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Monotoneity and homogeneity of Picard dimensions for
signed radial densities

Mitsuru NAKAI and Toshimasa TADA
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Abstract. The Picard dimension \dim P of a locally H\"older continuous function P on
the punctured unit ball in the d-dimensional Euclidean space (d\geq 2) at the origin is
the limit of the cardinal number of the set of extremal rays of the cone of nonnegative
solutions of the stationary Schr\"odinger equation (-\triangle+P(x))u(x)=0 on the punctured
ball 0<|x|<a with vanishing boundary values on the sphere |x|=a as a\downarrow 0 . In this
paper the monotoneity of \dim P in radial P in the sense that \dim P\leq\dim Q for radial
functions P and Q with P\leq Q and the homogeneity of \dim P for radial functions P in
the sense that \dim(cP)\geq\dim P(0<c\leq 1) or equivalently \dim(cP)\leq\dim P(c\geq 1) for
radial P are established.
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1. Introduction

The purpose of this paper is to contribute to the study on structures
of spaces of positive solutions of time independent Schr\"odinger equations
around isolated singularities of their potentials. By translations we may
restrict ourselves to the case where isolated singularities of potentials are
situated over the origin 0 of the Euclidean space R^{d} of dimension d\geq 2 .
Here we denote by \Omega_{a} the punctured ball 0<|x|<a and \Gamma_{a} the sphere
|x|=a centered at the origin 0 of radius a>0 . A real valued locally H\"older

continuous function P(x)=P(x_{1}, \cdots, x_{d}) defined on \Omega_{a}\cup\Gamma_{a} will be referred
to as a density on \Omega_{a}\cup\Gamma_{a} , which is viewed as having an isolated singularity
at the origin 0, either removable or essential. We consider a stationary
Schr\"odinger equation whose potential is a density P(x) on \Omega_{a}\cup\Gamma_{a} :

(-\triangle+P(x))u(x)=0 ( \triangle=\frac{\partial^{2}}{\partial x_{1}^{2}}+\cdot\cdot+\frac{\partial^{2}}{\partial x_{d}^{2}}) (1)
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By a solution u of (1) on \Omega_{a} we mean a real valued C^{2} function u
satisfying the equation (1) on \Omega_{a} . We denote by P(\Omega_{a}) the space of all
solutions of (1) on \Omega_{a} , which forms a locally convex linear topological space
equipped with the topology given by the uniform convergence on each com-
pact subset of \Omega_{a} . We denote by PP(\Omega_{a}) the subclass of P(\Omega_{a}) consisting
of nonnegative members in P(\Omega_{a}) . The first P in PP(\Omega_{a}) indicates the
dependence of the class on the density P and the second P stands for the
initial of the term positive (nonnegative) so that the class associated with
another density Q is denoted by QP(\Omega_{a}) .

Since we are interested solely in the effect on the class PP(\Omega_{a}) of the
singular behavior of P at the origin 0, eliminating the influence on PP(\Omega_{a})

of the boundary behavior of each solution in PP(\Omega_{a}) on the relative bound-
ary \Gamma_{a} of \Omega_{a} , we consider the subclass

PP(\Omega_{a}; \Gamma_{a})=\{u\in PP(\Omega_{a})\cap C(\Omega_{a}\cup\Gamma_{a}) : u|\Gamma_{a}=0\} ,

which forms a closed positive cone in PP(\Omega_{a}) as a consequence of the Har-
nack inequality. We wish to study the cone PP(\Omega_{a};\Gamma_{a}) from the view point
of its extremal rays. For the purpose it is convenient to consider the convex
subset PP_{1}(\Omega_{a}; \Gamma_{a}) which is the intersection of PP(\Omega_{a}; \Gamma_{a}) with a closed
hyperplane given by the equation \ell(u)=1 where \ell is any strictly positive
continuous linear functional on the closed linear span of PP(\Omega_{a};\Gamma_{a}) :

PP_{1}(\Omega_{a}; \Gamma_{a})=\{u\in PP(\Omega_{a};\Gamma_{a}) : \ell(u)=1\} .

We cannot exclude the trivial case PP_{1}(\Omega_{a}; \Gamma_{a})=\emptyset which occurs if and
only if PP(\Omega_{a}; \Gamma_{a})=\{0\} which is seen to be equivalent to PP(\Omega_{a})=\{0\} .
Although PP(\Omega_{a};\Gamma_{a})=R^{+}PP_{1}(\Omega_{a};\Gamma_{a}) for any \ell unless PP(\Omega_{a}; \Gamma_{a})=\{0\} ,
where R is the real number field and R^{+}=\{\xi\in R : \xi\geq 0\} , the convex
structure of PP_{1}(\Omega_{a}; \Gamma_{a}) does depend upon the choice of \ell . However it
is easy to see that the set theoretic structure of the set ex. PP_{1}(\Omega_{a};\Gamma_{a})

of extremal points in PP_{1}(\Omega_{a}; \Gamma_{a}) is uniquely determined regardless how
we choose \ell and therefore we adopt the following special \ell for a technical
reason:

\ell(u)=-\frac{a}{s(\Gamma_{a})}\int_{\Gamma_{a}}\frac{\partial u}{\partial n}ds

where ds is the area element on \Gamma_{a} , s(\Gamma_{a}) the area of \Gamma_{a} and \partial/\partial n the
outer normal derivative on \Gamma_{a} considered in \Omega_{a}\cup\Gamma_{a} . Since each function
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in PP(\Omega_{a}; \Gamma_{a}) or its closed linear span is of class C^{2} on \Omega_{a}\cup\Gamma_{a} as a con-
sequence of the reflection principle, the above \ell is certainly a well defined
strictly positive continuous linear functional on the closed linear span of
PP(\Omega_{a}; \Gamma_{a}) .

The Harnack principle yields that the convex set PP_{1}(\Omega_{a};\Gamma_{a}) is com-
pact. As is well known compact convex sets are completely determined by
sets of their all extremal points: the Krein-Milman theorem (cf. e.g. [7])
assures that

PP_{1}(\Omega_{a}; \Gamma_{a})=\overline{co} [ex. PP_{1}(\Omega_{a} ; \Gamma_{a}) ] (2)

where \overline{co}[X] is the closed convex hull of a subset X of PP_{1}(\Omega_{a}; \Gamma_{a}) ; more
precisely, the Choquet theorem (cf. e.g. [25]) implies the existence (cf. e.g.
[21] ) of a bijective correspondence urightarrow\mu between PP_{1}(\Omega_{a}; \Gamma_{a}) and the set
of probability measures on ex. PP_{1}(\Omega_{a}; \Gamma_{a}) such that

u= \int_{ex.PP_{1}(\Omega_{a};\Gamma_{a})}vd\mu(v) . (3)

Thus the set ex. PP_{1}(\Omega_{a}; \Gamma_{a}) is essential for the class PP(\Omega_{a}; \Gamma_{a}) .
Following Bouligand the cardinal number \#(ex. PP_{1}(\Omega_{a}; \Gamma_{a})) of the set
ex. PP_{1}(\Omega_{a}; \Gamma_{a}) is referred to as the Picard dimension of the density P
on \Omega_{a} at the origin, \dim(P, \Omega_{a}) in notation, i.e.

\dim(P, \Omega_{a})=\#(ex. PP_{1}(\Omega_{a}; \Gamma_{a}))

and we say that the Picard principle is valid for P on \Omega_{a} at the origin
0 if \dim(P, \Omega_{a})=1 (cf. [5]). The reference to the name Picard comes
from his classical result in 1923 that \dim(P, \Omega_{a})=1 for P\equiv 0 , the classical
harmonic case, formulated in our present setting; the result is actually found
earlier in 1903 by B\^ocher (cf. [8]). The cardinal number \dim(P, \Omega_{a}) does
not completely describe the dependence of the set theoretic behaviors of
positive solutions of (1) at the origin 0 on the singular behavior of P at
0 since it also depends on the choice of a>0 . However it is seen that
\dim(P, \Omega_{a}) is a fixed cardinal number for all sufficiently small a>0 (cf.
[20], [17]; see Appendix at the end of this paper) and hence we can define
the Picard dimension \dim P of P at 0 by

\dim P=\lim_{a\downarrow 0}\dim(P, \Omega_{a}) .

In the present paper we study positive solutions of (1) from the view
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point of the Picard dimension \dim P . It is known (cf. [22]) that the range
of the mapping P – \dim P covers the set of all finite cardinal numbers
0, 1, 2, \cdot ., the cardinal number \aleph_{0} of the countably infinite set and the car-
dinal number \aleph of continuum. We are mainly concerned with the following
two problems in this paper.

1. PROBLEM OF MONOTONEITY: Does P\leq Q imply \dim P\leq\dim Q ?

2. PROBLEM OF HOMOGENEITY: Does \dim(cP)=\dim P hold for every
real constant c>0 ?

We say that a density P(x) defined on an \Omega_{a} is radial if P(x) depends
only on |x| . As a contribution of positive direction to the problem of mon0-

toneity we have the following result ([19], [3]):

Theorem A If P and Q are nonnegative radial densities with P\leq Q on
a punctured ball about 0, then the inequality \dim P\leq\dim Q holds.

The result is no longer true if P and Q are not supposed to be radial even
if they are nonnegative. For example, there exists a nonnegative density Q

such that \dim Q=1 and Q\geq P for any given nonnegative density P with
\dim P\geq 2 (cf. [23], [24], [29], [2]). Concerning the problem of homogeneity
we have the following positive result ([11], [3]):

Theorem B If P is a nonnegative radial density on a punctured ball
about 0, then \dim(cP)=\dim P for every constant c>0 .

Despite the case of the problem of monotoneity it seems quite difficult to
prove or disprove the homogeneity of Picard dimensions for nonnegative but
not necessarily radial densities, for which nothing has been published yet.
The result which will be mentioned below somehow suggests the extreme
diversity of the homogeneity question. The main purpose of this paper is to
discuss what happens to Theorems A and B if we remove the assumption
of nonnegativeness of radial densities. We say that a density P is signed if
P is not necessarily of constant sign. As a lucky case we have a complete
generalization of Theorem A as follows:

Theorem 1 If P and Q are signed radial densities with P\leq Q on a

punctured ball about 0, then the inequality \dim P\leq\dim Q holds.

It is interesting to observe the following direct consequence of the above
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result for the reason that many densities appearing in the nuclear physics
and engineering are negative and radial about their isolated singularities:
If P\leq 0 , then \dim P is either 0 or 1. This follows from the inequality
0\leq\dim P\leq\dim 0=1 . Theorem B , however, cannot be generalized to
signed radial densities in its original formulation since we have a negative
radial density P on \Omega_{1} such that \dim P>\dim(cP) for every constant c>1
([9]; see \S 7 and \S 8 of the present paper). Hence the following weak form is
the best possible generalization of Theorem B :

Theorem 2 If P is a signed radial density on a punctured ball about 0,
then \dim P\leq\dim(cP) for every constant c with 0<c\leq 1 , or equivalently,
\dim P\geq\dim(cP) for every constant c with c>1 .

This result may certainly be viewed as a generalization of Theorem B.
In fact, let P be any nonnegative radial density on a punctured ball about
0 and c any constant with 0<c\leq 1 . Theorem 2 implies \dim P\leq\dim(cP) .
On the other hand, since P\geq cP by virtue of the fact P\geq 0 , using
Theorem A or 1 we have \dim P\geq\dim(cP) and therefore we can conclude
that \dim P=\dim(cP) . The case of c\geq 1 can be treated similarly.

The decisive factor which makes Theorems 1 and 2 valid lies in the fact
that \dim P takes only three values 0, 1 and \aleph for every radial density P on
a punctured ball about 0 (cf. [18], [16]). The proofs of this fact in the cited
papers are both based heavily upon the concrete analysis of (3) using the
Green’s function of (1), i.e. the s0-called Martin theory for (1) at 0. In our
paper we present a much simpler proof based merely upon the relation (2),
and actually a part of it, which is a subsidiary achievement of this paper.

The paper consists of 8 sections including this introduction and the
proofs of the main results of this paper, Theorems 1 and 2 mentioned above,
will be completed in the final \S 8 after a long series of auxiliary discussions
in \S \S 2-7. We also have an appendix at the end of this paper.

