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Lattice homomorphism –Korovkin type inequalities
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Abstract. Considered here is the space of continuous functions from a compact and
convex subset of a normed vector space into an abstract Banach lattice. Also considered
are lattice homomorphisms from the above space into itself or into the associated space of
vector valued bounded functions. The uniform convergence of such operators to the unit
operator with rates is mainly studied in this article. The produced quantitative results are
inequalities which engage the modulus of continuity of the involved continuous function
or of its higher order Fr\’echet derivative.
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1. Introduction

The study of the convergence of positive linear operators became more
intense and attracted a lot of attention when P. Korovkin (1953) proved his
famous theorem (see [8], p. 14).

Korovkin’s First Theorem Let [a, b] be a compact interval in IR and
(L_{n})_{n\in \mathbb{N}} be a sequence of positive linear operators L_{n} mapping C([a, b]) into
itself. Suppose that (L_{n}f) converges uniformly to f for the three test func-
tions f=1 , x , x^{2} . Then (L_{n}f) converges uniformly to f on [a, b] for all
functions of f\in C([a, b]) .

So a lot of authors since then are working on the theoretical aspects of
above convergence. But R.A . Mamedov (1959) (see [9]) was the first to put
Korovkin’s theorem in a quantitative form.

Mamedov’s Theorem Let \{L_{n}\}_{n\in \mathbb{N}} be a sequence of positive linear op-
erators in the space C([a, b]) , for which L_{n}1=1 , L_{n}(t, x)=x+\alpha_{n}(x) ,
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L_{n}(t^{2}, x)=x^{2}+\beta_{x}(x) . Then

||L_{n}(f, x)-f(x)||_{\infty}\leq 3\omega_{1}(f, \sqrt{d_{n}}) ,

where \omega_{1} is the first modulus of continuity and d_{n}:=||\beta_{n}(x)-2x\alpha_{n}(x)||_{\infty} .

An improvement of the last theorem was the following

Shisha and Mond’s Theorem (1968, see [12]). Let [a, b]\subset IR be a
compact interval. Let \{L_{n}\}_{n\in N} be a sequence of positive linear operators
acting on C([a, b]) . For n=1,2 , \ldots , suppose L_{n}(1) is bounded. Let f\in

C([a, b]) . Then for n=1,2 , \ldots . we have

||L_{n}f-f||_{\infty}\leq||f||_{\infty} ||L_{n}1-1||_{\infty}+||L_{n}(1)+1||_{\infty}\omega_{1}(f, \mu_{n}) ,

where

\mu_{n}:=||(L_{n}((t-x)^{2}))(x)||_{\infty}^{1/2} .

Shisha-Mond inequality generated and inspired a lot of research done by
many authors worldwide on the rate of convergence of a sequence of positive
linear operators to the unit operator, always producing similar inequalities
however in many different directions, e.g., see the important work of H.
Gonska of 1983 in [5], etc.

In his 1993 research monograph, the author (see [4]), establishes in
many directions best upper bounds for |(L_{n}f)(x_{0})-f(x_{0})| , x_{0}\in Q\subseteq \mathbb{R}^{n} ,
n\geq 1 , compact and convex, which lead for the first time to sharp/attained
inequalities of Shisha-Mond type. The method of proving is probabilistic
from the theory of moments. His pointwise approach is closely related to the
study of the weak convergence with rates of a sequence of finite measures
to the unit measure at a specific point.

All of the above have inspired and motivated the work in this article.
Here is what we do: Let X be a normed vector space, Y be a Banach
lattice, M\subset X is a compact and convex subset. Consider the space of
continuous functions from M into Y., denoted by C(M, Y) , also consider
the space of bounded functions B(M, Y) . Here we study the rate of the
uniform convergence of lattice homomorphisms T:C(M, Y) – C(M, Y) or
T:C(M, Y) – B(M, Y) to the unit operator I . For that see Theorems 10,
12 and Corollary 14. In the last two results we assume that X is a Banach
space. The produced inequalities (19), (23) and (25), respectively, are of
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Shisha-Mond type, i.e. , Korovkin type.
In there we find upper bounds to |||Tf-f|||_{\infty} , f\in C(M, Y) , and

|||TP-P|||_{\infty} , P\in C^{n}(M, Y) , n\in \mathbb{N} , (space of n-times continuously Fr\’echet
differentiable functions), where ||| |||_{\infty} is the supremum norm in C(M, Y)
or B(M, Y) . These inequalities involve the modulus of continuity of f or
P^{(n)} .

The rest of the material of this article makes sure that the right-hand
sides of the main inequalities (19), (23) and (25) are finite. At the end we
give several examples. To the best of our knowledge this is the first treatise
for Korovkin type inequalities for lattice homomorphisms over vector valued
functions. Since C(M, Y) is a Banach lattice, the lattice homomorphism T
as described above, is also a positive operator and thus a continuous linear
operator.

2. Background

Let (X, ||\cdot||) , (Y, || ||) be real normed vector spaces, and let M\subset X be
a set. Assume that (Y, || ||, <) is a Banach lattice, see [1], p. 197. Denote
by C(M, Y) the vector space of continuous functions from M into Y

Lemma 1 C(M, Y) is a vector lattice.

Proof. Let f, g\in C(M, Y) and x_{n} , x\in M . such that x_{n}arrow x , then
f(x_{n}) – f(x) , and g(x_{n})arrow g(x) , as n – +\infty . I. e. , ||f(x_{n})-f(x)||<\epsilon ,
||g(x_{n})-g(x)||<\epsilon for \epsilon>0 arbitrarily small, iff |f(x_{n})-f(x)|<\epsilon i ,
|g(x_{n})-g(x)|<\epsilon i , i\in Y^{+} . positive cone of Y , such that ||i||=1 .
Here |f|:=f\vee(-f) , where \vee , \wedge stand for the supremum and infimum,
respectively. Denote by \circ either of \vee , \wedge .

We introduce the order f<g iff f(x)<g(x) , all x\in M . It holds that

(f\vee g)(x)=f(x)\vee g(x) ,
(f\wedge g)(x)=f(x)\wedge g(x) , (1)

|f|(x)=|f(x)| , all x\in M .

Obviously here |f(x)|<|g(x)| iff

||f(x)||<||g(x)|| , all x\in M .

We observe that (cf. Theorem 24.1, p. 194, [1])

|f(x_{n})\circ g(x_{n})-f(x)\circ g(x)|
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\leq|f(x_{n})\circ g(x_{n})-f(x)\circ g(x_{n})|+|f(x)\circ g(x_{n})-f(x)\circ g(x)|

\leq|f(x_{n})-f(x)|+|g(x_{n})-g(x)|\leq 2\epsilon i .

Therefore

|f(x_{n})\circ g(x_{n})-f(x)\circ g(x)|\leq 2\epsilon i ,

iff

||f(x_{n})\circ g(x_{n})-f(x)\circ g(x)||\leq 2\epsilon .

That is,

||(fog)(x_{n})-(fog)(x)||\leq 2\epsilon ,

for any \epsilon>0 small.
Hence (f\circ g)(x_{n}) – (f\circ g)(x) , i.e., f\vee g , f\wedge g are continuous functions.

Thus C(M, Y) is a vector lattice. \square

From now on we assume that M is compact. Define for f\in C(M, Y)

|||f|||_{\infty}:= \sup\{||f(x)|| : x\in M\} . (2)

One can easily see that ||| |||_{\infty} defines a norm on C(M, Y) . For f, g\in

C(M, Y) we have that, |f|\leq|g| iff |f|(x)\leq|g|(x) iff |f(x)|\leq|g(x)| iff
||f(x)||\leq||g(x)|| , all x\in M . The last implies |||f|||_{\infty}\leq|||g|||_{\infty} . I.e., if

|f|\leq|g|\Rightarrow|||f|||_{\infty}\leq|||g|||_{\infty} .

