_{4}=(\begin{array}{lll}0 0 00 \lambda \mu 0 \mu \nu\end{array})

Thus with X=x_{1}+x_{2} , Y=x_{1}-x_{2} , Z=x_{3} , W=x_{4} and c=a^{2}-1 the
matrix K^{+}x_{1}+K^{-}x_{2}+K_{3}x_{3}+K_{4}x_{4} can be written

\tilde{\mathcal{L}}= (\begin{array}{lllll}a^{2}X a^{2}Y aX -2aZa^{2}Y a^{2}X+\lambda W aY+\mu W aX-2aZ aY+\mu W X +2cZ +l/W\end{array}) (5.2)

We examine if there are other double characteristics, that is, if \tilde{\mathcal{L}} is of rank
1 for some (X, Y, Z, W) with Z^{2}+W^{2}\neq 0 . It is not difficult to see that six
2-minors of (5.2) vanish for such (X, Y, Z, W) if and only if the equation

4a^{2}Z^{2}+2(a^{2}+1)\lambda ZW+(\lambda\nu-\mu^{2})W^{2}=0

has a real solution (Z, W)\neq(0,0) . Thus in order that \tilde{\mathcal{L}} has two non-
degenerate double characteristics it is necessary and sufficient that

4a^{2}\lambda\nu>4a^{2}\mu^{2}+(a^{2}+1)^{2}\lambda^{2} . (5.3)

In particular \lambda and JJ have the same signs. From (5.2) and (4.2) it follows
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that

S_{\overline{\mathcal{L}}}=(\begin{array}{llllll}-\lambda W -aY-\mu W aX -2aZ-aY-\mu W cX-2cZ -l/W a^{2}Y-aX+2aZ a^{2}Y cX -2cZ +(\lambda-\nu)W\end{array})

If c\neq 0 then we consider \tilde{g}=\det S - on W=0 so that

\tilde{g}=(cX-2cZ)(aX-2aZ+aY)(aX-2aZ-aY) .

The same argument as before proves that (1.2) is verified for \tilde{g} . If c=0
and hence a^{2}=1 then

\tilde{g}=W(-\nu(aX-2aZ)^{2}+\lambda(\nu^{2}-\mu^{2})\alpha^{-1}Y^{2}

+(\lambda-\nu)\alpha(W-a\mu\alpha^{-1}Y)^{2})

=Wh(X, Y, Z, W)

where \alpha=\lambda\nu-\mu^{2} . From (5.3) it follows that \alpha>0 and \nu^{2}-\mu^{2}>0 because
\nu^{2}+\lambda^{2}\geq\lambda\nu>\mu^{2}+\lambda^{2} . Then the quadratic form h is indefinite and hence
\{h=0\} contains a regular point. This proves the assertion. \square

Proof of Theorem 1.2 If n=6 then the assertion follows from Theorem
4.2 in [9]. If n=5 , combining Proposition 3.3 and Lemma 5.1 we get the
result by Corollary 2.3. Let n=4. Then by virtue of Proposition 3.3 and
Lemma 5.2 one can apply Corollary 2.3 to get the assertion. \square
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