2. Reduction to the unit ball

We consider a punctured ball \Omega_{a}=\{x\in R^{d} : 0<|x|<a\} and its
boundary sphere \Gamma_{a}=\{x\in R^{d} : |x|=a\} centered at the origin 0 of the
Euclidean space R^{d} of dimension d\geq 2 of radius a>0 . For simplicity we
set \Omega_{1}=\Omega , the punctured unit ball, and \Gamma_{1}=\Gamma , the unit sphere. A real
valued locally H\"older continuous function P(x) on \Omega_{a}\cup\Gamma_{a} will be referred
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to as a density on \Omega_{a}\cup\Gamma_{a} . With a density P on \Omega_{a}\cup\Gamma_{a} we associate the
linear space

P(\Omega_{a})= { u\in C^{2}(\Omega_{a}) : (-\triangle+P(x))u(x)=0 on \Omega_{a} }

equipped with the topology of locally uniform convergence on \Omega_{a} , i.e. uni-
form convergence on every compact subset of \Omega_{a} , which forms a locally
convex linear topological space. Each function u in P(\Omega_{a}) is referred to
as being P-harmonic on \Omega_{a} . If a sequence \{u_{n}\} in P(\Omega_{a}) converges to a
function u on \Omega_{a} locally uniformly on \Omega_{a} , then u\in P(\Omega_{a}) . We set

PP(\Omega_{a})= { u\in P(\Omega_{a}) : u\geq 0 on \Omega_{a} }

which is a closed subset of P(\Omega_{a}) . Here the first (second, resp.) P in PP(\Omega_{a})

refers to the density P (the initial of ‘positive’ meaning nonnegative, resp.).
Concerning the class PP(\Omega_{a}) the Harnack inequality is important: For
any compact subset K of \Omega_{a} there exists a constant c(K)\geq 1 such that
c(K)^{-1}u(\xi)\leq u(\eta)\leq c(K)u(\xi) for any u in PP(\Omega_{a}) and any pair (\xi, \eta)

of points in K([14]) . The Harnack inequality is equivalent to the Harnack
principle: If \{u_{n}\} is a nondecreasing sequence in PP(\Omega_{a}) convergent at a
point in \Omega_{a} , then \{u_{n}\} converges to a u in PP(\Omega_{a}) locally uniformly on \Omega_{a} .
We then consider

PP(\Omega_{a}; \Gamma_{a})=\{u\in PP(\Omega_{a})\cap C(\Omega_{a}\cup\Gamma_{a}) : u|\Gamma_{a}=0\} .

If a sequence \{u_{n}\} in PP(\Omega_{a}; \Gamma_{a}) converges to a function u in PP(\Omega_{a})

in the topology of P(\Omega_{a}) , then u\in PP(\Omega_{a}; \Gamma_{a}) and \{u_{n}\} converges to u
locally uniformly on \Omega_{a}\cup\Gamma_{a} . In particular, PP(\Omega_{a}; \Gamma_{a}) is a closed subset
of PP(\Omega_{a}) and hence of P(\Omega_{a}) . To see this we observe the existence of a
b\in(0, a) enough close to a such that there exists a P-harmonic function
w on \Omega_{a}\backslash (\Omega_{b}\cup\Gamma_{b}) with boundary values 0 on \Gamma_{a} and 1 on \Gamma_{b} . By the
minimum principle, u_{n}\leq||u_{n} ; L_{\infty}(\Gamma_{b})||w on (\Omega_{a}\cup\Gamma_{a})\backslash \Omega_{b} and a fortiori u\leq

||u;L_{\infty}(\Gamma_{b})||w on (\Omega_{a}\cup\Gamma_{a})\backslash \Omega_{b} which shows that u\in PP(\Omega_{a};\Gamma_{a}) . Again
by the minimum principle, |u_{n}-u|\leq||u_{n}-u;L_{\infty}(\Gamma_{b})||w on (\Omega_{a}\cup\Gamma_{a})\backslash \Omega_{b} ,
which proves the above assertion.

We denote by j the natural symmetric selfmapping of the double \hat{\Omega}_{a}

of \Omega_{a} about \Gamma_{a} onto itself. Let \hat{P} be the natural extension of a density
P on \Omega_{a} to \hat{\Omega}_{a} . Take any P-harmonic function u on \Omega_{a}\backslash (\Omega_{c}\cup\Gamma_{c}) having
boundary values 0 on \Gamma_{a} , where 0<c<b<a and consider the \hat{P}-harmonic
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function \^u on a subregion \{(\Omega_{a}\cup\Gamma_{a})\backslash (\Omega_{b}\cup\Gamma_{b})\}\cup j\{(\Omega_{a}\cup\Gamma_{a})\backslash (\Omega_{b}\cup\Gamma_{b})\} with
boundary values \^u=u on \Gamma_{b} and \text{\^{u}}=-u\circ j on j(\Gamma_{b}) . Since \^u+\^uoj \equiv 0 ,
we see that \hat{u}=0 on \Gamma_{a} . This shows that \^u\equiv u on (\Omega_{a}\cup\Gamma_{a})\backslash \Omega_{b} . The fact
that \^u is of class C^{2} assures that u is of class C^{2} on (\Omega_{a}\cup\Gamma_{a})\backslash (\Omega_{c}\cup\Gamma_{c}) . We
have seen, in particular, that cls [PP(\Omega_{a}; \Gamma_{a})]\subset C^{2}(\Omega_{a}\cup\Gamma_{a}) , where \cos[X]

is the closed linear span of X\subset P(\Omega_{a}) . Thus the following functional is
well defined on \cos[PP(\Omega_{a}; \Gamma_{a})] :

\ell_{a}(u)=-\frac{a}{s(\Gamma_{a})}\int_{\Gamma_{a}}\frac{\partial u}{\partial n}ds (4)

for u\in\cos[PP(\Omega_{a}; \Gamma_{a})] , where ds is the area element on \Gamma_{a} , s(\Gamma_{a}) the area
of \Gamma_{a} and \partial/\partial n the outer normal derivation on \Gamma_{a} considered for \Omega_{a}\cup\Gamma_{a} .
Using the polar coordinate (r, \omega) of x\in R^{d}\backslash \{0\} where r=|x| and \omega=

|x|^{-1}x\in\Gamma=\Gamma_{1} , (4) can be written as

\ell_{a}(u)=-\frac{a}{\omega_{d}}\int_{\Gamma}[\frac{\partial}{\partial r}u(r\omega)]_{r=a}d\omega

where d\omega is the area element on \Gamma and \omega_{d}=\omega(\Gamma) is the area of \Gamma It
is easily seen that \ell_{a} is positive and linear on \cos[PP(\Omega_{a}; \Gamma_{a})] . Take the
function w introduced in the first paragraph. Take any u in \cos[PP(\Omega_{a}; \Gamma_{a})] .
By the minimum principle, we have |u|\leq||u;L_{\infty}(\Gamma_{b})||w on (\Omega_{a}\cup\Gamma_{a})\backslash \Omega_{b}

and hence |\partial u/\partial n|\leq-||u;L_{\infty}(\Gamma_{b})||(\partial w/\partial n) on \Gamma_{a} , which implies |\ell_{a}(u)|\leq

\ell_{a}(w)||u;L_{\infty}(\Gamma_{b})|| . This proves that \ell_{a} is continuous on \cos[PP(\Omega_{a}; \Gamma_{a})] .
Suppose that \ell_{a}(u)=0 for a nonnegative P-harmonic function u on \Omega_{a}\backslash

(\Omega_{b}\cup\Gamma_{b}) with boundary values 0 on \Gamma_{a} . Since -\partial u/\partial n\geq 0 on \Gamma_{a} , we
see that \partial u/\partial n=0 on \Gamma_{a} . By the uniqueness of solutions of the Cauchy
problem we conclude that u\equiv 0 on \Omega_{a}\backslash (\Omega_{b}\cup\Gamma_{b}) . We have thus seen that
\ell_{a} is strictly positive. We set

PP_{1}(\Omega_{a}; \Gamma_{a})=\{u\in PP(\Omega_{a}; \Gamma_{a}) : \ell_{a}(u)=1\} ,

which can be empty. We now maintain that PP_{1}(\Omega_{a}; \Gamma_{a}) forms a compact
convex subset of P(\Omega_{a}) . For the proof, again take the function w introduced
in the first paragraph. Let \{u_{n}\} be an arbitrary sequence in PP_{1}(\Omega_{a}; \Gamma_{a}) .
We only have to show that \{u_{n}\} contains a convergent subsequence in
PP_{1}(\Omega_{a}; \Gamma_{a}) . Fix a point \zeta\in\Gamma_{b} . We first assert that \sup_{n\in N}u_{n}(\zeta)<\infty

where N is the set of positive integers. If this is not the case, then, by
choosing a subsequence if necessary, we may assume that u_{n}(\zeta)arrow\infty . The
Harnack inequality yields that \lambda_{n}=\inf_{\Gamma_{b}}u_{n}arrow\infty . By the minimum prin-



260 M. Nakai and T. Tada

ciple, we see that u_{n}\geq\lambda_{n}w on (\Omega_{a}\cup\Gamma_{a})\backslash \Omega_{b} and 1=\ell_{a}(u_{n})\geq\lambda_{n}\ell_{a}(w)>0 ,
a contradiction. Hence \{u_{n}\} is locally bounded on \Omega_{a} . By the Poisson type
representation of each u_{n} on every small ball in \Omega_{a} we see that \{u_{n}\} is
equicontinuous at each point of \Omega_{a} . Thus \{u_{n}\} forms a normal family and
the assertion follows.

For each density P on \Omega_{a}\cup\Gamma_{a}(a>0) we define the Picard dimension
\dim(P, \Omega_{a}) of P considered on \Omega_{a} to be the cardinal number \#(ex . PP_{1}(\Omega_{a} ;
\Gamma_{a})) of the set ex. PP_{1}(\Omega_{a}; \Gamma_{a}) of extremal points of the compact convex
set PP_{1}(\Omega_{a}; \Gamma_{a}) :

\dim(P, \Omega_{a})=\#(ex.PP_{1}(\Omega_{a};\Gamma_{a})) .

For a density P on a punctured ball centered at the origin 0 there exists a
c>0 such that \Omega_{a}\cup\Gamma_{a} is contained in the punctured ball for 0<a<c .
We will see later that there exists a b\in(0, c) such that \dim(P, \Omega_{a}) is a fixed
constant cardinal number for every a\in(0, b] . A proof of this is appended
at the end of this paper. But, since the fact will be used only for densities
P which are radial, another proof of independent interest will be given for
such densities in \S 8. Hence we can define the Picard dimension \dim P of P
at the origin 0 by

\dim P=\lim_{a\downarrow 0}\dim(P, \Omega_{a}) ,

which describes, in essence, how many positive solutions of the Schr\"odinger
equation (1) at the origin exist.

It is convenient to reduce the study of densities on \Omega_{a}\cup\Gamma_{a} to that on
\Omega\cup\Gamma=\Omega_{1}\cup\Gamma_{1} , the closed unit punctured ball. Take any density P on
\Omega_{a}\cup\Gamma_{a} and set

aP(x)=a^{2}P(ax)

for every x in \Omega\cup\Gamma It is clear that aP is a density on \Omega\cup\Gamma We denote
by u_{a} the a-dilation of u : if u is a function on \Omega_{a} or on \Omega_{a}\cup\Gamma_{a} , then u_{a} is
the function on \Omega or on \Omega\cup\Gamma given by

u_{a}(x)=u(ax)

for every x in \Omega or in \Omega\cup\Gamma The mapping u\mapsto u_{a} gives a natural isomor-
phism of P(\Omega_{a}) onto aP(\Omega) as linear topological spaces; it is a bicontinuous
bijection preserving positiveness, addition and positive scalar multiplication
of PP(\Omega_{a}) onto aPP(\Omega) , and similarly of PP(\Omega_{a}; \Gamma_{a}) onto aPP(\Omega;\Gamma) . By
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the choice of normalizing functional \ell_{a} we see that u\mapsto u_{a} is also a bijec-
tion preserving convex combinations of PP_{1}(\Omega_{a}; \Gamma_{a}) onto aPP_{1}(\Omega;\Gamma) , which
maps ex. PP_{1}(\Omega_{a}; \Gamma_{a}) onto ex. aPP_{1}(\Omega;\Gamma) bijectively. Hence

\dim(P, \Omega_{a})=\dim(^{a}P, \Omega) .

For this reason we mainly study densities P on \Omega so that the compact convex
set PP_{1}(\Omega;\Gamma)=\{u\in PP(\Omega;\Gamma) : \ell(u)=1\} will be centrally considered
where \ell=\ell_{1} is given by

\ell(u)=-\frac{1}{\omega_{d}}\int_{\Gamma}\frac{\partial u}{\partial n}d\omega=-\frac{1}{\omega_{d}}\int_{\Gamma}[\frac{\partial}{\partial r}u(r\omega)]_{r=1}d\omega .