Hence ||| |||_{\infty} is a lattice norm, and C(M, Y) is a normed vector lattice,
where M is a compact subset of X .

Proposition 2 C(M, Y) is a Banach lattice.

Proof. Let \{f_{n}\}_{n\in N} be a Cauchy sequence in C(M, Y) . Then given \epsilon>0

there exists n_{0}\in \mathbb{N} such that |||f_{n}-f_{m}|||_{\infty}<\epsilon , all n , m>n_{0} . Therefore
for any x\in M we have

||f_{n}(x)-f_{m}(x)||\leq|||f_{n}-f_{m}|||_{\infty}<\epsilon ,

which implies that \{f_{n}(x)\}_{n\in \mathbb{N}} is a Cauchy sequence in the Banach lattice
Y Thus, by completeness of Y. \{f_{n}(x)\} converges in Y for every x\in M ;
let f(x):= \lim_{n-+\infty}f_{n}(x) , all x\in M . Since ||f_{n}(x)-f_{m}(x)||<\epsilon , all
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n , m>n_{0} , for a fixed n>n_{0} we get that

||f_{n}(x)-f_{m}(x)||<\epsilon , all m>n_{0} .

By continuity of ||\cdot|| and taking the limit in the last inequality as marrow+\infty

we obtain ||f_{n}(x)-f(x)||<\epsilon , true for all n>n_{0} and all x\in M . That is,

|||f_{n}-f|||_{\infty}<\epsilon , all n>n_{0} ,

i.e., \lim_{narrow+\infty}f_{n}=f in ||| |||_{\infty} .
Let x_{N} , x\in M be such that x_{N} – x , then f_{n}(x_{N}) – f_{n}(x) , by

f_{n}\in C(M, Y) . Next see that

||f(x_{N})-f(x)||\leq||f(x_{N})-f_{n}(x_{N})||+||f_{n}(x_{N})-f_{n}(x)||

+||f_{n}(x)-f(x)||\leq\epsilon+\epsilon+\epsilon ,

by f_{n} – f and f_{n} continuity i.e., ||f(x_{N})-f(x)||\leq 3\epsilon , \epsilon>0 small.
Hence f(x_{N}) – f(x) , as N – +\infty , i.e., f\in C(M, Y) . That is, C(M, Y) is
complete, proving that it is a Banach lattice. \square

Definition 3 Let T : C(M, Y)arrow C(M, Y) be a linear operator. T is
called a lattice homomorphism iff it fulfills one of the following equivalent
statements:
(i) T(f\vee g)=T(f)\vee T(g) , all f, g\in C(M, Y) ,
(ii) T(f\wedge g)=T(f)\wedge T(g) , all f, g\in C(M, Y) ,
(iii) T(f)\wedge T(g)=0 holds whenever f\wedge g=0 ,
(iv) |T(f)|=T(|f|) , all f\in C(M, Y) , see [1], p. 202.

Obviously a lattice homomorphism is a positive one, i.e., whenever f\geq g

we get that T(f)\geq T(g) , f , g\in C(M, Y) . Since C(M, Y) is a Banach
lattice, then a positive operator T from C(M, Y) into itself is a continuous
one, see [1], p. 200.

In this paper, we will be dealing mainly with lattice homomorphisms
T:C(M, Y) – C(M, Y) . We need the following auxiliary results.

Proposition 4 Let f\in C(M, Y) and T : C(M, Y) – C(M, Y) be a
continuous linear operator. Then (T(f(x_{0})))(x_{0}) is a continuous function
of x_{0}\in M .

Proof Let x_{n} , x_{0}\in M be such that x_{n} – x_{0} , then \rho_{n}(x):=f(x_{n}) -

f(x_{0})=:\rho(x) , all x\in M , i.e., \rho_{n}arrow\rho uniformly. By continuity of T we get
that T(\rho_{n}) – T(\rho) uniformly, i.e., T(f(x_{n})) – T(f(x_{0})) uniformly. (Here
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T(f(x_{n})) , T(f(x_{0}))\in C(M, Y).) That is, T(f(x_{n}))-T(f(x_{0}))arrow u0 , i.e. ,
given \epsilon>0 there exists n_{0}\in \mathbb{N} such that |||T(f(x_{n}))-T(f(x_{0}))|||_{\infty}<\epsilon ,
all n>n_{0} .

Hence given \epsilon>0 there exists n_{0}\in \mathbb{N} such that

||(T(f(x_{n})))(x_{n})-(T(f(x_{0})))(x_{n})||

\leq|||T(f(x_{n}))-T(f(x_{0}))|||_{\infty}<\epsilon ,

all n>n_{0} . Notice that (as x_{n}arrow x_{0} )

||(T(f(x_{n})))(x_{n})-(T(f(x_{0})))(x_{0})||

\leq||(T(f(x_{n})))(x_{n})-(T(f(x_{0})))(x_{n})||

+||(T(f(x_{0})))(x_{n})-(T(f(x_{0})))(x_{0})||<2\epsilon .

The last establishes the claim of the proposition. \square

Remark 5 From Proposition 4 we get that (T(f-f(x_{0})))(x_{0}) is a con-
tinuous function of x_{0}\in M with values in Y Also let i\in Y^{+} be such that
||i||=1 , then T(i)\in C(M, Y) .

Proposition 6 Let T : C(M, Y) – C(M, Y) be a continuous linear op-
erator and r>0 . Then (T(||x-x_{0}||^{r} i))(x_{0}) is a continuous function of
x_{0}\in M with values in Y. where i\in Y^{+} is such that ||i||=1 .

Proof. Let x_{n} , x_{0}\in M be such that x_{n}arrow x_{0} , as narrow+\infty . Observe that

||(T(||x-x_{n}||^{r}i))(x_{n})-(T(||x-x_{0}||^{r}i))(x_{0})||

\leq||(T(||x-x_{n}||^{r}i))(x_{n})-(T(||x-x_{0}||^{r}i))(x_{n})||

+||(T(||x-x_{0}||^{r}i))(x_{n})-(T(||x-x_{0}||^{r}i))(x_{0})||=:(*) .

Notice that ||x-x_{0}||^{r}\cdot i is a continuous function of x ans so is (T(||x-x_{0}||^{r}\cdot

i))(x) . That is,

(T(||x-x_{0}||^{r}, i))(x_{n})arrow(T(||x-x_{0}||^{r} i))(x_{0}) ,

i.e. ,

|| (T(||x-x_{0}||^{r} i))(x_{n})-(T(||x-x_{0}||^{r} i))(x_{0})||<\epsilon_{1} ,

where \epsilon_{1}>0 is small.
Therefore

(*)<|||T(||x-x_{n}||^{r} ^{i})-T(||x-x_{0}||^{r}, i)|||_{\infty}+\epsilon_{1}=:(**) .
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Notice that

\sup_{x\in M}|||x-x_{n}||-||x-x_{0}|||\leq||x_{n}-x_{0}||arrow 0 ,

thus

||||x-x_{n}||-||x-x_{0}||||_{\infty,x}arrow 0 , ( || ||_{\infty,x} supremum in x)

i.e.,

||x-x_{n}||\underline{u}||x-x_{0}|| , uniformly.

