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The principle of closeness of sufficiently large sets of
a-points of meromorphic functions
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Abstract. A new version of the proximity principle is given for functions meromorphic
in the unit disk.
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Introduction. Value distribution of functions meromorphic in \mathbb{C} .
The classical theories of R. Nevanlinna and L. Ahlfors [7] describe the

distribution of the a-points of functions meromorphic in \mathbb{C} . These theories
give very precise information for most values of a ; they do not say anything
about the mutual arrangement of a-points for varying a . The mutual ar-
rangement (m.a.) of a-points was considered in numerous articles devoted
to the study of “cercles de remplissage” and to Julia and Borel lines. How-
ever, this research was concerned with the m.a . in relatively small portions
of the plane. The papers [1], [2], [3] by the present author give a “general
principle of the proximity of a-points” This principle also has some bearing
on the classical value-distribution theory.

1. Value distribution of functions meromorphic in the unit disk
D .
Results analogous to those of Nevanlinna-Ahlfors theory and the prox-

imity principle are true in the case of functions meromorphic in the unit
disk D , provided the spherical characteristic function A(r) has a rather fast
rate of growth:

lim \sup_{rarrow 1}A(r)(1-r)=\infty . (1)

(See [3], [7]).
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If A(r) has slow growth, i.e.

A(r)=O( \frac{1}{1-r}) . rarrow 1 , (2)

we have very few results, not only for m.a. , but even for the number of
a-points. In fact, in most cases (classes of bounded functions, H^{p} , Dirichlet
and so on) we can only estimate Blaschke sums and we can not even compare
the number of a-points in a subset of D for different a . Indeed these numbers
can be quite different, so that there is no general “proximity principle” here.
However if we consider the m.a . of values a for which the set w^{-1}(a) is
“sufficienly large” we obtain a new version of the proximity principle for
functions meromorphic in the unit disk. This version is given in section 2.
The proofs are given in section 3.

2.1. Preliminaries
Let D(r)=\{z : |z|<r\} , w(z) be meromorphic function in the unit

disk D=D(1) . Let \Gamma be a smooth Jourdan curve in \mathbb{C} passing through
the given points a_{1} , b_{1} , a_{2} , b_{2}\ldots , a_{n} , b_{n} in this order, n<\infty . We denote by
z_{i}(a) the a-points of function w and A=A(\Gamma, r) the totality of all z_{i}(w)

in D(r) with counting multiplicities, where w\in a_{1} , b_{1} , a_{2} , b_{2}\ldots , a_{n} , b_{n} . We
assume that

a) \Gamma has a parametric representation

\Gamma=\{\zeta : \zeta=\zeta(s) (0\leq s\leq L)\} ,

where ((s) is a smooth function of the Euclidean arc length s of \Gamma and

v( \Gamma)=\int_{0}^{L}|d arg z’(s)|<\infty .

We may also assume that
b) \Gamma does not pass through any of the finite number of points z\in D(r) ,

z\not\in A at which w’(z)=0 .
We denote by \Gamma_{a_{\nu},b_{\nu}} the part of curve lying between points a_{\mathfrak{l}J} and b_{\nu} ,

\nu=1,2 , \ldots , n . Then the part of the set w^{-1}(\Gamma_{a_{\nu},b_{\nu}}) lying in D(r) consist of
some curves of type L_{1} , L_{2} , L_{3} , which due to assumption b), are completely
determined by the following rules.

A) Every curve of type L_{1} connects a point z_{j}(a_{\nu}) with a point z_{j}*(b_{\iota/})

(we shall denote these b_{\mathfrak{l}J}-points by z_{j}(b_{I/}) ); correspondingly |z_{j}(a_{\iota/})-z_{j}(b_{\nu})|

is less than the length of the curve;
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B) Every curve of type L_{2} connects a point z_{i}(a_{\nu}) (or z_{i}(b_{\iota/}) ) with
a point on boundary D(r) ; correspondingly the quantity ( r-|z_{i}(a_{\nu}|) (or
r-|z_{i}(b_{\nu})|) is less than the length of the curve;

C) The closure of every curve of type L_{3} does not involve any point
z_{i}(a_{\nu}) or z_{i}(b_{\nu}) .

We recall that every a_{\nu} point or b_{\nu}-point above is enumerated counting
multiplicities.

Let \tilde{A}=\tilde{A}(\Gamma, r) be totality of all pairs (z_{j}(a_{\nu}), z_{j}(b_{\nu})) from A) and

P(r,\tilde{A})= \sum |z_{j}(a_{\nu})-z_{j}(b_{\nu})| . (3)
(z_{j}(a_{\nu}),z_{j}(b_{\nu}))\in\tilde{A}

We will call P(r,\tilde{A}) the closeness function of a- and 6-p0ints.
Let A^{*} be totality of all points z_{i}(a_{\nu}) and z_{i}(b_{\iota/}) from B) and let

b(r, A^{*})= \sum_{z_{j}\in A^{*}}(r-|z_{j}|)
. (4)

We will call b(r, A^{*}) function of lonely a- and b-points. Obviously

P(r,\tilde{A})+b(r, A^{*})\leq L(r, \Gamma) , (5)

where L(r, \Gamma) is the total Euclidean length of the curves w^{-1}(\Gamma) in D(r) .
We shall measure the density of A(\Gamma, r) by the function

b(r, A)= \sum_{z\in A}(r-|z|) .