3. Singularity indices of limit form

A function f on \Omega_{a}(0<a\leq\infty) is said to be radial if f(r\omega)(r\in

(0, a) , \omega\in\Gamma) depends only on r . In this case we define a function f(r) on
(0, a) by f(r)=f(r\omega) . Conversely, a function f(r) on (0, a) gives rise to
a radial function f(x) on \Omega_{a} defined by f(x)=f(|x|) . Hereafter in this
paper all the densities P(x) on \Omega\cup\Gamma in consideration will be supposed to
be radial unless otherwise is explicitly stated. A radial density P(x) on
\Omega\cup\Gamma determines and is determined by a locally H\"older continuous function
P(r) on (o, _{1}] such that P(x)=P(|x|) . It is convenient to view P(x)(P(r) ,
resp.) as being the restriction to \Omega\cup\Gamma((0, 1] , resp.) of a density P(x) (a
locally H\"older continuous function P(r) , resp.) on R^{d}\backslash \{0\}((0, \infty) , resp.).
For definiteness we set P(x)=|x|^{-4}P(|x|^{-2}x) (P(r)=r^{-4}P(r^{-1}) , resp.)
for |x|\geq 1 (r\geq 1 , resp.). With a radial density P(x) on \Omega\cup\Gamma (and hence
on R^{d}\backslash \{0\}) we associate an ordinary differential operator L_{P} given by

L_{P}w(r)=-(w’(r)+ \frac{d-1}{r}w’(r))+P(r)w(r)

where w’=dw/dr and w’=d^{2}w/dr^{2} . The unique existence of solu-
tions of Cauchy problem for the linear differential equation L_{P}w=0 is of
fundamental importance in our study: For any c\in(0, \infty) and any pair
(a, b)\in R\cross R there exists a unique solution w of L_{P}w=0 on (0, \infty) such
that (w(c), w’(c))=(a, b) . In particular, we see that any solution w of
L_{P}w=0 on any interval (\alpha, \beta)\subset(0, \infty) is uniquely extended to a solution
of L_{P}w=0 on (0, \infty) . A radial function u(x)=u(|x|) belongs to P(\Omega) if
and only if L_{P}u(r)=0 on (0, 1) .

The Laplacian \triangle=\triangle_{x}=\triangle_{r\omega} is decomposed into the form \triangle_{x}=
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\triangle_{r}+r^{-2}\triangle_{\omega} according to the polar decomposition x=r\omega where \triangle_{r}=

\partial^{2}/\partial r^{2}+(d-1)r^{-1}\partial/\partial r and \triangle_{\omega} is the Laplace-Beltrami operator on \Gamma with
respect to the natural Riemannian metric on \Gamma induced by the Euclidean
metric on R^{d} . For any w\in C^{2}(0, \infty) we have L_{P}w(r)=(-\triangle_{r}+P(r))w(r) .
A spherical harmonic S_{n} of degree n=0,1 , \cdot . on \Gamma is a proper function
of -\triangle_{\omega} of the proper value n(n+d-2) : -\triangle_{\omega}S_{n}=n(n+d-2)S_{n} on
\Gamma We define an orthonormal basis \{S_{nj}(\omega) : j=1, \cdot\cdot, N(n)\} in L_{2}(\Gamma)=

L_{2}(\Gamma, d\omega) , where d\omega is the area element in \Gamma . for spherical harmonics of
degree n=0,1 , \cdots . It is seen that N(0)=1 and S_{01}(\omega)=1/\sqrt{\omega_{d}} , where
\omega_{d}=\int_{\Gamma}d\omega , the area of \Gamma The addition theorem implies that

\sum_{j=1}^{N(n)}S_{nj}(\omega)^{2}=\frac{N(n)}{\omega_{d}} . (5)

Then \{S_{nj}(\omega) : j=1, \cdots, N(n);n=0,1, \cdot.\} forms a complete orthonormal
system for L_{2}(\Gamma) . For spherical harmonics, see e.g. [15] and [28].

With a radial density P(x)=P(|x|) on \Omega\cup\Gamma we associate a sequence
\{P_{n}\}(n=0,1, \cdots) of radial densities P_{n}(x)=P_{n}(|x|) on \Omega\cup\Gamma defined by

P_{n}(r)=P(r)+ \frac{n(n+d-2)}{r^{2}} (n=0,1, \cdots) .

Consider the Fourier coefficients c_{nj}(r) of a u(r\omega) in P(\Omega) with respect to
the complete orthonormal system \{S_{nj}(\omega) : j=1, , N(n);n=0,1, \cdots\}

in L_{2}(\Gamma) :

c_{nj}(r)=(u, S_{nj})_{L_{2}(\Gamma)}

= \int_{\Gamma}u(r\omega)S_{nj}(\omega)d\omega (j=1, , N(n);n=0,1, \cdots) .

We show that c_{nj} is a solution of L_{P_{n}}w=0 on (0, 1) (j=1, \cdot , N(n);n=
0,1 , \cdots) . In fact, we have

L_{P_{n}}c_{nj}(r)

= \int_{\Gamma}(-\triangle_{r}+P(r)+\frac{n(n+d-2)}{r^{2}})u(r\omega) S_{nj}(\omega)d\omega

= \int_{\Gamma}(-\triangle_{r\omega}+P(r)+\frac{1}{r^{2}}\triangle_{\omega}+\frac{n(n+d-2)}{r^{2}})u(r\omega) S_{nj}(\omega)d\omega

= \int_{\Gamma} ( \frac{1}{r^{2}}\triangle_{\omega}u(r\omega) S_{nj}( \omega)+u(r\omega)\frac{n(n+d-2)}{r^{2}}S_{nj}(\omega)) d\omega
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= \frac{1}{r^{2}}\int_{\Gamma} (\triangle_{\omega}u(r\omega) S_{nj}(\omega)-u(r\omega)\triangle_{\omega}S_{nj}(\omega))d\omega=0 .

The last equality follows from the Green’s formula applied to \Gamma whose
boundary is empty. If, in addition, u has boundary values zero on \Gamma , then
it is readily seen that c_{nj}(1)=0 . Hence we have seen the following

Proposition 3 If u belongs to PP(\Omega) ( PP(\Omega;\Gamma) , resp.) for a radial
density P on \Omega\cup\Gamma , then c_{nj} are radial and belong to P_{n}P(\Omega)(P_{n}P(\Omega;\Gamma) ,
resp.) (j=1, \cdot , N(n);n=0,1, \cdots) .

A density P on \Omega\cup\Gamma is said to be elliptic (nonelliptic, resp.) if
PP(\Omega)=\{0\} ( PP(\Omega)\neq\{0\} , resp.). Although the notion is defined for gen-
eral densities on \Omega\cup\Gamma , we are interested only in the case P is radial. We use
the P-subunit f_{P} associated with a radial density P on \Omega\cup\Gamma characterized
as the unique solution of L_{P}w=0 on (0, 1] with (f_{P}(1), f_{P}’(1))=(0, -1)

(cf. [4], [16], etc.). The P-subunit is used to judge whether P is elliptic or
not:

Proposition 4 (Ellipticity and nonellipticity criterion). The following
four conditions are equivalent by pairs: (a) P is nonelliptic, i.e . PP(\Omega)\neq

\{0\};(b)PP(\Omega;\Gamma)\neq\{0\};(c)f_{P}(r)>0(0<r<1);(d) there exists a
solution w of L_{P}w=0 such that w(r)>0(0<r<1) .

Proof. Two implications (b) from (c) and (a) from (b) are clear. We next
show that (a) implies (d). Take a u\in PP(\Omega)\backslash \{0\} and set

w(r):= \frac{1}{\sqrt{\omega_{d}}}\int_{\Gamma}u(r\omega)d\omega=(u, S_{01})_{L_{2}(\Gamma)}=c_{01}(r)>0(0<r<1)

which is a solution of L_{P}w=L_{P_{0}}w=0 on (0, 1) . Thus (d) is valid. Finally
we maintain that (d) implies (c) which completes the proof. Suppose there
exists a solution w of L_{P}w=0 such that w>0 on (0, 1) . Then either
w(1)=0 or w(1)>0 . In the former case we see that w’(1)<0 and thus
f_{P}(r)=-w(r)/w’(1)>0(0<r<1) . In the latter case we consider a
s0-called d’Alembert transform

w_{0}(r)=w(r) \int_{r}^{1}\frac{dt}{t^{d-1}w(t)^{2}}

of w(r) , which is also a solution of L_{P}w=0 . Since w_{0}(1)=0 and w_{0}(r)>0

(0<r<1) , we again see that w_{0}’(1)<0 and thus f_{P}(r)=-w_{0}(r)/w_{0}’(1)>

0(0<r<1) . \square
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Corollary 5 A radial density P on \Omega\cup\Gamma is elliptic if and only if
\dim(P, \Omega)=0 .

Proof. If P is elliptic, then PP(\Omega)=\{0\} which implies PP(\Omega;\Gamma)=

\{0\} and hence PP_{1}(\Omega;\Gamma)=\emptyset . A fortiori \dim(P, \Omega)=0 . Conversely, if
\dim(P, \Omega)=0 , then ex. PP_{1}(\Omega;\Gamma)=\emptyset . By the Krein-Milman theorem,
PP_{1}(\Omega;\Gamma)=\emptyset (cf. \S 2) and therefore PP(\Omega;\Gamma)=\{0\} . Proposition 4 assures
that P is elliptic. \square

Next we study the dependence of the P-subunit f_{P} on the radial density
P . In particular, we will see that P\mapsto f_{P} is increasing. The following
assertion including this will play one of key roles in our study of Picard
dimensions.

Proposition 6 (Comparison principle). If P and Q are radial densities
on \Omega\cup\Gamma such that P\leq Q (P<Q , resp.) on 0\leq\rho<r=|x|<1 and
f_{P}>0 on (\rho, 1) , then f_{Q}/f_{P} is decreasing (strictly decreasing, resp.) on
(\rho, 1) and \lim_{r\uparrow 1}f_{Q}(r)/f_{P}(r)=1 . In particular, f_{Q}\geq f_{P} ( f_{Q}>f_{P} , resp.)
on (\rho, 1) .

Proof. For simplicity we set w(r):=f_{Q}(r)/f_{P}(r)(0\leq\rho<r<1) . By a
simple computation we obtain

\frac{d}{dr}(r^{d-1}f_{P}(r)^{2}\frac{d}{dr}w(r))=r^{d-1}(Q(r)-P(r))f_{P}(r)f_{Q}(r) . (6)

It is readily seen that

\lim_{r\uparrow 1}r^{d-1}f_{P}(r)^{2}\frac{d}{dr}w(r)=0 . (7)

Since f_{Q}(1)=0 and f_{Q}’(1)=-1 , there exists a t\in(0,1) sufficiently close
to 1 such that f_{Q}>0 on (t, 1) . Therefore \tau:=\inf\{t\in(\rho, 1) : f_{Q}>0
on (t, 1)\} belongs to [\rho, 1) . We now maintain that \tau=\rho . Contrariwise
suppose \rho<\tau<1 . Then f_{Q}(\tau)=0 and f_{Q}>0 on (\tau, 1) . Hence (6)
implies that r^{d-1}f_{P}(r)^{2}w’(r) is increasing (strictly increasing, resp.) on
(\tau, 1) and afortiori (7) assures that w’(r)\leq 0 (w’(r)<0 , resp.) on (\tau, 1) .
By the l’Hospital rule, \lim_{r\uparrow 1}w(r)=\lim_{r\uparrow 1}f_{Q}’(r)/f_{P}’(r)=(-1)/(-1)=1 .
Thus w(\tau)\geq 1 . But f_{Q}(\tau)=0 and f_{P}(\tau)>0 implies that w(\tau)=0 , a
contradiction. Therefore we must have \tau=\rho . The rest of the assertion is
now clear. \square
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Corollary 7 If f_{P_{j}}>0 on (o, _{1}) for some j=0,1 , \cdots , then f_{P_{k}}(r)/

f_{P_{j}}(r)>f_{P_{k}}(s)/f_{P_{j}}(s) for any r and s with 0<r<s<1 and any k>j .

Corollary 8 If f_{P_{j}}>0 on (0, 1) for some j=0,1 , \cdot ., then f_{P_{j}}<f_{P_{k}}

(j<k) on (0, 1) .

For proofs of the above two corollaries we only have to observe that
P_{j}<P_{k}(j<k) on (0, 1) and then apply Proposition 6.

Suppose now that a radial density P is nonelliptic on \Omega\cup\Gamma so that
f_{P}>0 on (0, 1) . By Corollary 8 we have

0<f_{P}=f_{P_{0}}<f_{P_{1}}<f_{P_{2}}< . 1<f_{P_{j-1}}<f_{P_{j}}< . ( (j=1,2, \cdots)

and therefore Corollary 7 assures that f_{P_{0}}/f_{P_{j}} is increasing on (0, 1) . Hence

\alpha_{j}(P)=\lim_{r\downarrow 0}\frac{f_{P}(r)}{f_{P_{j}}(r)}\in[0,1) (j=1,2, \cdot.)

exists. In particular \alpha(P):=\alpha_{1}(P) is referred to as the singularity index
of limit form of P . Clearly

1>\alpha(P)=\alpha_{1}(P)\geq\alpha_{2}(P)\geq \geq\alpha_{j}(P)\geq\alpha_{j+1}(P)

\geq (j=1,2, \cdot.)

and hence we have obtained the following

Proposition 9 If \alpha(P)=0 , then \alpha_{j}(P)=0(j=1,2, \cdot.) .