Here ||x-y||\leq\triangle – the diameter of M, all x , y\in M , i.e., ||x-x_{n}|| ,
||x-x0||\leq\triangle .

We have proved in [3], pp. 20-21 that ||x-x_{n}||^{r}\underline{u}||x-x_{0}||^{r} . uniformly,
i.e., for \epsilon>0 there exists n_{0}\in \mathbb{N} such that

||||x-x_{n}||^{r}-||x-x_{0}||^{r}||_{\infty,x}<\epsilon ,

for all n>n_{0} .
Observe that

|||||x-x_{n}||^{r}\cdot i-||x-x_{0}||^{r}i|||_{\infty}

= \sup_{x\in M}||||x-x_{n}||^{r}i-||x-x_{0}||^{r}i||

= \sup_{x\in M}|||x-x_{n}||^{r}-||x-x_{0}||^{r}|
||i||

=||||x-x_{n}||^{r}-||x-x_{0}||^{r}||_{\infty,x}<\epsilon .

That is,

|||||x-x_{n}||^{r}i-||x-x_{0}||^{r}i|||_{\infty}<\epsilon , all n>n_{0} ,

i.e. ,

||id-x_{n}||^{r}i\underline{u}||id-x_{0}||^{r}i ,

uniformly (id is the identity map).

By the continuity of operator T we get that

T(||x-x_{n}||^{r}i)arrow T(u||x-x_{0}||^{r}\cdot) , uniformly.

I. e. ,

|||T(||x-x_{n}||^{r}i)-T(||x-x_{0}||^{r}, i)|||_{\infty}<\epsilon_{1} ,
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where \epsilon_{1}>0 is small as above. Consequently

(**)<2\epsilon_{1} .

We have established that

(T(||x-x_{n}||^{r} i))(x_{n})arrow(T(||x-x_{0}||^{r} i))(x_{0}) ,

as x_{n}arrow x_{0} and n – +\infty . That is we have proved the claim of the
proposition. \square

From now on we assume that M is a compact and convex subset of X .

Definition 7 Let f\in C(M, Y) , its (first) modulus of continuity is defined
by

\omega_{1}(f, h):=\sup\{||f(x)-f(y)|| :

all x , y\in M such that ||x-y||\leq h}, (3)

h>0 . Here Y can be just a normed vector space.

Lemma 8 (From Lemma 7.11, p. 208, [4]). Let f\in C(M, Y) , h>0 and
fixed x_{0}\in M . Then

||f(x)-f(x_{0})||\leq\omega_{1}(f, h) \lceil\frac{||x-x_{0}||}{h}\rceil

\leq\omega_{1}(f, h) (1+ \frac{||x-x_{0}||}{h}) , all x\in M . (4)

Here \lceil\cdot\rceil stands for the ceiling of the number. Here Y can be just a normed
vector space. Obviously one can have that

||f(x)-f(x_{0})||\leq||\omega_{1}(f, h) (1+ \frac{||x-x_{0}||}{h}) i|| , (5)

where i\in Y^{+} such that ||i||=1 . Thus, for f\in C(M, Y) and h>0 we get
that

|||f-f(x_{0})|||_{\infty}\leq|||\omega_{1}(f, h) (1+ \frac{||id-x_{0}||}{h}) i|||_{\infty} , (6)

x_{0}\in M be fixed
From now on in this section we would assume that X is a Banach

space and that P maps X into the Banach lattice Y Here M\subset X still
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is a compact and convex subset. Furthermore we would assume that P
is n-times continuously Fr\’echet differentiate on M, i.e., P|_{M}\in C^{n}(M, Y) .
Obviously P|_{M}\in C(M, Y) which is a Banach lattice. That is, here (P|_{M})^{(k)}

is a continuous map from M into the space of all k-linear bounded operators
from X into Y. all k=1 , . , n . It is clear that all (P|_{M})^{(k)} , k=0,1 , \ldots , n
are norm bounded by continuity, and thus they are integrable. Here for
any x_{0} , x_{1}\in M we form x(\theta):=\theta x_{1}+(1-\theta)x_{0}\in M , 0\leq\theta\leq 1 , and we
identify P(\theta)\equiv P(x(\theta)) . That is, P^{(k)}(\theta)=P^{(k)}(x(\theta))(x_{1}-x_{0})^{k} , where
(x_{1}-x_{0})^{k}:=(x_{1}-x_{0}, , x_{1}-x_{0}) is a k-tuple, k=1 , \ldots , n . We are
following [10], pp. 87-127, Chapter 3.

In particular from [10], p. 124, Theorem 20.2 (Taylor’s Theorem) for
any x_{0} , x_{1}\in M we get that

P(x_{1})=P(x_{0})+ \sum_{k=1}^{n}\frac{1}{k!} P^{(k)}(x_{0})(x_{1}-x_{0})^{k}+\mathcal{R}_{n}(x_{0}, x_{1}) , (7)

where

\mathcal{R}_{n}(x_{0}, x_{1}):=\int_{0}^{1}(P^{(n)}(\theta x_{1}+(1-\theta)x_{0})(x_{1}-x_{0})^{n}

-P^{(n)}(x_{0})(x_{1}-x_{0})^{n}) \frac{(1-\theta)^{n-1}}{(n-1)!} d\theta , (8)

is a vector valued abstract Riemann integral. Call

\triangle(x_{1}, x_{0}):=P(x_{1})-P(x_{0})-\sum_{k=1}^{n}\frac{1}{k!}P^{(k)}(x_{0})(x_{1}-x_{0})^{k} . (9)

Notice that

\triangle(x_{1}, x_{0})=\mathcal{R}_{n}(x_{0}, x_{1}) . (10)

It is clear that

\triangle(0, x_{0})=\mathcal{R}_{n}(x_{0},0)\in C(M, Y) .

Consider also

\phi_{n}(t):=\int_{0}^{|t|}\lceil\frac{s}{h}\rceil \frac{(|t|-s)^{n-1}}{(n-1)!} ds , n\in \mathbb{N} , t\in \mathbb{R} , (11)

which is a continuous function in t . From [4], p. 210 we see that

\phi_{n}(||x_{1}-x_{0}||)
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\leq(\frac{||x_{1}-x_{0}||^{n+1}}{(n+1)!h}+\frac{||x_{1}-x_{0}||^{n}}{2n!}+\frac{h||x_{1}-x_{0}||^{n-1}}{8\cdot(n-1)!}) (12)

Obviously, i\neg\phi_{n} (||x-x_{0}||)\in C(M, Y) , where i\in Y^{+} such that ||i||=1 .
We observe the following

|| \mathcal{R}_{n}(x_{0}, x_{1})||=||\int_{0}^{1}(P^{(n)}(\theta x_{1}+(1-\theta)x_{0})

-P^{(n)}(x_{0}))(x_{1}-x_{0})^{n} \frac{(1-\theta)^{n-1}}{(n-1)!} . d\theta||

\leq\int_{0}^{1}||(P^{(n)}(\theta x_{1}+(1-\theta)x_{0})

-P^{(n)}(x_{0}))(x_{1}-x_{0})^{n}|| \frac{(1-\theta)^{n-1}}{(n-1)!} d\theta

\leq\int_{0}^{1}||(P^{(n)}(\theta x_{1}+(1-\theta)x_{0})

-P^{(n)}(x_{0})|| ||x_{1}-x_{0}||^{n} \frac{(1-\theta)^{n-1}}{(n-1)!} d\theta\leq(*) .