A suitable analogue of the Nevanlinna characteristic function T in this
problem and in related ones is

B(r, w)= \int\int_{D(r)}|\frac{w’(z)}{w’(z)}|d\sigma ,

where d\sigma is the Euclidean area element in \mathbb{C} .

2.2. We shall need

Theorem A ( The “tangent variation principle”. see [1] and [4].) Let
w(z) be a meromorphic function in the closure of D(r) . And let \Gamma be a

smooth Jordan curve in \mathbb{C} with v(\Gamma)<\infty . Then

L(r, \Gamma)\leq 3(v(\Gamma)+1)(B(r)+2\pi r) . (6)
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We shall also use the beautiful theorem of W.K . Hayman and G.J-M.
Wu [6]:

Theorem B Let w(z)=z+\alpha_{2}z^{2}+\cdot . be holomorphic and univalent
in the unit disk D and let \Gamma be a circle or a straight line. Then the length
L(1, \Gamma) of w^{-1}(\Gamma) satisfies

L(1, \Gamma)<const<10^{35} .

Definition Let w be meromorphic in z:|z|<R , R\leq\infty . Let \epsilon(r) :
(0, R)arrow(\epsilon(0), 0) , \epsilon(r)<1 , be a non-increasing continuous function tending
to 0 as rarrow\infty . We call the set A sufficiently large for given r , 0<r<R , if

b(r, A)\epsilon(r)\geq 3(v(\Gamma)+1)((B(r)+2\pi r). (7)

Obviously for any meromorphic function in D(R) and given r<R we
can indicate a curve \Gamma and a sufficienly large set A(\Gamma, r) .

2.3. Statement of Results

Theorem 1 Let w be a function meromorphic in z : |z|<R , R\leq\infty . If
A=\tilde{A}\cup A^{*} is suffciently large for given r<R then

\frac{b(r,A^{*})}{b(r,A)}\leq\epsilon(r) , (8)

and

\frac{P(r,\tilde{A})}{b(r,\tilde{A})}\leq\epsilon(r) . (9)

Theorem 1 has a simple meaning. If \epsilon(r) is small, then, by (8) most
of the a- and b-points belong to \tilde{A} and, by (9), the a and -points in \tilde{A} are
close to one other.

Theorem 2 Let w be meromorphic function in D satisfying (2). Suppose
\tilde{A} , A^{*} , \Gamma are determined as above in (3) and (4). Then

P(r, \tilde{A})+b(r, A^{*})\leq L(r, \Gamma)=O(\frac{1}{1-r}\log\frac{1}{1-r}) (rarrow 1-0) .

(10)

Theorem 3 Let w=z+\alpha_{2}z^{2}+\cdot . be univalent in the unit disk and let



Closeness of a-points of meromorphic functions 455

\Gamma be a circle or a straight line. Then

P(r,\tilde{A})+b(r, A^{*})\leq const<\infty . (11)

3.1. Proof of Theorem 1
By (6), (7), Theorem A and the definition of “sufficiently large”

P(r,\tilde{A})+b(r, A^{*})\leq b(r, A)\epsilon(r) , (12)

which proves (8). (9) follows from (12) on replacing b(r, A) by b(r,\tilde{A})+

b(r, A^{*}) .

3.2. Proof of Theorem 2
Let r’=(1+2r)/3 . By the inequalities (5.24)-(5.26) of [1],

B(r)=O( \frac{1}{1-r}T(r’, w’)) (13)

By a well known inequality,

T(r’, w’)=O(2T(r’, w)+m(r’, w’/w)) .

If r_{1}’=(2+r)/3 , then, by the Lemma of the Logarithmic Derivative,

T(r’, w’)=O(2T(r, w)+ \log T(r_{1}’, w)+log,\frac{1}{r_{1}-r},) , rarrow 1 .

Therefore by (13)

B(r)=O( \frac{1}{1-r}[T(r_{1}’, w)+\log\frac{1}{1-r}]) . rarrow 1 . (14)

By [5, Theorem 6.2], (2) implies that

T(r, w)=O( \log\frac{1}{1-r}) , rarrow 1 ,

Theorem 2 now follows from (14).

3.3. Proof of Theorem 3
By Theorem B ,

L(r, \Gamma)<L(1, \Gamma)<const

and Theorem 3 is a consequence of (5).
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3.4. Proof of Theorem 4
By Theorem A it is enough to prove (12). This was already done in the

proof of Theorem 2.

The author is grateful to Professor Mikihiro Hayashi, referee and trans-
lator of this article for interesting discussions and valuable advice.
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