Once more we confirm that the singularity index \alpha(P) can be defined
only for nonelliptic radial densities P on \Omega\cup\Gamma It will be seen that \dim(P, \Omega)

for a radial density P on \Omega\cup\Gamma is determined by whether \alpha(P)=0 or \alpha(P)>

0 . In this sense it is important to be able to compute \alpha(P) concretely. We
exhibit the simplest case in the following

Example 10 The constant function 0 is a density on \Omega\cup\Gamma which is re-
ferred to as the harmonic density since 0-harmonicity is nothing but the
classical harmonicity. By solving L_{0}w=0 concretely we see that the 0-
subunit f_{0} is given as follows:

f_{0}(r)=\{

\log\frac{1}{r}

\frac{1}{d-2}(\frac{1}{r^{d-2}}-1)

(d=2)

(d\geq 3) ,
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and the 0_{1} -subunit (i.e. (d-1)/|x|^{2} -subunit) f_{0_{1}} is given as follows:

f_{0_{1}}(r)= \frac{1}{d}(\frac{1}{r^{d-1}}-r)

Thus the harmonic density 0 is nonelliptic and \alpha(0)=0 . Hence by PropO-
sitions 4 and 6 nonnegative radial densities P on \Omega\cup\Gamma are seen to be
nonelliptic.

4. Fundamental theorem on radial densities

We know that the range of \dim(P, \Omega) for general densities P on \Omega\cup\Gamma

covers the set {0} \cup N\cup\{\aleph_{0}, \aleph\} of cardinal numbers which implies the
diversity of behavior of \dim(P, \Omega) . However the range of \dim(P, \Omega) for
radial densities P on \Omega\cup\Gamma is very simple as in the following theorem. The
theorem is not new but the proof given below is surprisingly simple and
elementary compared with the known ones (cf. [18], [16]).

Theorem 11 (Fundamental theorem). The range of \dim(P, \Omega) for ra-
dial densities P on \Omega\cup\Gamma consists of three cardinal numbers 0, 1, and \aleph , the
cardinal number of continuum. More precisely, \dim(P, \Omega)=0 if and only
if P is elliptic on \Omega ; if P is nonelliptic, then \dim(P, \Omega)=1 or \aleph according
as \alpha(P)=0 or \alpha(P)>0 .

Proof By Corollary 5, \dim(P, \Omega)=0 if and only if a radial density P
on \Omega\cup\Gamma is elliptic. Hence we assume that P is nonelliptic and show that
\dim(P, \Omega)=1 or \aleph according as \alpha(P)=0 or \alpha(P)>0 .

First we assume that \alpha(P)=0 and show that \dim(P, \Omega)=1 . For the
purpose we only have to show that u=f_{P}=f_{P_{0}} for any u\in PP_{1}(\Omega;\Gamma) .
For an arbitrary r\in(0,1] let the Fourier expansion of u(r\omega) in \omega be

u(r \omega)=c_{01}(r)S_{01}(\omega)+\sum_{n=1}^{\infty}(\sum_{k=1}^{N(n)}c_{nk}(r)S_{nk}(\omega))

in L_{2}(\Gamma) . Recall that c_{nk}(r) is a solution of L_{P_{n}}w=0 on (0, 1) with c_{nk}(1)=

0 . Hence c_{nk}(r)=-c_{nk}’(1)f_{P_{n}}(r) on (0, 1] . In particular, S_{01}(\omega)=\omega_{d}^{-1/2}

implies

c_{01}(r)= \int_{\Gamma}u(r\omega)S_{01}(\omega)d\omega=\omega_{d}^{-1/2}\int_{\Gamma}u(r\omega)d\omega
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and therefore we see that

c_{01}’(1)= \omega_{d}^{-1/2}\int_{\Gamma}[\frac{\partial}{\partial r}u(r\omega)]_{r=1}d\omega=-\omega_{d}^{1/2}\ell(u)=-\omega_{d}^{1/2}

Thus c_{01}(r)=-c_{01}’(1)f_{P}(r)=\omega_{d}^{1/2}f_{P}(r) and c_{01}(r)S_{01}(\omega)=f_{P}(r) . There-
fore we obtain

u(r \omega)=f_{P}(r)-\sum_{n=1}^{\infty}(\sum_{k=1}^{N(n)}c_{nk}’(1)S_{nk}(\omega))f_{P_{n}}(r)

in L_{2}(\Gamma) . Multiplying (N(n)/\omega_{d})^{1/2}\pm S_{nk}(\omega)\geq 0 to the both sides of the
above and then integrating over \Gamma with respect to d\omega we see that

0 \leq\int_{\Gamma}u(r\omega)((N(n)/\omega_{d})^{1/2}\pm S_{nk}(\omega))d\omega

=(u(r\omega), (N(n)/\omega_{d})^{1/2}\pm S_{nk}(\omega))_{\omega,L_{2}(\Gamma)}

=(N(n)\omega_{d})^{1/2}f_{P}(r)\mp c_{nk}’(1)f_{P_{n}}(r)

and a fortiori we conclude that

|c_{nk}’(1)| \leq(N(n)\omega_{d})^{1/2}\frac{f_{P}(r)}{f_{P_{n}}(r)}

for every k=1 , \cdot . , N(n) and n=1,2 , \cdots . On letting r\downarrow 0 we deduce that

|c_{nk}’(1)|\leq(N(n)\omega_{d})^{1/2}\alpha_{n}(P)\leq(N(n)\omega_{d})^{1/2}\alpha(P)=0

and c_{nk}’(1)=0(k=1, \cdot , N(n);n=1,2, \cdot.) . This proves that u=f_{P} .
Next we prove that \alpha(P)>0 implies \dim(P, \Omega)=\aleph . We denote by O^{d}

the group of all orthogonal transformations \tau of R^{d} . The transformation \tau

may be identified with the orthogonal matrix of type d\cross d . Observe that a
function w on \Omega is radial if and only if wo\tau=w on \Omega for every \tau\in O^{d} . We
note that ex. PP_{1}(\Omega;\Gamma) is closed under O^{d} , i.e. for any w\in ex . PP_{1}(\Omega;\Gamma)

and every \tau\in O^{d} we have w\circ\tau\in ex . PP_{1}(\Omega;\Gamma) . Since P is nonelliptic,
PP(\Omega;\Gamma)\neq\{0\} and hence PP_{1}(\Omega;\Gamma)\neq\emptyset . As we have seen in \S 2, PP_{1}(\Omega;\Gamma)

is a nonempty compact convex subset of the locally convex linear topological
space P(\Omega) . The Krein-Milman theorem, or a part of it, assures that

ex. PP_{1}(\Omega;\Gamma)\neq\emptyset .

This simple observation is a crucial part in our proof.
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We now assert that any u in ex. PP_{1}(\Omega;\Gamma) is not radial. Contrariwise
assume that u is radial so that u=f_{P} . Set

u^{\pm}(r\omega)=f_{P}(r)\pm\alpha(P)f_{P_{1}}(r)(\omega_{d}/N(1))^{1/2}S_{11}(\omega) .

By a direct computation we see that (-\triangle+P)u^{\pm}=0 on \Omega . We also see that
u^{\pm}\in C(\Omega\cup\Gamma) and u^{\pm}=0 on \Gamma Moreover, since \alpha(P)(f_{P_{1}}/f_{P}) is strictly
decreasing and 0 \leq\alpha(P)(f_{P_{1}}(r)/f_{P}(r))<\lim_{s\downarrow 0}\alpha(P)(f_{P_{1}}(s)/f_{P}(s))=1

for 0<r\leq 1 , by |(\omega_{d}/N(1))^{1/2}S_{11}(\omega)|\leq 1 , we see that, for 0<r<1 ,

u^{\pm}(r \omega)=f_{P}(r)(1\pm\alpha(P)\frac{f_{P_{1}}(r)}{f_{P}(r)}(\omega_{d}/N(1))^{1/2}S_{11}(\omega))

\geq f_{P}(r)(1-\alpha(P)\frac{f_{P_{1}}(r)}{f_{P}(r)})>0 .

Therefore we see that u^{\pm}\in PP(\Omega;\Gamma) . In addition to this, by

\int_{\Gamma}S_{11}(\omega)d\omega=\omega_{d}^{1/2}\int_{\Gamma}S_{01}(\omega)S_{11}(\omega)d\omega=0 ,

we see that

\ell(u^{\pm})=-\frac{1}{\omega_{d}}\int_{\Gamma}[\frac{\partial}{\partial r}u^{\pm}(r\omega)]_{r=1}d\omega

=-f_{P}’(1) \mp\frac{1}{\omega_{d}}\alpha(P)f_{P_{1}}’(1)(\omega_{d}/N(1))^{1/2}\int_{\Gamma}S_{11}(\omega)d\omega=1

and therefore u^{\pm}\in PP_{1}(\Omega;\Gamma) . Clearly u^{+}\neq u^{-} and u=f_{P}=(u^{+}+u^{-})/2 ,
contradicting u\in ex . PP_{1}(\Omega;\Gamma) . Thus any u in ex. PP_{1}(\Omega;\Gamma) is not radial.

Let X be the 2-dimensional subspace of R^{d} spanned by two vectors
(\delta_{i1}, \cdot. , \delta_{id})(i=1,2) and Y=\Omega\cap X , the punctured unit disc in Xt We
view the unit circle T=\{\zeta\in C : |\zeta|=1\} in the complex plane C as a
multiplicative group. With each ( \in T we associate a \tau(() in O^{d} whose
matrix representation is

\tau(\zeta)=\{

cos \theta
- sin \theta 0 \circ\backslash

sin \theta cos \theta 0 0
0 0
.\cdot
.

.\cdot

.
E

0 0 ’

(\theta=\arg\zeta)

where E is the unit matrix of type (d-2)\cross(d-2) . Then O_{X}^{d}=\{\tau(\zeta)\in

O^{d} : \zeta\in T } is isomorphic to T as multiplicative groups.
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We maintain that there exists a u\in ex . PP_{1}(\Omega;\Gamma) such that u|Y is not
radial on Y For the purpose take an arbitrary w\in ex . PP_{1}(\Omega;\Gamma) . Since w
is not radial on \Omega , there exist two points x and y in \Omega such that |x|=|y|

and w(x)\neq w(y) . Choose a \tau_{0}\in O^{d} with \tau_{0}(x)\in X and \tau_{0}(y)\in X . Then
set u=w\circ\tau_{0}^{-1} Clearly u\in ex.PP_{1}(\Omega;\Gamma) and u is not radial on Y In
fact, if we take a \tau_{1}\in O_{X}^{d} with \tau_{1}(\tau_{0}(x))=\tau_{0}(y) , then u(\tau_{0}(x))=w(x)\neq

w(y)=u(\tau_{0}(y))=u\circ\tau_{1}(\tau_{0}(x)) shows that u\circ\tau_{1}\neq u on Y
Fixing the above u\in ex.PP_{1}(\Omega;\Gamma) we consider O_{X}^{d}(u)=\{\tau\in O_{X}^{d} :

u\circ\tau=u on Y }. Then O_{X}^{d}(u) is a normal subgroup of an Abelian group
O_{X}^{d} . For each \tau^{*}\in O_{X}^{d}/O_{X}^{d}(u) we define u_{\tau}*=u\circ\tau(\tau\in\tau^{*}) which is also
an element of ex. PP_{1}(\Omega;\Gamma) . Then \tau^{*}\mapsto u_{\tau}*is an injection of O_{X}^{d}/O_{X}^{d}(u)

into ex. PP_{1}(\Omega;\Gamma) and thus we obtain the inequality

\# (0_{X}^{d}/O_{X}^{d}(u))\leq\#(ex.PP_{1}(\Omega;\Gamma))=\dim(P, \Omega) . (8)

With the above u we associate a function v=\sigma(u) of z=x+iy\in C by
v(z)=v(x+iy)=u(x, y, 0, \cdots, 0) . For each ( \in T we consider v_{\zeta} given by
v_{\zeta}(z)=v((z) on 0<|z|<1 . Set T(u)= { \zeta\in T : v_{\zeta}=v on 0<|z|<1 }\cdot .
Since

v_{\zeta}(z)=v((z)=u(\tau(\zeta){}^{t}(x, y, 0, , 0))

=(u\circ\tau(())(x, y, 0, \cdots, 0) ,

where {}^{t}(x, y, 0, \cdots, 0) is the transposed matrix of (x, y, 0, \cdots, 0) , we have
seen that v_{\zeta}=\sigma(u\circ\tau(\zeta)) . This shows that \zeta\in T(u) is equivalent to
\tau(\zeta)\in O_{X}^{d}(u) . The isomorphism ( \mapsto\tau(\zeta) of T onto O_{X}^{d} sends T(u) onto
O_{X}^{d}(u) and thus T/T(u) is isomorphic to O_{X}^{d}/O_{X}^{d}(u) . This with (8) and
the trivial fact \dim(P, \Omega)\leq\aleph yield the inequality

\#(T/T(u))\leq\dim(P, \Omega)\leq\aleph . (9)

Consider the subgroup T_{0}= { \zeta\in T : \zeta^{n}=1 for some n\in Z } of T
where Z is the set of integers. Clearly \# T_{0}=\aleph_{0} , the cardinal number of
countably infinite sets. For each fixed 0<r<1 let

v(re^{i\theta})= \sum_{n=-\infty}^{\infty}c_{n}(r)e^{in\theta}

be the complex Fourier expansion of v(re^{i\theta}) as the function of \theta . Then, for
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each \zeta\in T(u) , we have

v_{\zeta}(re^{i\theta})= \sum_{n=-\infty}^{\infty}c_{n}(r)\zeta^{n}e^{in\theta}

Since v\equiv v_{\zeta} , we must have

c_{n}(r)=c_{n}(r)\zeta^{n} (0<r<1, n\in Z) .