Remember that P^{(n)}(x) , x\in M , is an n-linear bounded operator from X
into Y

We define (h>0)

\omega_{1}(P^{(n)}, h):=\sup\{||P^{(n)}(x)-P^{(n)}(y)|| :

all x , y\in M such that ||x-y||\leq h}. (13)

By Lemma 8 we obtain

(*) \leq\int_{0}^{1}\omega_{1}(P^{(n)}, h) \lceil\frac{\theta\cdot||x_{1}-x_{0}||}{h}\rceil ||x_{1}-x_{0}||^{n} \frac{(1-\theta)^{n-1}}{(n-1)!} . d\theta

=\omega_{1}(P^{(n)}, h) ||x_{1}-x_{0}||^{n} \int_{0}^{1}\lceil\frac{\theta\cdot||x_{1}-x_{0}||}{h}\rceil \frac{(1-\theta)^{n-1}}{(n-1)!} . d\theta

=\omega_{1}(P^{(n)}, h) \phi_{n}(||x_{1}-x_{0}||) .

I.e., we have proved that

||\mathcal{R}_{n}(x_{0}, x_{1})||\leq\omega_{1}(P^{(n)}, h)\phi_{n}(||x_{1}-x_{0}||) . (14)
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Now by (12) we have

||\mathcal{R}_{n}(x_{0}, x_{1})||\leq\omega_{1}(P^{(n)}, h) \{\frac{||x_{1}-x_{0}||^{n+1}}{(n+1)!h}+\frac{||x_{1}-x_{0}||^{n}}{2\cdot n!}

+ \frac{h||x_{1}-x_{0}||^{n-1}}{8(n-1)!}\}<+\infty , (15)

for all x_{0} , x_{1}\in M . Here 0<\omega_{1}(P^{(n)}, h)<+\infty , by M being compact
and P^{(n)} being continuous. Notice also that R.H.S. (15) is continuous in
x_{1}\in M . Thus

||\triangle(x, x_{0})||\leq||\omega_{1}(P^{(n)}, h) \{\frac{||x-x_{0}||^{n+1}}{(n+1)!h}+\frac{||x-x_{0}||^{n}}{2\cdot n!}

+ \frac{h||x-x_{0}||^{n-1}}{8\cdot(n-1)!}\} i|| , (16)

all x\in M . i\in Y^{+} such that ||i||=1 . Obviously the function within the
long || || in the R.H.S. (16) belongs to C(M, Y) . Hence

|||\triangle(\cdot, x_{0})|||_{\infty}\leq|||\omega_{1}(P^{(n)}, h) \{ \frac{||id-x_{0}||^{n+1}}{(n+1)!h} (17)

+ \frac{||id-x_{0}||^{n}}{2\cdot n!}+\frac{h||id-x_{0}||^{n-1}}{8(n-1)!}\} i|||_{\infty}<+\infty .

Obviously C^{n}(M, Y)\subset C(M, Y) .
To remind, we are going to be dealing with lattice homomorphisms T

from C(M, Y) into itself. We need the following.

Proposition 9 Let T : C(M, Y)arrow C(M, Y) be a continuous linear op-
erator, P : X – Y and P|_{M}\in C^{n}(M, Y) (in the Fr\’echet sense). Then
(T(P^{(k)}(x_{0})(x-x_{0})^{k}))(x_{0}) is a continuous function for any x_{0}\in M , where
(x-x_{0})^{k}:=(x-x_{0}, . . ’ x-x_{0}) , k -tuple; 1\leq k\leq n , x\in M .

Proof. Let x_{n} , x_{0}\in M such that x_{n}arrow x_{0} as narrow+\infty . We need to prove
that

(T(P^{(k)}(x_{n})(x-x_{n})^{k}))(x_{n})arrow(T(P^{(k)}(x_{0})(x-x_{0})^{k}))(x_{0}) .

For that we observe

||(T(P^{(k)}(x_{n})(x-x_{n})^{k}))(x_{n})-(T(P^{(k)}(x_{0})(x-x_{0})^{k}))(x_{0})||

\leq||(T(P^{(k)}(x_{n})(x-x_{n})^{k}))(x_{n})-(T(P^{(k)}(x_{0})(x-x_{0})^{k}))(x_{n})||
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+||(T(P^{(k)}(x_{0})(x-x_{0})^{k}))(x_{n})-(T(P^{(k)}(x_{0})(x-x_{0})^{k}))(x_{0})||

=:(*) .

Here j(x):=(x-x_{0})^{k} is continuous in x\in X and the continuous linear
operator P^{(k)}(x_{0}) maps X^{k} into Y , i.e., P^{(k)}(x_{0})(x-x_{0})^{k}\in Y Notice that

(P^{(k)}(x_{0})\circ j)(x)=P^{(k)}(x_{0})(x-x_{0})^{k} is continuous in x\in X .

I. e. , P^{(k)}(x_{0})(x-x_{0})^{k}:=P^{(k)}(x_{0})(x-xo)^{k}|M\in C(M, Y) , therefore

T(P^{(k)}(x_{0})(x-x_{0})^{k})\in C(M, Y) .

Thus for arbitrarily small \epsilon_{1}>0 we get that

||(T(P^{(k)}(x_{0})(x-x_{0})^{k}))(x_{n})-(T(P^{(k)}(x_{0})(x-x_{0})^{k}))(x_{0})||<\epsilon_{1} .

Hence

(*)<|||(T(P^{(k)}(x_{n})(x-x_{n})^{k}))

-(T(P^{(k)}(x_{0})(x-x_{0})^{k}))|||_{\infty}+\epsilon_{1} . (18)

We observe that

|||P^{(k)}(x_{n})(x-x_{n})^{k}-P^{(k)}(x_{0})(x-x_{0})^{k}|||_{\infty}

\leq|||P^{(k)}(x_{n})(x-x_{n})^{k}-P^{(k)}(x_{n})(x-x_{0})^{k}|||_{\infty}

+|||P^{(k)}(x_{n})(x-x_{0})^{k}-P^{(k)}(x_{0})(x-x_{0})^{k}|||_{\infty}=:A+B .

By assumption P^{(k)} maps M into the space of k-linear bounded operators
from X^{k} into Y and P^{(k)} is assumed to be continuous. I.e., P^{(k)}(x_{n})arrow

P^{(k)}(x_{0}) as x_{n}arrow x_{0} , that is, ||P^{(k)}(x_{n})-P^{(k)}(x_{0})|| –0. Also it holds
||x-x_{0}||<diameter(M)=:d(M)<+\infty . Consequently we obtain that

||P^{(k)}(x_{n})(x-x_{0})^{k}-P^{(k)}(x_{0})(x-x_{0})^{k}||

=||(P^{(k)}(x_{n})-P^{(k)}(x_{0}))(x-x_{0})^{k}||

\leq||P^{(k)}(x_{n})-P^{(k)}(x_{0})|| ||x-x_{0}||^{k}

\leq||P^{(k)}(x_{n})-P^{(k)}(x_{0})|| (d(M))^{k}arrow 0 .

That is for arbitrarily small \epsilon>0 we have

B:=|||P^{(k)}(x_{n})(x-x_{0})^{k}-P^{(k)}(x_{0})(x-x_{0})^{k}|||_{\infty}<\epsilon ,

for all n>n_{0}\in \mathbb{N} . By assumption we have that ||P^{(k)}(x)||<\gamma<+\infty , for
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all x\in M . Therefore,

||P^{(k)}(x_{n})(x-x_{n})^{k}-P^{(k)}(x_{n})(x-x_{0})^{k}||

=||P^{(k)}(x_{n})((x-x_{n})^{k}-(x-x_{0})^{k})||=||P^{(k)}(x_{n})(x_{0}-x_{n})^{k}||

\leq||P^{(k)}(x_{n})|| ||x_{n}-x_{0}||^{k}<\gamma ||x_{n}-x_{0}||^{k}arrow 0 .