Since v(z) is not radial on 0<|z|<1 , there exist an r\in(0,1) and an n\in Z

such that c_{n}(r)\neq 0 . Hence \zeta^{n}=1 and \zeta\in T_{0} , i.e. T(u)\subset T_{0} . Therefore

\#(T(u))\leq\# T_{0}=\aleph_{0}

implies that

\#(T/T(u))=(\#(T/T(u))) (\# T(u))=\# T=\aleph

and thus (9) implies that \dim(P, \Omega)=\aleph . \square

We say that the Picard principle is valid for P on \Omega if \dim(P, \Omega)=1 .

Corollary 12 The Picard principle is valid for a radial density P on
\Omega\cup\Gamma if and only if P is nonelliptic and \alpha(P)=0 .

We have seen in Example 10 that the harmonic density 0 is nonelliptic
and \alpha(0)=0 . Hence the Picard principle is valid for 0, i.e. \dim(0, \Omega)=1 .
This is the classical principle of positive singularities due to B\^ocher and
Picard.

5. Singularity indices of integrated form

Besides the singularity index \alpha(P) of limit form of a nonelliptic radial
density P on \Omega\cup\Gamma we introduce another type of singularity index which is
sometimes more manageable than \alpha(P) . We call the nonnegative number
\beta(P) the singularity index of integrated form of a nonelliptic radial density
P on \Omega\cup\Gamma given by

1/ \beta(P)=\iint_{0\leq s\leq t\leq 1}\frac{t^{d-3}}{s^{d-1}}(\frac{f_{P}(t)}{f_{P}(s)})^{2} dsdt (double integral form)

= \int_{0}^{1}t^{d-3}f_{P}(t)^{2}(\int_{0}^{t}\frac{ds}{s^{d-1}f_{P}(s)^{2}})dt

(iterated integral form)
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under the convention 1/0=\infty (cf. [16]). In general \alpha(P) and \beta(P) do not
coincide with each other. However, by Theorem 11, it is only important
whether \alpha(P)=0 or \alpha(P)>0 and in this respect \alpha(P) and \beta(P) are
essentially identical:

Proposition 13 The singularity index \alpha(P)=0 for a nonelliptic radial
density P on \Omega\cup\Gamma if and only if the singularity index \beta(P)=0 .

Proof. We set w(r)=f_{P_{1}}(r)/f_{P}(r) for 0<r<1 and observe that

\frac{d}{dr}(r^{d-1}f_{P}(r)^{2}\frac{d}{dr}w(r))=(d-1)r^{d-3}f_{P}(r)^{2}w(r) .

Integrating both sides of the above over the interval (r, 1)(r>0) and noting
that f_{P}(1)=0 we obtain

-r^{d-1}f_{P}(r)^{2} \frac{d}{dr}w(r)=(d-1)\int_{r}^{1}t^{d-3}f_{P}(t)^{2}w(t)dt .

Dividing both sides by -r^{d-1}f_{P}(r)^{2} , changing variable r to s and then
integrating over the interval (r, 1)(r>0) we have

w(1)-w(r)=-(d-1) \int_{r}^{1}\frac{1}{s^{d-1}f_{P}(s)^{2}}(\int_{s}^{1}t^{d-3}f_{P}(t)^{2}w(t)dt)ds .

By l’Hospital rule, w(1)= \lim_{r\uparrow 1}(f_{P_{1}}’(r)/f_{P}’(r))=(-1)/(-1)=1 . Hence

w(r)=1+(d-1) \iint_{r\leq s\leq t\leq 1}\frac{t^{d-3}}{s^{d-1}}(\frac{f_{P}(t)}{f_{P}(s)})^{2}w(t)dsdt (r>0) .

(10)

In view of Corollary 8 we see that w(t)\geq 1 for 0<t\leq 1 . Replacing
w(t) by 1 in the double integral of (10) we obtain

w(r) \geq 1+(d-1)\iint_{r\leq s\leq t\leq 1}\frac{t^{d-3}}{s^{d-1}}(\frac{f_{P}(t)}{f_{P}(s)})^{2} dsdt.

Recall that \lim_{r\downarrow 0}w(r)=1/\alpha(P) . On letting r\downarrow 0 in the above we have

1/\alpha(P)\geq 1+(d-1)/\beta(P)\geq(d-1)/\beta(P)

or \beta(P)\geq(d-1)\alpha(P) . This proves that \beta(P)=0 implies \alpha(P)=0 .
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We next prove that \beta(P)>0 implies \alpha(P)>0 . For the purpose we set

\gamma(r, \rho)=\iint_{r<s<\rho,s\leq t\leq 1}\frac{t^{d-3}}{s^{d-1}}(\frac{f_{P}(t)}{f_{P}(s)})^{2} dsdt

for 0\leq r<\rho\leq 1 so that \gamma(0,1)=1/\beta(P)<\infty . Therefore \gamma(0, \rho)\downarrow 0 as
\rho\downarrow 0 . Then there exists a \rho\in(0,1) such that \gamma(0, \rho)<1/2(d-1) so that
\gamma(r, \rho)<1/2(d-1) for every r with 0<r<\rho . By (10) we see that

w(r)=1+(d-1) ( \int\int_{\rho\leq s\leq t\leq 1}

+ \int\int_{r<s<\rho,s\leq t\leq 1})\frac{t^{d-3}}{s^{d-1}}(\frac{f_{P}(t)}{f_{P}(s)})^{2}w(t)dsdt

=w( \rho)+(d-1)\int\int_{r<s<\rho,s\leq t\leq 1}\frac{t^{d-3}}{s^{d-1}}(\frac{f_{P}(t)}{f_{P}(s)})^{2}w(t)dsdt .

By Corollary 7 we see that w(t) is strictly decreasing on (0, 1) so that
w(t)<w(r) for r<s\leq t\leq 1 . Hence the double integral of the right most
side of the above identities is dominated by w(r)\gamma(r, \rho) and hence

w(r)\leq w(\rho)+(d-1)w(r)\gamma(r, \rho)

\leq w(\rho)+(d-1)w(r)(1/2(d-1))=w(\rho)+w(r)/2

or w(r)\leq 2w(\rho) . On letting r\downarrow 0 we deduce 1/\alpha(P)\leq 2w(\rho) or \alpha(P)\geq

1/2w(\rho)>0 . \square

Using the singularity index \beta(P) just introduced we are now ready to
prove the monotoneity of \dim(P, \Omega) which is a preliminary version of the
monotoneity of \dim P to be shown in \S 8.

Theorem 14 (Monotoneity). If P and Q are radial densities on \Omega\cup\Gamma

with P\leq Q on \Omega\cup\Gamma , then the inequality \dim(P, \Omega)\leq\dim(Q, \Omega) holds.

Proof. If P is elliptic, then \dim(P, \Omega)=0 . Since \dim(Q, \Omega)\geq 0 , we can
conclude that \dim(P, \Omega)\leq\dim(Q, \Omega) . Hence we only have to treat the case
P is nonelliptic which is equivalent to that f_{P}>0 on (0, 1) . By Proposition
6, f_{P}\leq f_{Q} so that f_{Q}>0 on (0, 1) which means that Q is nonelliptic.
By Corollary 5, \dim(P, \Omega)\geq 1 and \dim(Q, \Omega)\geq 1 . If \dim(P, \Omega)=1 ,
then \dim(Q, \Omega)\geq 1 assures that \dim(P, \Omega)\leq\dim(Q, \Omega) . Therefore, by
Theorem 11, we only have to show that \dim(Q, \Omega)=\aleph if \dim(P, \Omega)=\aleph , or
equivalently, \alpha(P)>0 implies \alpha(Q)>0 . By Proposition 6, f_{Q}(s)/f_{P}(s)\geq
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f_{Q}(t)/f_{P}(t) for s\leq t and thus

\frac{f_{P}(t)}{f_{P}(s)}\geq\frac{f_{Q}(t)}{f_{Q}(s)} (0<s\leq t<1) .

Therefore we deduce that

1/ \beta(Q)=\iint_{0\leq s\leq t\leq 1}\frac{t^{d-3}}{s^{d-1}}(\frac{f_{Q}(t)}{f_{Q}(s)})^{2} dsdt

\leq\int\int_{0\leq s\leq t\leq 1}\frac{t^{d-3}}{s^{d-1}}(\frac{f_{P}(t)}{f_{P}(s)})^{2}dsdt=1/\beta(P)<\infty

which implies that \beta(Q)>0 . \square

Corollary 15 The Picard dimensions \dim(P, \Omega)\leq 1 for radial densities
P\leq 0 on \Omega\cup\Gamma and \dim(P, \Omega)\geq 1 for radial densities P\geq 0 on \Omega\cup\Gamma

Proof. We have seen in Example 10 that \alpha(0)=0 or \dim(0, \Omega)=1 .
Hence, by Theorem 14, P\leq 0 implies that \dim(P, \Omega)\leq\dim(0, \Omega)=1 and
similarly P\geq 0 implies that \dim(P, \Omega)\geq\dim(0, \Omega)=1 . \square

6. Hyperbolicity and Parabolicity

There may or may not exist a function e_{P} for a general density P on
\Omega\cup\Gamma satisfying the following three conditions: (a) e_{P}\in PP(\Omega)\cap C(\Omega\cup\Gamma) ;
(b) e_{P}|\Gamma=1;(c)h\geq e_{P} on \Gamma_{a} for any h\in PP(\Omega_{a})\cap C(\Omega_{a}\cup\Gamma_{a})(0<a\leq 1)

implies h\geq e_{P} on \Omega_{a}\cup\Gamma_{a} . Such a function e_{P} , if exists, is unique and
referred to as the P-unit on \Omega\cup\Gamma (cf. [18]). A density P is said to be
hyperbolic if the P-unit e_{P} exists on \Omega\cup\Gamma Clearly hyperbolic densities are
nonelliptic. A nonelliptic density P on \Omega\cup\Gamma is said to be parabolic if it
is not hyperbolic on \Omega\cup\Gamma We do not use at all in this paper the known
fact (cf. e.g. [27], [12]) that P is hyperbolic if and only if there exists the
P-Green’s function G_{P}(x, y) on \Omega which is the minimal positive solution of
the equation (-\triangle+P(x))u(x)=\delta_{y} (the Dirac delta). In this fashion the
hyperbolicity and the parabolicity can be defined for general densities P on
\Omega\cup\Gamma but we are interested mainly in the case of radial densities P on \Omega\cup\Gamma

Hence we choose the following more concret approach.
Suppose P is a nonelliptic radial density on \Omega\cup\Gamma so that the P-subunit

f_{P}>0 on (0, 1) . For each R\in(0,1) we form a d’Alembert transform e_{P,R}



274 M. Nakai and T. Tada

of f_{P} :

e_{P,R}(r)=f_{P}(r) \int_{R}^{r}\frac{dt}{t^{d-1}f_{P}(t)^{2}} (R\leq r<1)

which is a solution of L_{P}w=0 on (R, 1) with the boundary data e_{P,R}(R)=
0 and e_{P,R}(1)=1 . The latter is deduced by using l’Hospital rule as follows:

e_{P,R}(1)= \lim_{r\uparrow 1}(\int_{R}^{r}\frac{dt}{t^{d-1}f_{P}(t)^{2}})/f_{P}(r)^{-1}

= \lim_{r\uparrow 1}(\int_{R}^{r}\frac{dt}{t^{d-1}f_{P}(t)^{2}})’/(f_{P}(r)^{-1})’

= \lim_{r\uparrow 1}(r^{1-d}f_{P}(r)^{-2})/(-f_{P}(r)^{-2}f_{P}’(r))

=1/(-f_{P}’(1))=1 .

The net \{e_{P,R}\}_{R\downarrow 0} is strictly increasing and hence, by the Harnack principle,
either \{e_{P,R}\}_{R\downarrow 0} converges to a solution of L_{P}w=0 locally uniformly on \Omega

or \{e_{P,R}\}_{R\downarrow 0} diverges to \infty locally uniformly on \Omega . The former (the latter,
resp.) occurs if

\int_{0}^{r}\frac{dt}{t^{d-1}f_{P}(t)^{2}}<\infty (11)

is valid (invalid, resp.) for one and hence for every r\in(0,1) . If (11) is
valid, then we can define a function

w_{P}(r)=f_{P}(r) \int_{0}^{r}\frac{dt}{t^{d-1}f_{P}(t)^{2}}=\lim_{R\downarrow 0}e_{P,R}(r) .

By a direct computation we see that w_{P} is a solution of L_{P}w=0 on
(0, 1) and by the same way as above, we see that w_{P}(1)=1 . Clearly
w_{P}(x)=w_{P}(|x|) satisfies conditions (a) and (b) of the P-unit. Take any
h\in PP(\Omega_{a})\cap C(\Omega_{a}\cup\Gamma_{a})(0<a<1) such that h\geq w_{P} on \Gamma_{a} . Since
e_{P,R}\leq w_{P} for any R\in(0, a) , we see that e_{P,R}\leq h on the boundary of
the ring R<|x|<a and therefore, by the minimum principle, e_{P,R}\leq h on
R<|x|<a . On letting R\downarrow 0 , we conclude that w_{P}\leq h on \Omega_{a}\cup\Gamma_{a} . This
proves that w_{P} also satisfies the condition (c) of the P-unit. Hence w_{P} is
the P-unit on \Omega\cup\Gamma , i.e. w_{P}=e_{P} . Conversely suppose the P-unit e_{P} exists
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on \Omega\cup\Gamma Then, by the minimum principle, e_{P,R}\leq e_{P} on (\Omega\cup\Gamma)\backslash \Omega_{R} or

\int_{R}^{r}\frac{dt}{t^{d-1}f_{P}(t)^{2}}\leq\frac{e_{P}(r)}{f_{P}(r)}

for any fixed r\in(0,1) and for every R\in(0, r) . On letting R\downarrow 0 we
conclude that (11) is valid. We have thus established the following

Proposition 16 A radial density P on \Omega\cup\Gamma is hyperbolic if and only if
(11) is valid for one and hence for any 0<r<1 and in this case the P-unit
e_{P} is radial and given by a d ’Alembert transform of f_{P} :

e_{P}(r)=f_{P}(r) \int_{0}^{r}\frac{dt}{t^{d-1}f_{P}(t)^{2}} .

We have thus obtained the classification of densities as follows: all the
(radial) densities on \Omega\cup\Gamma are classified into two categories: elliptic (radial)
densities and nonelliptic (radial) densities; all the nonelliptic (radial) densi-
ties are then classified into two categories: parabolic (radial) densities and
hyperbolic (radial) densities. The Picard dimension \dim(P, \Omega)=0 for ellip-
tic (radial) densities P and \dim(P, \Omega)\geq 1 for nonelliptic (radial) densities.
In this respect the following fact is worth observing:

Corollary 17 If a radial density P on \Omega\cup\Gamma is parabolic, then its Picard
dimension \dim(P, \Omega)=1 .

Proof. By Proposition 16 we see that (11) is invalid so that
\int_{0}^{t}s^{1-d}f_{P}(s)^{-2}ds=\infty for any 0<t<1 . Then

1/ \beta(P)=\int_{0}^{1}t^{d-3}f_{P}(t)^{2}(\int_{0}^{t}\frac{ds}{s^{d-1}f_{P}(s)^{2}})dt

\geq\int_{0}^{1}t^{d-3}f_{P}(t)^{2}\infty dt=\infty

and, by Theorem 11 and Proposition 13, we see that \dim(P, \Omega)=1 . \square

Corollary 18 If P and Q are radial densities with P\leq Q on \Omega\cup\Gamma , then
the hyperbolicity of P implies that of Q .

Proof. The hyperbolicity of P implies its nonellipticity and thus f_{P}>0
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on (0, 1) . By Proposition 6, f_{P}\leq f_{Q} . Hence

\int_{0}^{r}\frac{dt}{t^{d-1}f_{Q}(t)^{2}}\leq\int_{0}^{r}\frac{dt}{t^{d-1}f_{P}(t)^{2}}<\infty

shows that Q satisfies (11) so that Q is hyperbolic. \square

Corollary 19 A nonnegative radial density P on \Omega\cup\Gamma is hyperbolic.

Proof. Since P\geq 0 , in view of Corollary 18, we only have to show that
the harmonic density 0 is hyperbolic. By Example 10, we see that

\int_{0}^{r}\frac{dt}{t^{2-1}f_{0}(t)^{2}}=\int_{0}^{r}\frac{dt}{t(1ogt)^{2}}<\infty

for the case d=2 and

\int_{0}^{r}\frac{dt}{t^{d-1}f_{0}(t)^{2}}=\int_{0}^{r}\frac{(d-2)^{2}}{t^{d-1}(t^{2-d}-1)^{2}}dt<\infty

for the case d\geq 3 . In any case the harmonic density 0 satisfies the condition
(11) and then it is hyperbolic. \square

In passing we remark the following. If a radial density P on \Omega\cup\Gamma is
hyperbolic so that there exists the P-unit e_{P} on \Omega\cup\Gamma , then we can recover
the P-subunit f_{P} by forming a d’Alembert transform of e_{P} :

f_{P}(r)=e_{P}(r) \int_{r}^{1}\frac{dt}{t^{d-1}e_{P}(t)^{2}} .

To establish the above identity we denote by w(r) the right hand side of the
above on (0, 1) . By a direct computation we see that L_{P}w=0 on (0, 1) . It
is clear that w(1)=0 and, since

w’(r)=e_{P}’(r) \int_{r}^{1}\frac{dt}{t^{d-1}e_{P}(t)^{2}}-\frac{1}{r^{d-1}e_{P}(r)} ,

we see that w’(1)=-1 . Thus we must conclude that w(r)=f_{P}(r) .
The following technical fact will play an important role in the proof of

the homogeneity of Picard dimensions for radial densities on \Omega\cup\Gamma in \S 7.

Lemma 20 If P is a nonelliptic radial density on \Omega\cup\Gamma . then the density
cP is hyperbolic on \Omega\cup\Gamma for every 0<c<1 .

Before giving a proof we need to recall some fundamentals related to
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the operator

L_{P}w(r)=- \frac{1}{r^{d-1}}(r^{d-1}w’(r))’+P(r)w(r)

(cf. e.g. [6], [13]). A function u\in C^{2}(a, b) is said to be a supersolution
of L_{P}w=0 on an interval (a, b)\subset(0,1) if L_{P}u\geq 0 on (a, b) . Suppose
there exists a supersolution S of L_{P}w=0 on (0, 1) with S>0 on (0, 1) .
The following minimum principle is valid. Namely, if s\in C^{2}[a, b] is a
supersolution of L_{P}w=0 on (a, b) for an interval [a, b]\subset(0,1) with s(a)
and s(b)\geq 0 , then s\geq 0 on (a, b) . If moreover, either s(a)\geq 0 , s(b)\geq 0 and
s(a)+s(b)>0 or s(a)\geq 0 , s(b)\geq 0 and s is not a solution of L_{P}w=0 on
(a, b) , then s>0 on (a, b) . Still assuming the existence of a supersolution
S of L_{P}w=0 with S>0 on (0, 1) , we have the solvability of Dirichlet
problem (cf. e.g. Chapters 2 and 3 in [6]): for any \varphi\in C[a, b] there exists
a u\in C^{2}[a, b] uniquely determined by (\varphi(a), \varphi(b)) which is a solution of
L_{P}w=0 on (a, b) such that (u(a), u(b))=(\varphi(a), \varphi(b)) where [a, b] is an
arbitrary interval in (0, 1) . Such a u will be denoted by P_{\varphi}^{(a,b)} We also
state the Harnack principle in the following form. Let (a, b) be an arbitrary
interval in (0, 1) and c\in(a, b) . If \{u_{n}\} is a sequence of positive solution u_{n}

of L_{P}w=0 on (a, b) such that u_{n}(c)=k , a constant, (n=1,2, \cdots) , then
there exists a subsequence of \{u_{n}\} that converges to a solution of L_{P}w=0
locally uniformly on (a, b) . We are ready to begin

Proof of Lemma 20. Since P is nonelliptic, the P-subunit f_{P}>0 on
(0, 1) . By a simple computation we obtain the following equality:

L_{cP}f_{P}^{c}=c(1-c)(f_{P}’)^{2}f_{P}^{c-2} . (12)

On setting S=f_{P}^{c} we see that S is a supersolution of L_{cP}w=0 on (0, 1)
such that S>0 on (0, 1) . Choose sequences \{a_{n}\} and \{b_{n}\} such that
0<a_{n}<b_{n}<1 , a_{n}\downarrow 0 and b_{n}\uparrow 1 and consider g_{n}=(cP)_{S}^{(a_{n},b_{n})} . By
the minimum principle, g_{n}\leq S and g_{n+1}\leq g_{n} . Hence g= \lim_{narrow\infty}g_{n} is a
nonnegative solution of L_{cP}w=0 on (0, 1) . Then let s=S-g on (0, 1)
which is a nonnegative supersolution of L_{cP}w=0 on (0, 1) . By f_{P}’(1)=-1 ,
(12) shows that L_{cP}f_{P}^{c}\not\equiv 0 on (0, 1) and therefore s is not a solution of
L_{cP}w=0 on (0, 1) . Thus s>0 on (0, 1) . We now show that s satisfies the
following minimal property: If h is a solution of L_{cP}w=0 on (0, 1) with
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0\leq h\leq s on (0, 1) , then h\equiv 0 on (0, 1) . In fact, observe that

(cP)_{s}^{(a_{n},b_{n})}=(cP)_{S}^{(a_{n},b_{n})}-(cP)_{g}^{(a_{n},b_{n})}=g_{n}-g\downarrow 0 (n\uparrow\infty) .

By the minimum principle, 0\leq h\leq s implies that

0\leq h=(cP)_{h}^{(a_{n},b_{n})}\leq(cP)_{s}^{(a_{n},b_{n})}\downarrow 0 (n\uparrow\infty) ,

which yields h\equiv 0 on (0, 1) .
Since there exists a strictly positive supersolution s of L_{cP}w=0 on

(0, 1) , we can find a unique solution u_{n} of L_{cP}w=0 on (a_{n}, b_{n}) and a unique
solution v_{n} of L_{cP}w=0 on (a, b_{n}) such that (u_{n}(a_{n}), u_{n}(b_{n}))=(0, s(b_{n}))

and (v_{n}(a), v_{n}(b_{n}))=(s(a), 0) for every n=1,2 , \cdots , where a\in(a_{1}, b_{1}) .
Clearly 0<u_{n}<s on (a_{n}, b_{n}) and 0<v_{n}<s on (a, b_{n}) . Then set

w_{n}= \frac{s(a)}{u_{n}(a)}u_{n} (n=1,2, \cdots) .