Finally, one can get that

A:=|||P^{(k)}(x_{n})(x-x_{n})^{k}-P^{(k)}(x_{n})(x-x_{0})^{k}|||_{\infty}\leq\epsilon ,

for all n>n_{1}\in \mathbb{N} . And

|||P^{(k)}(x_{n})(x-x_{n})^{k}-P^{(k)}(x_{0})(x-x_{0})^{k}|||_{\infty}\leq 2\epsilon ,

for all n> \max(n_{0}, n_{1}) , i.e.,

P^{(k)}(x_{n})(x-x_{n})^{k}arrow P^{(k)}u(x_{0})(x-x_{0})^{k} ,

uniformly. Since T is continuous, we get that

T(P^{(k)}(x_{n})(x-x_{n})^{k})arrow T(uP^{(k)}(x_{0})(x-x_{0})^{k}) ,

uniformly. So for sufficiently large n we obtain

|||T(P^{(k)}(x_{n})(x-x_{n})^{k})-T(P^{(k)}(x_{0})(x-x_{0})^{k})|||_{\infty}\leq\epsilon_{1} .

Consequently from (18) we get (*)\leq 2\epsilon_{1} . Thus

||(T(P^{(k)}(x_{n})(x-x_{n})^{k}))(x_{n})-(T(P^{(k)}(x_{0})(x-x_{0})^{k}))(x_{0})||arrow 0 ,

as x_{n}arrow x_{0} . We have established the claim of the proposition. \square

3. Main Results

Next comes our first main result

Theorem 10 Let M be a compact and convex subset of (X, || ||) and
(Y, || ||, <) is a Banach lattice. Let T be a lattice homomorphism from
C(M, Y) into itself, and f\in C(M, Y) . Then

|||Tf-f|||_{\infty}\leq|||((T(f(x_{0})))-f)(x_{0})|||_{\infty,x_{0}}

+\omega_{1}(f, |||(T(||x-x_{0}|| i))(x_{0})|||_{\infty,x_{0}})

(1+|||T(i)|||_{\infty}) , (19)
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where ||| |||_{\infty} , ||| |||_{\infty,x_{0}} are the supremum norms taken over M and over
all x_{0}\in M , respectively, and i\in Y^{+} is such that ||i||=1 .

Remark 11 Notice that R.H.S. (19) is finite. This comes from the defini-
tion of T, M being compact, f\in C(M, Y) , Proposition 4 and Proposition 6.

Proof of Theorem 10. We observe that

(Tf)(x_{0})-f(x_{0})

=(Tf)(x_{0})-(T(f(x_{0}))(x_{0})+(T(f(x_{0})))(x_{0})-f(x_{0})

=[(T(f-f(x_{0})))(x_{0})]+[(T(f(x_{0})))(x_{0})-f(x_{0})] .

This

||(Tf)(x_{0})-f(x_{0})||

\leq||(T(f-f(x_{0})))(x_{0})||+||(T(f(x_{0})))(x_{0})-f(x_{0})|| .

Hence

|||Tf-f|||_{\infty}\leq|||(T(f-f(x_{0})))(x_{0})|||_{\infty,x_{0}}

+|||(T(f(x_{0})))(x_{0})-f(x_{0})|||_{\infty,x_{0}} . (20)

From Remark 5 we have that (T(f-f(x_{0})))(x_{0}) is a continuous function
for any x_{0}\in M with values in Y , therefore its supremum norm is finite.

We notice also that (h>0)

(T( (1+ \frac{||x-x_{0}||}{h}) i))(x_{0})

=(T(i))(x_{0})+ \frac{1}{h} (T(||x-x_{0}|| i))(x_{0}))

is a continuous function for any x_{0}\in M . By Lemma 8 we get that

||f(x)-f(x_{0})||\leq\omega_{1}(f, h) (1+ \frac{||x-x_{0}||}{h}) , all x , x_{0}\in M .

I.e.,

||f(x)-f(x_{0})||\leq||\omega_{1}(f, h) (1+ \frac{||x-x_{0}||}{h})\cdot i|| ,

iff

|f(x)-f(x_{0})|\leq|\omega_{1}(f, h) (1+ \frac{||x-x_{0}||}{h}) i|
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iff

|f-f(x_{0})|(x)\leq|\omega_{1}(f, h) (1+ \frac{||id-x_{0}||}{h}) i|(x) , all x\in M .

Hence by the positivity of T and being a lattice homomorphism we obtain

T|f-f(x_{0})|\leq T|\omega_{1}(f, h) (1+ \frac{||id-x_{0}||}{h}) i|

and

|T(f-f(x_{0}))|\leq|T(\omega_{1}(f, h) (1+ \frac{||id-x_{0}||}{h})i)| ,

all x\in M .

iff

|T(f-f(x_{0}))|(x)

\leq|T (\omega_{1}(f, h) (1+ \frac{||id-x_{0}||}{h}) i) |(x) ,

Furthermore we have

|(T(f-f(x_{0})))(x)|

\leq|(T( all x\in M .\omega_{1}(f, h) (1+ \frac{||id-x_{0}||}{h})\cdot i))(x)| .

Since Lemma 8 is true for any x_{0}\in M . we get that

|(T(f-f(x_{0})))(x_{0})|

\leq|(T(\omega_{1}(f, h) (1+ \frac{||id-x_{0}||}{h}) , i))(x_{0})| .

true for any x_{0}\in M . Ans since Y is a normed vector lattice, the last
inequality implies

||(T(f-f(x_{0})))(x_{0})||

\leq\omega_{1}(f, h) ||(T( (1+ \frac{||id-x_{0}||}{h})\cdot i))(x_{0})|| ,

which in turn implies

|||\zeta T(f-f(x_{0})))(x_{0})|||_{\infty,x_{0}}

\leq\omega_{1}(f, h) |||(T( (1+ \frac{||id-x_{0}||}{h}) i))(x_{0})|||_{\infty,x_{0}}
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=\omega_{1}(f, h) |||(T(i))(x_{0})+ \frac{1}{h} (T(||id-x_{0}|| i))(x_{0})|||_{\infty,x_{0}}

\leq\omega_{1}(f, h) (|||T(i)|||_{\infty}+ \frac{1}{h} |||(T(||id-x_{0}|| i))(x_{0})|||_{\infty,x_{0}})

Picking

h:=||| (T(||id-x_{0}|| i))(x_{0})|||_{\infty,x_{0}} , (21)

we find that

|||(T(f-f(x_{0})))(x_{0})|||_{\infty,x_{0}}

\leq\omega_{1} (f, ||| (T(||id-x_{0}|| i))(x_{0})|||_{\infty,x_{0}}) (1+|||T(i)|||_{\infty}) . (22)

It is clear now that inequalities (20) and (22) imply inequality (19). The
theorem is now proved. \square

In the following we give our second main result.