Since w_{n}(a)=s(a)(n=1,2, \cdot.) , by the Harnack principle, we can assume
that \{w_{n}\} converges to a strictly positive solution w of L_{cP}w=0 locally
uniformly on (0, 1) , by choosing a subsequence of \{w_{n}\} if necessary. Hence
w\in(cP)P(\Omega)\backslash \{0\} and thus we see that (cP)-subunit f_{cP}>0 on (0, 1) .
We now show that w(1)>0 . Otherwise we must have w(1)=0 . By the
minimum principle, v_{n}\leq v_{n+1}\leq s and w and v= \lim_{narrow\infty}v_{n} is a solution
of L_{cP}w=0 on (a, 1) such that v\leq s and w and v(a)=w(a)=s(a) and
v(1)=w(1)=0 . If v\equiv w on (a, 1) , then w=v\leq s on (a, 1) . Since w_{n}\leq s

on (a_{n}, a) , we have w\leq s on (0, a) . Thus 0\leq w\leq s on (0, 1) . The minimal
property of s must imply w\equiv 0 , a contradiction. Hence v<w on (a, 1) or
w-v>0 on (a, 1) and w-v=0 at 1. Thus

w-v=-(w’(1)-v’(1))f_{cP}

which is again a contradiction since w(a)-v(a)=0 and thus f_{cP}(a)=0 .
Finally we set E=(1/w(1))w so that E is a strictly positive solution

of L_{cP}w=0 on (0, 1+\epsilon) with a suitable \epsilon>0 and E(1)=1 . By the
minimum principle, e_{cP,R}\leq E on [R, 1] for any R\in(0,1) and the (cP)-unit

e_{cP}= \lim_{R\downarrow 0}e_{cP,R}\leq E

can be defined and therefore cP is hyperbolic on \Omega . Although not needed,
we can show that we actually have e_{cP}=E . \square
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7. Singularity indices for hyperbolic densities

In view of Corollary 18 we see that the hyperbolicity of a radial density
P=P_{0} on \Omega\cup\Gamma implies that of the radial density P_{j} on \Omega\cup\Gamma given for
0<r<1 by

P_{j}(r)=P(r)+ \frac{j(j+d-2)}{r^{2}} (j=0,1, \cdots)

(cf. \S 3). Hence we can consider the P_{j} -unit e_{p_{j}} on \Omega\cup\Gamma(j=1,2, \cdots) . We
have introduced the numbers \alpha_{j}(P)=\lim_{r\downarrow 0}f_{P}(r)/f_{P_{j}}(r)(j=1,2, \cdots)

and in particular the singularity index of limit form \alpha(P)=\alpha_{1}(P)=

\lim_{r\downarrow 0}f_{P}(r)/f_{P_{1}}(r) of a nonelliptic radial density P on \Omega\cup\Gamma in \S 3. Here we
show that f_{P_{j}} and f_{P} in the definition of \alpha_{j}(P) can be replaced by 1/e_{P_{j}}

and 1/e_{P} if P is moreover hyperbolic.

Proposition 21 ([18]). The numbers \alpha_{j}(P) associated with a hyperbolic
radial density P on \Omega\cup\Gamma can also be given by

\alpha_{j}(P)=\lim_{r\downarrow 0}\frac{e_{P_{j}}(r)}{e_{P}(r)} (j=1,2, \cdots)

and in particular the singularity index of limit form \alpha(P)=\alpha_{1}(P) of P is
given by

\alpha(P)=\lim_{r\downarrow 0}\frac{e_{P_{1}}(r)}{e_{P}(r)} .

Proof. For a j=1,2 , \cdots , the P_{j} -unit e_{P_{j}} is expressed as

e_{P_{j}}(r)=f_{P_{j}}(r) \int_{0}^{r}\frac{dt}{t^{d-1}f_{P_{j}}(t)^{2}}

=f_{P_{j}}(r) \int_{0}^{r}\frac{1}{t^{d-1}f_{P}(t)^{2}}(\frac{f_{P}(t)}{f_{P_{j}}(t)})^{2}dt .

By Corollary 7. f_{P}(t)/f_{P_{j}}(t)\leq f_{P}(r)/f_{P_{j}}(r)(0<t\leq r) and thus

e_{P_{j}}(r) \leq f_{P_{j}}(r)\int_{0}^{r}\frac{1}{t^{d-1}f_{P}(t)^{2}}(\frac{f_{P}(r)}{f_{P_{j}}(r)})^{2}dt

= \frac{f_{P}(r)}{f_{P_{j}}(r)}f_{P}(r)\int_{0}^{r}\frac{dt}{t^{d-1}f_{P}(t)^{2}}=\frac{f_{P}(r)}{f_{P_{j}}(r)}e_{P}(r) .
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Hence we have the following inequality:

\frac{e_{P_{j}}(r)}{e_{P}(r)}\leq\frac{f_{P}(r)}{f_{P_{j}}(r)} (0<r<1, j=1,2, \cdots) .

If \alpha_{j}(P)=\lim_{r\downarrow 0}f_{P}(r)/f_{P_{j}}(r)=0 , then the above inequality implies
that \lim_{r\downarrow 0}e_{P_{j}}(r)/e_{P}(r)=0 and a fortiori we conclude that \alpha_{j}(P)=

\lim_{r\downarrow 0}e_{P_{j}}(r)/e_{P}(r) . If \alpha_{j}(P)>0 , then by l’Hospital rule, we deduce

\lim\underline{e_{P_{j}}(r)}

r\downarrow 0e_{P}(r)

= \lim_{r\downarrow 0}(f_{P_{j}}(r)\int_{0}^{r}\frac{dt}{t^{d-1}f_{P_{j}}(t)^{2}})/(f_{P}(r)\int_{0}^{r}\frac{dt}{t^{d-1}f_{P}(t)^{2}})

=( \lim_{r\downarrow 0}\frac{f_{P_{j}}(r)}{f_{P}(r)}) ( \lim_{r\downarrow 0}(\int_{0}^{r}\frac{dt}{t^{d-1}f_{P_{j}}(t)^{2}})/(\int_{0}^{r}\frac{dt}{t^{d-1}f_{P}(t)^{2}}))

=\alpha_{j}(P)^{-1} \lim_{r\downarrow 0}(\frac{1}{r^{d-1}f_{P_{j}}(r)^{2}})/(\frac{1}{r^{d-1}f_{P}(r)^{2}})

=\alpha_{j}(P)^{-1} , \alpha_{j}(P)^{2}=\alpha_{j}(P) .

\square

We also show that, in the definition of the singularity index of integrated
form \beta(P) of a nonelliptic radial density P on \Omega\cup\Gamma , the P-subunit f_{P} can
be replaced by the P-unit e_{P} if P is moreover hyperbolic. One must note
that the integrating regions are different in these two expressions.

Proposition 22 The singularity index of integrated form \beta(P) of a hy-
perbolic radial density P on \Omega\cup\Gamma takes the following form:

1/ \beta(P)=\iint_{0\leq t\leq s\leq 1}\frac{t^{d-3}}{s^{d-1}}(\frac{e_{P}(t)}{e_{P}(s)})^{2} dsdt (double integral form)

= \int_{0}^{1}t^{d-3}e_{P}(t)^{2}(\int_{t}^{1}\frac{ds}{s^{d-1}e_{P}(s)^{2}})dt

(iterated integral form).

Proof. Rewrite 1/\beta(P) by using e_{P}(t)=f_{P}(t) \int_{0}^{t}s^{1-d}f_{P}(s)^{-2}ds and
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f_{P}(t)=e_{P}(t) \int_{t}^{1}s^{1-d}e_{P}(s)^{-2}ds as follows:

1/ \beta(P)=\int_{0}^{1}t^{d-3}f_{P}(t)(f_{P}(t)\int_{0}^{t}\frac{ds}{s^{d-1}f_{P}(s)^{2}})dt

= \int_{0}^{1}t^{d-3}f_{P}(t)e_{P}(t)dt=\int_{0}^{1}t^{d-3}e_{P}(t)f_{P}(t)dt

= \int_{0}^{1}t^{d-3}e_{P}(t)(e_{P}(t)\int_{t}^{1}\frac{ds}{s^{d-1}e_{P}(s)^{2}})dt

= \int_{0}^{1}t^{d-3}e_{P}(t)^{2}(\int_{t}^{1}\frac{ds}{s^{d-1}e_{P}(s)^{2}})dt

= \iint_{0\leq t\leq s\leq 1}\frac{t^{d-3}}{s^{d-1}}(\frac{e_{P}(t)}{e_{P}(s)})^{2} dsdt.

\square

In the course of the above proof we have seen the following mixed
integral expression of \beta(P) by using both of e_{P} and f_{P} :

Corollary 23 If P is a hyperbolic radial density on \Omega\cup\Gamma . then

1/ \beta(P)=\int_{0}^{1}t^{d-3}e_{P}(t)f_{P}(t)dt .

Another form of mixed expression is derived from the above mixed
expression. The expression will play an essential role in the proof of the
homogeneity of Picard dimension given below.

Corollary 24 If P is a hyperbolic radial density on \Omega\cup\Gamma , then

1/ \beta(P)=\int_{0}^{1}\frac{dr}{r^{2}(\frac{e_{P}’(r)}{e_{P}(r)}-\frac{f’(r)}{f_{P}(r)})}

.

Proof Differentiate the both sides of e_{P}(r)=f_{P}(r) \int_{0}^{r}t^{1-d}f_{P}(t)^{-2}dt with
respect to r . Then we obtain

e_{P}’(r)= \frac{f_{P}’(r)}{f_{P}(r)}e_{P}(r)+\frac{1}{r^{d-1}f_{P}(r)}

or

r^{d-1}( \frac{e_{P}’(r)}{e_{P}(r)}-\frac{f’(r)}{f_{P}(r)})=\frac{1}{e_{P}(r)f_{P}(r)} .
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Substituting e_{P}(r)f_{P}(r) in Corollary 23 by the above expression of
e_{P}(r)f_{P}(r) we deduce

1/ \beta(P)=\int_{0}^{1}r^{d-3}\frac{dr}{r^{d-1}(\frac{e_{P}’(r)}{e_{P}(r)}-\frac{f_{P}’(r)}{f_{P}(r)})}

= \int_{0}^{1}\frac{dr}{r^{2}(\frac{e_{P}’(r)}{e_{P}(r)}-\frac{f_{P}’(r)}{f_{P}(r)})}

.

\square

Having established Lemma 20 and Corollary 24 we are ready to prove
a form of the homogeneity of the Picard dimension \dim(P, \Omega) in radial
densities P which is a preliminary version of the homogeneity of the Picard
dimension \dim P at the origin established in \S 8.

Theorem 25 (Homogeneity). If P is a radial density on \Omega\cup\Gamma_{j} then
\dim(cP, \Omega)\geq\dim(P, \Omega) for any 0<c\leq 1 , or equivalently, \dim(cP, \Omega)\leq

\dim(P, \Omega) for any c>1 .

Proof Since the two assertions in the above statement are clearly equiv-
alent, we only have to prove that \dim(cP, \Omega)\geq\dim(P, \Omega) for 0<c\leq 1 .
If P is elliptic, then the conclusion is trivial. Hence we may assume that
P is nonelliptic. Then cP is hyperbolic by Lemma 20 and in particular
nonelliptic and thus \dim(cP, \Omega)\geq 1 . If P is parabolic on \Omega\cup\Gamma , then, by
Corollary 17. \dim(P, \Omega)=1 and a fortiori \dim(P, \Omega)\leq\dim(cP, \Omega) .

Therefore we only have to treat the case P is hyperbolic on \Omega\cup\Gamma Again
by Lemma 20, cP is also hyperbolic on \Omega\cup\Gamma r Observe that

L_{cP}f_{P}(r)^{c}=c(1-c)f_{P}(r)^{c-2}(f_{P}’(r))^{2}\geq 0

on (0, 1) so that f_{P}(r)^{c} is a supersolution of L_{cP}w=0 on (0, 1) . Fix
an arbitrary number 0 <s<1 . Applying the minimum principle to
f_{P}(r)^{c}/f_{P}(s)^{c}-f_{cP}(r)/f_{cP}(s) on (s, 1) as a supersolution of L_{cP}w=0
of the variable r we see that

\frac{f_{P}(r)^{c}}{f_{P}(s)^{c}}\geq\frac{f_{cP}(r)}{f_{cP}(s)} (0<s<r<1)
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or equivalently

\frac{f_{P}(s)^{c}}{f_{cP}(s)}\leq\frac{f_{P}(r)^{c}}{f_{cP}(r)} (0<s<r<1) .

This shows that f_{P}(r)^{c}/f_{cP}(r) or \log(f_{P}(r)^{c}/f_{cP}(r)) is an increasing func-
tion of r on (0, 1) and thus

\frac{d}{dr}\log\frac{f_{P}(r)^{c}}{f_{cP}(r)}\geq 0 (0<r<1)

and a fortiori we can conclude that

c \frac{f_{P}’(r)}{f_{P}(r)}\geq\frac{f_{cP}’(r)}{f_{cP}(r)} (0<r<1) . (13)

Fix an arbitrary R\in(0,1) and consider

e_{P,R}(r)=f_{P}(r) \int_{R}^{r}\frac{dt}{t^{d-1}f_{P}(t)^{2}}

which converges to the P-unit e_{P}(r) on \Omega\cup\Gamma Similarly

e_{cP,R}(r)=f_{cP}(r) \int_{R}^{r}\frac{dt}{t^{d-1}f_{cP}(t)^{2}}

converges to the (cP)-unit e_{cP} on \Omega\cup\Gamma Observe that

L_{cP}e_{P,R}(r)^{c}=c(1-c)e_{P,R}(r)^{c-2}(e_{P,R}’(r))^{2}\geq 0

on (0, 1) so that e_{P,R}(r)^{c} is a supersolution of L_{cP}w=0 on (R, 1) . Fix
an arbitrary number s\in(0,1) and then choose an arbitrary R\in(0, s) .
The minimum principle applied to the supersolution e_{P,R}(r)^{c}/e_{P,R}(s)^{c} -

P,R(r)Iecp,R(s) of L_{cP}w=0 on (R, s) implies that

\frac{e_{P,R}(r)^{c}}{e_{P,R}(s)^{c}}\geq\frac{e_{cP,R}(r)}{e_{cP,R}(s)} (0<R\leq r<s\leq 1) .