Theorem 12 Let X be a Banach space, Y be a Banach lattice, M be a

compact and convex subset of X, h>0 , and T is a lattice homomorphism
from C(M, Y) into itself. Consider a function P from X into Y such that
P|_{M}\in C^{n}(M, Y) , n\in \mathbb{N} . Then

|||TP-P|||_{\infty}

\leq|||(T(P(x_{0})))(x_{0})-P(x_{0})|||_{\infty,x_{0}}

+ \sum_{k=1}^{n}\frac{1}{k!}
|||(T(P^{(k)}(x_{0})(x-x_{0})^{k}))(x_{0})|||_{\infty,x0}

+\omega_{1}(P^{(n)}, h) [ \frac{1}{(n+1)!h} |||(T(||x-x_{0}||^{n+1}i))(x_{0})|||_{\infty,x_{0}}

+ \frac{1}{2\cdot n!} |||(T(||x-x_{0}||^{n}i))(x_{0})|||_{\infty,x_{0}}

+ \frac{h}{8\cdot(n-1)!} |||(T(||x-x_{0}||^{n-1}, i))(x_{0})|||_{\infty,x_{0}}] . (23)

Here i\in Y^{+} is such that ||i||=1 , and ||| |||_{\infty} , ||| |||_{\infty,x_{0}} are the supremum
norms taken over M and over all x_{0}\in M , respectively.

Remark 13 Observe that R.H.S. (23) is finite. This comes from the defi-
nition of T. M being compact, P|_{M}\in C^{n}(M, Y) , Proposition 4, Proposition
6 and Proposition 9.
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Corollary 14 (Same setting and assumptions as in Theorem 12.) Choose

h:=h^{*}:= \frac{1}{(n+1)!} \max\{||| (T(||x-x_{0}||^{n+1} i))(x_{0})|||_{\infty,x_{0}} ,

|||(T(||x-x_{0}||^{n}i))(x_{0})|||_{\infty,x_{0}} ,

|||(T(||x-x_{0}||^{n-1}i))(x_{0})|||_{\infty,x_{0}}\} . (24)

Then

|||TP-P|||_{\infty}

\leq|||(T(P(x_{0})))(x_{0})-P(x_{0})|||_{\infty,x_{0}}

+ \sum_{k=1}^{n}\frac{1}{k!} |||(T(P^{(k)}(x_{0})(x-x_{0})^{k}))(x_{0})|||_{\infty,x_{0}}

+\omega_{1}(P^{(n)}, h^{*}) [1+( \frac{n+1}{2}) h^{*}+ \frac{n(n+1)}{8} h^{*2}] (25)

Proof. Notice that

\psi := \frac{1}{(n+1)!} ||| (T(||x-x_{0}||^{n+1} i))(x_{0})|||_{\infty,x_{0}}\leq h^{*}

i.e., \frac{\psi}{h^{*}}\leq 1 . Also we see that

\frac{1}{2n!} |||(T(||x-x_{0}||^{n}i))(x_{0})|||_{\infty,x_{0}} \leq\frac{(n+1)}{2} h^{*} ,

and

\frac{h^{*}}{8(n-1)!} ||| (T(||x-x_{0}||^{n-1} i))(x_{0})|||_{\infty,x_{0}}

\leq\frac{(h^{*})^{2}}{8}n(n+1) .

Therefore

Remainder (23) \leq\omega_{1}(P^{(n)}, h^{*})

[1+( \frac{n+1}{2}) h^{*}+ \frac{n(n+1)}{8} (h^{*})^{2}]

\square
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Proof of Theorem 12. From (7) we get on M that

P( \circ)=P(x_{0})+\sum_{k=1}^{n}\frac{1}{k!} P^{(k)}(x_{0})(\circ-x_{0})^{k}+\mathcal{R}_{n}(x_{0}, \circ) , (26)

where x_{0}\in M . Thus

(T(P))(x_{0})-(T(P(x_{0})))(x_{0})- \sum_{k=1}^{n}\frac{1}{k!} (T(P^{(k)}(x_{0})(id-x_{0})^{k}))(x_{0})

=(T(\mathcal{R}_{n}(x_{0}, \cdot)))(x_{0})\in C(M, Y) , (27)

by Proposition 4, 9. Also we find that

(TP) (x_{0})-P(x_{0})

(30)

=(TP)(x_{0})-(T(P(x_{0})))(x_{0})+(T(P(x_{0})))(x_{0})-P(x_{0})

=[(T(P-P(x_{0})))(x_{0})]+[(T(P(x_{0})))(x_{0})-P(x_{0})] .

Thus

||(TP)(x_{0})-P(x_{0})||\leq||(T(P-P(x_{0})))(x_{0})||

+||(T(P(x_{0})))(x_{0})-P(x_{0})|| , (28)

and so we find that

|||TP-P|||_{\infty}\leq|||(T(P-P(x_{0})))(x_{0})|||_{\infty,x_{0}}

+|||(T(P(x_{0})))(x_{0})-P(x_{0})|||_{\infty,x_{0}} . (28)

Notice that all functions involved in (26) belong to C(M, Y) , which is a
normed vector lattice.

Consequently,

|(T(P-P(x_{0})))(x)|

=| (T ( \sum_{=1}^{n}\frac{1}{k!}
P^{(k)}(x_{0})(id-x_{0})^{k}+\mathcal{R}_{n}(x_{0}, x))) (x)| ,

(31)

true for all x\in M , for arbitrary x_{0}\in M . I.e., we get that

|(T(P-P(x_{0})))(x_{0})|

=| (T ( \sum_{=1}^{n}\frac{1}{k!}
P^{(k)}(x_{0})(id-x_{0})^{k}+\mathcal{R}_{n}(x_{0}, x))) (x_{0})| ,
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(32)

is true for any x_{0}\in M . Since Y is a normed vector lattice the last implies
that

||(T(P-P(x_{0})))(x_{0})||

=|| (T ( \sum_{=1}^{n}\frac{1}{k!}
P^{(k)}(x_{0})(id-z_{0})^{k}+\mathcal{R}_{n}(x_{0}, x))) (x_{0})|| ,

And

|||(T(P-P(x_{0})))(x_{0})|||_{\infty,x_{0}}

=||| (T ( \sum_{=1}^{n}\frac{1}{k!}
P^{(k)}(x_{0})(id-x_{0})^{k}+\mathcal{R}_{n}(x_{0}, x))) (x_{0})|||_{\infty,x_{0}}

\leq\sum\frac{1}{k!}n |||(T(P^{(k)}(x_{0})(id-x_{0})^{k}))(x_{0})|||_{\infty,x_{0}}

k=1

+|||(T(\mathcal{R}_{n}(x_{0}, x)))(x_{0})|||_{\infty,x_{0}} . (33)

From (15) we obtain

|||\mathcal{R}_{n}(x_{0}, x)|||_{\infty}

\leq|||i\cdot\omega_{1}(P^{(n)}, h) \{\frac{||x-x_{0}||^{n+1}}{(n+1)!h}+\frac{||x-x_{0}||^{n}}{2n!}

+ \frac{h||x-x_{0}||^{n-1}}{8(n-1)!}\}|||_{\infty}<+\infty , (34)

true for arbitrary x_{0}\in M . Since C(M, Y) is a Banach lattice by (15) again
we have

| \mathcal{R}_{n}(x_{0}, x)|\leq|\{\frac{||x-x_{0}||^{n+1}}{(n+1)!h}+\frac{||x-x_{0}||^{n}}{2n!}

+ \frac{h\cdot||x-x_{0}||^{n-1}}{8(n-1)!}\}\cdot\omega_{1}(P^{(n)}, h) i|=:|\varphi| . (35)

That is, by positivity of T we have

T|\mathcal{R}_{n}(x_{0}, x)|\leq T|\varphi| , (36)

i.e.,

(T|\mathcal{R}_{n}(x_{0}, x)|)(x)\leq(T|\varphi|)(x) , (37)

for all x\in M , for any x_{0}\in M .
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Since T is a lattice homomorphism we get

|T(\mathcal{R}_{n}(x_{0}, x))|(x)\leq|T(\varphi)|(x) , (38)

true for all x\in M , for any x_{0}\in M . That is,

|T(\mathcal{R}_{n}(x_{0}, x))|(x_{0})\leq|T(\varphi)|(x_{0}) , (39)

for any x_{0}\in M . And

|(T(\mathcal{R}_{n}(x_{0}, x)))(x_{0})|\leq|(T(\varphi))(x_{0})| , (40)

for any x_{0}\in M . Since C(M, Y) is a normed vector lattice, and both sides
of inequality (40) in |\circ| ’s belong to C(M, Y) (for the last statement see
Propositions 4, 6, 9 and the definition of T) we obtain

|||(T(\mathcal{R}_{n}(x_{0}, x)))(x_{0})|||_{\infty,x_{0}}\leq|||(T(\varphi))(x_{0})|||_{\infty,x_{0}} . (41)

I. e. ,

|||(T(\mathcal{R}_{n}(x_{0}, x)))(x_{0})|||_{\infty,x_{0}}

\leq|||(T( \{\frac{||x-x_{0}||^{n+1}}{(n+1)!h}+\frac{||x-x_{0}||^{n}}{2n!}+\frac{h|||x-x_{0}||^{n-1}}{8(n-1)!}\}

. \omega_{1}(P^{(n)}, h) i))(x_{0})|||_{\infty,x_{0}} . (42)

That is,

|||(T(\mathcal{R}_{n}(x_{0}, x)))(x_{0})|||_{\infty,x_{0}}

\leq\omega_{1}(P^{(n)}, h) [ \frac{1}{(n+1)!h} |||(T((||x-x_{0}||^{n+1}) i))(x_{0})|||_{\infty,x_{0}}

+ \frac{1}{2n!} ||| (T((||x-x_{0}||^{n}) i))(x_{0})|||_{\infty,x_{0}}

+ \frac{h}{8(n-1)!} ||| (T((||x-x_{0}||^{n-1}) i))(x_{0})|||_{\infty,x_{0]}}

=:\lambda<+\infty . (43)

The last quantity \lambda is finite by Proposition 6.
Next, from (33) and (43), we find that

|||(T(P-P(x_{0})))(x_{0})|||_{\infty,x_{0}}

\leq\sum_{k=1}^{n}\frac{1}{k!} |||(T(P^{(k)}(x_{0})(x-x_{0})^{k}))(x_{0})|||_{\infty,x_{0}}+\lambda . (44)
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Finally, inequality (23) follows from inequalities (29) and (44). The proof
of Theorem 12 now has been completed. \square

4. Further Discussion

Here the whole setting will be the same as introduced in \S 2. We would
like to consider further the vector space

B(M, Y):=\{F : M-Y|\exists\theta_{F}>0 :
(45)

||F(x)||\leq\theta_{F} , \forall x\in M\} ,

which is the space of normed bounded functions on M . Obviously here
the associated norm ||| |||_{\infty} is again a lattice norm. The completeness of
B(M, Y) is established in a similar manner as in Proposition 2. That is
B(M;Y) is a Banach lattice.

For the last we still need to prove that

Lemma 15 B(M, Y) is a vector lattice.

Proof. Let f, g\in B(M, Y) , it is enough to prove that f\vee g , f\wedge g\in

B(M, Y) . There exists M^{*}>0 such that ||f(x)||<M^{*} . ||g(x)||<M^{*} , for
all x\in M . That is

\pm f(x)<|f(x)|<M^{*} i ,
\pm g(x)<|g(x)|<M^{*} i ,

where i\in Y^{+} such that ||i||=1 . Here Y^{+} is the positive cone of Y
i) Hence

f(x)\vee g(x)<M^{*} i

and

-(f(x)\vee g(x))=(-f(x))\wedge(-g(x))<M^{*} i .

Hence

(f\vee g)(x)<M^{*} i

and

-(f\vee g)(x)<M^{*} i ,
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imply

|(f\vee g)(x)|<M^{*}i .

And since Y is a Banach lattice we get that

||(f\vee g)(x)||<M^{*} , all x\in M .

That is,

|||f\vee g|||_{\infty}<M^{*} ,

i.e. , f\vee g\in B(M, Y) .
ii) Obviously

f(x)\wedge g(x)<M^{*} i

and

-(f(x)\wedge g(x))=(-f(x))\vee(-g(x))<M^{*} i .

Hence

(f\wedge g)(x)<M^{*} i

and

-(f\wedge g)(x)<M^{*} i ,

imply that

|(f\wedge g)(x)|<M^{*} i .

That is,

||(f\wedge g)(x)||<M^{*} , all x\in M ,

and so |||f\wedge g|||_{\infty}<M^{*}\wedge I. e. , f\wedge g\in B(M, Y) . \square

Here we would like to consider lattice homomorphisms T from C(M, Y)
into B(M, Y) and produce similar results as in \S 3. Obviously such a T is
a positive operator, and since C(M, Y) is a Banach lattice we get that T is
continuous.

To proceed we need the following auxiliary results.

Lemma 16 Let f\in C(M, Y) and the lattice homomorphism T :
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C(M, Y)arrow B(M, Y) . Then

(T(f(x_{0})))(x_{0})\in B(M, Y) ,

as a function of x_{0}\subset M .

Proof. Since f\in C(M, Y) and M is a compact subset of X we get for
any x_{0}\in M that

||f(x_{0})||\leq\theta_{f}=||\theta_{f}i||<+\infty ,

where i\in Y^{+} such that ||i||=1 .
Equivalently we have

|f(x_{0})|\leq|\theta_{f} i| .

Call \varphi(x):=f(x_{0}) , \rho(x):=\theta_{f}i , all x\in M . I.e., |\varphi(x)|\leq|\rho(x)| , that is,

|\varphi|(x)\leq|\rho|(x) , all x\in M ,

iff

|\varphi|\leq|\rho| .

Since T is a positive operator we get

T|\varphi|\leq T|\rho| .

And because T is a lattice homomorphism, we have

|T(\varphi)|\leq|T(\rho)| ,

and

|T(\varphi)|(x)\leq|T(\rho)|(x) , all x\in M .

In particular, it holds

|(T(\varphi))(x_{0})|\leq|(T(\rho))(x_{0})| .

Since Y is a Banach lattice we get that

||(T(\varphi))(x_{0})||\leq||(T(\rho))(x_{0})|| .

I.e.,

||(T(f(x_{0})))(x_{0})||\leq||(T(\theta_{f} i))(x_{0})||
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=\theta_{f} ||(T(i))(x_{0})||

\leq\theta_{f} |||T(i)|||_{\infty}=:\Omega_{f^{T}},<+\infty .

That is,

||(T(f(x_{0})))(x_{0})||\leq\Omega_{f,T}<+\infty ,

for any arbitrary x_{0}\in M . We have established that (T(f(\cdot)))(\cdot)\in B(M, Y) .
\square

Obviously (T(f-f(x_{0})))(x_{0})\in B(M, Y) .

Lemma 17 Let r>0 , i\in Y^{+} such that ||i||=1 , T : C(M, Y) –

B(M, Y) a lattice homomorphism and x_{0}\in M be arbitrary. Then (T(||x-
x_{0}||^{r} i))(x_{0})\in B(M, Y) as a function of x_{0} .

Proof. For any x , x_{0}\in M , by the compactness of M we get that

||x-x_{0}||^{r}\leq\ell , for some \ell>0 .

Here ||x-x_{0}||^{r}i\in C(M, Y) , thus

|||||x-x_{0}||^{r}i||_{\infty,x}\leq\ell ,

and

|||x-x_{0}||^{r} , i|\leq|\ell i| .

Hence

T|||x-x_{0}||^{r}i|\leq T|\ell\cdot i|

and

|(T(||x-x_{0}||^{r}\cdot i))|\leq|(T(\ell\cdot i))| .

Furthermore,

|(T(||x-x_{0}||^{r}\cdot i))|(x)\leq|T(\ell i)|(x) , all x\in M .

In particular

|(T(||x-x_{0}||^{r}i))|(x_{0})\leq|T(\ell i)|(x_{0}) ,

for any arbitrary x_{0}\in M . That is,

|(T(||x-x_{0}||^{r}i))(x_{0})|\leq|(T(\ell i))(x_{0})| ,
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for any x_{0}\in M . The last implies that

||(T(||x-x_{0}||^{r}i))(x_{0})||\leq||(T(\ell i))(x_{0})||

=\ell\cdot||(T(i))(x_{0})||\leq\ell |||T(i)|||_{\infty}<\theta_{\ell,T}<+\infty ,

for some constant \theta_{\ell,T}>0 . We have proved that

|||(T(||x-x_{0}||^{r}\cdot i))(x_{0})|||_{\infty,x_{0}}<+\infty ,

i.e. ,

(T(||x-x_{0}||^{r}i))(x_{0})\in B(M, Y)

as a function of x_{0}\in M . \square

The last result we need here is

Lemma 18 Let X be a Banach space, Y a Banach lattice, P : Xarrow Y

such that P|_{M}\in C^{n}(M, Y) , n\in \mathbb{N} , where M is a convex and compact subset
of X Let T be a lattice homomorphism from C(M, Y) into B(M, Y) . Here
k=1 , . . , n . Then

(T(P^{(k)}(x_{0})(x-x_{0})^{k}))(x_{0})\in B(M, Y)

as a function of x_{0}\in M

Proof. We have that

P^{(k)}(x_{0})(x-x_{0})^{k}\in Y, for all x\in X ,

and P^{(k)}(x_{0})(x-x_{0})^{k} is continuous in x\in X .
Since P^{(k)}(x_{0}) is bounded k-linear operator and P|_{M}\in C^{n}(M, Y) we

get that

||P^{(k)}(x_{0})(x-x_{0})^{k}||\leq||P^{(k)}(x_{0})|| ||x-x_{0}||^{k}<+\infty ,

i.e., there exists D_{P}>0 such that

||P^{(k)}(x_{0})(x-x_{0})^{k}||\leq D_{P}<+\infty ,

for all x\in M and any x_{0}\in M . That is,

||P^{(k)}(x_{0})(x-x_{0})^{k}||\leq||D_{P}i|| ,

where i\in Y^{+} such that ||i||=1 . Equivalently

|P^{(k)}(x_{0})(x-x_{0})^{k}|\leq|D_{P}\cdot i| .
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Since T is a lattice homomorphism we get

T|P^{(k)}(x_{0})(x-x_{0})^{k}|\leq T|D_{P}\cdot i| ,

i.e. ,

(T|P^{(k)}(x_{0})(x-x_{0})^{k}|)(x)\leq(T|D_{P}i|)(x) , all x\in M .

Hence

|T(P^{(k)}(x_{0})(x-x_{0})^{k})|(x)\leq|T(D_{P}i)|(x) ,

and

|(T(P^{(k)}(x_{0})(x-x_{0})^{k}))(x)|\leq|(T(D_{P}\cdot i))(x)| ,

all x\in M , and for any x_{0}\in M .
In particular it holds

|(T(P^{(k)}(x_{0})(x-x_{0})^{k}))(x_{0})|\leq|(T(D_{P}\cdot i))(x_{0})| ,

for any arbitrary x_{0}\in Mr Therefore,

||(T(P^{(k)}(x_{0})(x-x_{0})^{k}))(x_{0})||\leq||(T(D_{P}i))(x_{0})|| ,

for any x_{0}\in M . Consequently,

|||(T(P^{(k)}(x_{0})(x-x_{0})^{k}))(x_{0})|||_{\infty,x_{0}}

\leq\zeta_{P,T}:=D_{P} |||T(i)|||_{\infty}<+\infty .

We have established that (T(P^{(k)}(x_{0})(x-x_{0})^{k}))(x_{0})\in B(M, Y) as a func-
tion of x_{0}\in M , all k=1 , \ldots , n . \square

Next one can prove again in exactly the same way inequalities (19),
(23) and (25) of Theorem 10, 12 and of Corollary 14, respectively, within
the same settings – except that now T is a lattice homomorphism from
C(M, Y) into B(M, Y) .

The valid inequalities (19), (23), (25), under the extended T as above,
have again finite right-hand sides. The last isjustified by the use of Lemmas
16, 17, 18.

5. Examples

Next we prove that the set of lattice homomorphisms where our theory
can be applied is not an empty one.
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1_{J}^{\backslash } Let \tau : Yarrow Y be a lattice homomorphism and f\in C(M, Y) , then
F : C(M, Y) – C(M, Y) defined by F(f):=\tau\circ f is a lattice homomor-
phism.

2) Let \varphi : \mathbb{N}arrow \mathbb{R}_{+}-\{0\} be such that \varphi(n)arrow 1 as n – +\infty (e.g.,
\varphi(n)=1+\frac{1}{n}) . Let f\in C(M, Y) , then T_{n} : C(M, Y)arrow C(M, Y) defined by
(T_{n}f)(x):=\varphi(n)\cdot f(x) , all x\in M is a lattice homomorphism. Furthermore
T_{n}arrow I-unit operator, as n – +\infty .

3) Let \gamma_{n} : M – \mathbb{R}_{+}-\{0\} be such that ||\gamma_{n}||_{\infty}\leq\alpha_{n} , \alpha_{n}>0 , \forall n\in \mathbb{N}

and \lim_{narrow+\infty}\gamma_{n}=1 , uniformly (e.g., \gamma_{n}(x):=e^{-||x||/n}) . Let f\in C(M, Y) ,
define (T_{n}f)(x):=\gamma_{n}(x) f(x) , all x\in M . Then T_{n} determines a lattice
homomorphism from C(M, Y) into B(M, Y) such that T_{n}arrow I .

4) Let T_{n} , n\in \mathbb{N} , be a positive linear operator from C(M, Y) into itself
such that T_{n}arrow 0 . Assume that T_{n} is an orthomorphism (see [2], p. 109).
Then (by Exercise 2, p. 124 of [2]) E_{n}:=I+T_{n} is a lattice homomorphism,
where I is the unit operator. Our theory (\S 3) when applied to E_{n} gives the
convergence of T_{n}arrow 0 with rates.

5) Let \alpha_{n}>0 be such that \alpha_{n}arrow 1 as narrow+\infty . Let f\in C(X, Y) and
define (T_{n}f)(x):=f(\alpha_{n}x) , all x\in X . Then T_{n} is a lattice homomorphism
from C(X, Y) into itself such that T_{n}f – f pointwise, all f\in C(X, Y) .

6) Let 0<\alpha_{n} –0 as n – +\infty and j\in X such that ||j||=1 . Let
f\in C(X, Y) and define

(T_{n}f)(x):=f(x+\alpha_{n}j) (arrow f(x)) ,

all x\in X . Then T_{n} is a lattice homomorphism from C(X, Y) into itself
such that T_{n}f – f pointwise, all f\in C(X, Y) . E.T.C.
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