On letting R\downarrow 0 we deduce

\frac{e_{P}(s)^{c}}{e_{cP}(s)}\leq\frac{e_{P}(r)^{c}}{e_{cP}(r)} (0<r\leq s\leq 1)

which shows that e_{P}(r)^{c}/e_{cP}(r) or \log(e_{P}(r)^{c}/e_{cP}(r)) is decreasing on (0, 1)
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so that

\frac{d}{dr}\log\frac{e_{P}(r)^{c}}{e_{cP}(r)}\leq 0 (0<r<1)

and hence we can conclude that

c \frac{e_{P}’(r)}{e_{P}(r)}\leq\frac{e_{cP}’(r)}{e_{cP}(r)} (0<r<1) . (14)

From (13) and (14) it follows that

c( \frac{e_{P}’(r)}{e_{P}(r)}-\frac{f_{P}’(r)}{f_{P}(r)})\leq\frac{e_{cP}’(r)}{e_{cP}(r)}-\frac{f_{cP}’(r)}{f_{cP}(r)} (0<r<1) .

Hence we deduce that

c \int_{0}^{1}\frac{dr}{r^{2}(\frac{e_{cP}’(r)}{e_{cP}(r)}-\frac{f_{cP}’(r)}{f_{cP}(r)})}\leq\int_{0}^{1}\frac{dr}{r^{2}(\frac{e_{P}’(r)}{e_{P}(r)}-\frac{f_{P}’(r)}{f_{P}(r)})}

or, by Corollary 24, c/\beta(cP)\leq 1/\beta(P) and a fortiori we obtain that

c\beta(P)\leq\beta(cP) (0<c\leq 1) .

Since P and cP are hyperbolic, \dim(P, \Omega)\geq 1 and \dim(cP, \Omega)\geq 1 . If
\dim(P, \Omega)=1 , then dim (cP, \Omega)\geq\dim(P, \Omega) . If \dim(P, \Omega)=\aleph , then, by
Theorem 11 and Proposition 13, \beta(P)>0 . The above inequality implies
that \beta(cP)>0 and again by Theorem 11 and Proposition 13 we conclude
that \dim(cP, \Omega)=\aleph and the inequality \dim(cP, \Omega)\geq\dim(P, \Omega) is trivially
valid. In view of Theorem 11, the proof is herewith complete. \square

Corollary 26 ([11]). If P is a nonnegative radial density on \Omega\cup\Gamma , then
\dim(cP, \Omega)=\dim(P, \Omega) for every c>0 .

Proof We only have to treat the case 0<c\leq 1 . By Theorem 25, we
have \dim(cP, \Omega)\geq\dim(P, \Omega) . On the other hand, since P\geq 0 , cP\leq P is
valid on \Omega\cup\Gamma and hence Theorem 14 assures that \dim(cP, \Omega)\leq\dim(P, \Omega) .
We thus obtain \dim(cP, \Omega)=\dim(P, \Omega) . \square

From the view point of Corollary 26 it is a natural question to ask
whether the inequality in Theorem 25 can be replaced by the equality. It is
not too difficult to give a counter example P on \Omega\cup\Gamma to show that in fact
the inequality cannot be replaced by the equality. The importance of the
following example lies in the fact that \dim(cP, \Omega_{a})<\dim(P, \Omega_{a})(c>1)
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holds not only for a=1 but also for every 0<a\leq 1 . (Compare this with
Lemma 20; there 0<c<1 .) This will play an important role in Assertions
36 and 37 in \S 8.

Example 27 ([9])- The Imai density I(x) is a nonpositive radial density
on \Omega\cup\Gamma given by

I(x)=- \frac{1}{4|x|^{2}}((d-2)^{2}+\frac{1}{(\log\frac{2}{|x|})^{2}}) ,

for which \dim(I, \Omega_{a})=1 for every 0<a\leq 1 and \dim(cI, \Omega_{a})=0 for every
c>1 and every 0<a\leq 1 .

Proof. A rather tedious calculation is needed but somehow it is not
difficult to check that the pair (p(r),p(r)q(r)) determined by

p(r)=r^{-\frac{d-2}{2}}( \log\frac{2}{r})^{1/2} and q(r)= \log\frac{2}{r}

is a system of fundamental solutions of L_{I}w=0 on (0, 1) . For each 0<a<
1 , set

aI(r)=a^{2}I(ar)=- \frac{1}{4r^{2}}((d-2)^{2}+\frac{1}{(\log\frac{2}{ar})^{2}})

Then (p(ar), p(ar)q(ar)) is a system of fundamental solutions of L_{a}Iw=0 on
(0, 1) . Since p(ar)>0 on (0, 1) , aIP(\Omega)\backslash \{0\}\neq\emptyset and hence aI is nonelliptic
on \Omega\cup\Gamma Hence \dim(I, \Omega_{a})=\dim(^{a}I, \Omega)\geq 1 (cf. \S 2). On the other hand,
by Corollary 15, aI\leq 0 implies \dim(I, \Omega_{a})=\dim(^{a}I, \Omega)\leq 1 . Hence we have
established that \dim(I, \Omega_{a})=1 for every 0<a\leq 1 .

We need to introduce the following auxiliary density I_{\in} on \Omega\cup\Gamma :

I_{\epsilon}(r)=- \frac{1}{4r^{2}}\{

\backslash

(d-2)^{2}+ \frac{1+\epsilon^{2}}{(1og\frac{2}{r})^{2}}

,

(\epsilon>0) .
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Then we see that

Ap(r) sin ( \frac{\epsilon}{2}q(r)+B) (A, B\in R)

is a general solution of L_{I_{\epsilon}}w=0 on (0, 1) . For each 0<a\leq 1 , set

aI_{\epsilon}(r)=a^{2}I_{\epsilon}(ar)=- \frac{1}{4r^{2}}((d-2)^{2}+\frac{l+\epsilon^{2}}{(1og\frac{2}{ar})^{2}})

Then the function

Ap(ar) sin ( \frac{\epsilon}{2}q(ar)+B) (A, B\in R)

is a general solution of L_{a}I_{\in}w=0 on (0, 1) , which always takes both strictly
positive and negative values in (0, 1) unless it is identically zero. Hence
aI_{\in}P(\Omega)=\{0\} and aI_{\epsilon} is elliptic on \Omega\cup\Gamma

Take an arbitrary c>1 . We can find an \epsilon>0 such that cI\leq I_{\xi j} on
(0, 1) . Actually we only have to choose \epsilon in (0, \sqrt{c-1}) . Then a(cI)\leq aI_{\in} .
By Proposition 6 we see that a(cI) is elliptic along with aI_{\epsilon} . Therefore we
now conclude that \dim(cI, \Omega_{a})=\dim ( (cI), \Omega ) =0 for every c>1 and
every 0<a\leq 1 . \square

8. Picard dimensions at the origin

In this section we prove the existence of a b\in(0,1] for a given radial
density P on \Omega\cup\Gamma such that \dim(P, \Omega_{a})=\dim(P, \Omega_{b}) for every a\in(0, b]

so that we can define \dim P=\lim_{a\downarrow 0}\dim(P, \Omega_{a}) , the Picard dimension of
P at the origin, so to speak. Then we will complete the proofs of the main
theorems 1 and 2 of this paper mentioned in the introduction. We recall
here the notation aP(x)=a^{2}P(ax) and u_{a}(x)=u(ax) (cf. \S 2). We start
with the following simple fact:

Lemma 28 Suppose P is a radial density on \Omega\cup\Gamma_{-} If bP is nonelliptic
for a b\in(0,1] , then aP is also nonelliptic for a\in(0, b] .

Proof Since bP is nonelliptic, there exists a u\in bPP(\Omega)\backslash \{0\} so that
u_{b^{-1}}\in PP(\Omega_{b})\backslash \{0\}\subset PP(\Omega_{a})\backslash \{0\} for any a\in(0, b] . Hence u_{b^{-1}a}=

(u_{b^{-1}})_{a}\in aPP(\Omega)\backslash \{0\} , which shows that aP is nonelliptic. \square
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The following claim is less trivial. (Compare this with Lemma 20.)

Lemma 29 Suppose P is a radial density on \Omega\cup\Gamma If bP is nonelliptic
for a b\in(0,1] , then aP is hyperbolic for every a\in(0, b) .

Proof. Since bP is nonelliptic, the bP-subunit f_{b}P(r)>0 on (0, 1) so
that s(r)=f_{b}P(b^{-1}r) belongs to PP(\Omega_{b;}\Gamma_{b})\backslash \{0\} and s>0 on \Omega_{a}\cup\Gamma_{a}

for every fixed a\in(0, b) . Thus there exists a unique radial e_{P,R}(\cdot ; a)\in

PP(\Omega_{a}\backslash (\Omega_{R}\cup\Gamma_{R}))(0<R<a) with boundary values e_{P,R}(a;a)=1
and e_{P,R}(R;a)=0 . By the minimum principle, e_{P,R}(\cdot ; a)\leq s(a)^{-1}s and
\{e_{P,R} (. ; a ) \}_{R\downarrow 0} is increasing. We can thus define

e_{P}(r;a)= \lim_{R\downarrow 0}e_{P,R}(r;a) .

It is easily seen that e_{a}P(r)=e_{P}(ar;a) is the aP-unit and aP is hyperbolic.
\square

The function e_{P}(r;a) in the above proof will be referred to as the P-
unit on \Omega_{a} . We have also seen in the proof that e_{P}(ar;a) is the aP-unit
eaP(r)=eaP(r;1) on \Omega .

Lemma 30 Suppose P is a radial density on \Omega\cup\Gamma If cP is nonelliptic
for a c\in(0,1] , then aP and bP are hyperbolic and

\beta(^{a}P)\geq\beta(^{b}P) (15)

for every 0<a<b<c .

Proof. By Lemma 29, aP and bP are hyperbolic and eaP(r)=ep(ar;a) .
Hence, by Proposition 22, we have

1/ \beta(^{a}P)=\iint_{0\leq t\leq s\leq 1}\frac{t^{d-3}}{s^{d-1}}(\frac{eaP(t)}{eaP(s)})^{2} dsdt

= \iint_{0\leq t\leq s\leq 1}\frac{t^{d-3}}{s^{d-1}}(\frac{e_{P}(at,a)}{e_{P}(as,a)}..)^{2} dsdt.

On replacing variables at and as by t and s , respectively, we see that

1/ \beta(^{a}P)=\iint_{0\leq t\leq s\leq a}\frac{t^{d-3}}{s^{d-1}}(\frac{e_{P}(t,a)}{e_{P}(s\cdot a)}.,)^{2} dsdt. (16)
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It is easy to see that e_{P}(r;a)=e_{P}(r;b)/e_{P}(a;b) for 0<a<b<c . Hence

1/ \beta(^{a}P)=\iint_{0\leq t\leq s\leq a}\frac{t^{d-3}}{s^{d-1}}(\frac{e_{P}(t,b)}{e_{P}(s\cdot b)}.,)^{2} dsdt

\leq\iint_{0\leq t\leq s\leq b}\frac{t^{d-3}}{s^{d-1}}(\frac{e_{P}(t,b)}{e_{P}(s\cdot b)}.,)^{2} dsdt.

The last term is 1/\beta(^{b}P) in view of (16), and we have seen that 1/\beta(^{a}P)\leq

1/\beta(^{b}P) or \beta(^{a}P)\geq\beta(^{b}P) . \square

We are ready to show that \dim(P, \Omega_{a}) is monotone in a :

Proposition 31 Suppose P is a radial density on \Omega\cup\Gamma For any pair
(a, b) of real numbers with 0<a\leq b\leq 1 ,

\dim(P, \Omega_{a})\geq\dim(P, \Omega_{b}) . (17)

Proo/. In view of \dim(P, \Omega_{a})=\dim(^{a}P, \Omega) and \dim(P, \Omega_{b})=\dim(^{b}P, \Omega) ,
the inequality (17) is equivalent to the following inequality

\dim(^{a}P, \Omega)\geq\dim(^{b}P, \Omega) (0<a\leq b\leq 1) . (18)

This is trivially true if \dim(^{b}P, \Omega)=0 and thus we can assume \dim(^{b}P, \Omega)>

0 . If \dim(^{b}P, \Omega)=1 , then bP is nonelliptic and hence, by Lemma 28, aP

is nonelliptic. Thus \dim(^{a}P, \Omega)\geq 1 and (18) is valid. By Theorem 11, the
only possibility left is the case \dim(^{b}P, \Omega)=\aleph . Once more by Theorem 11
and by Proposition 13, we must have \beta(^{b}P)>0 . This with (15) implies
\beta(^{a}P)>0 . Thus, by the same reason as above, we obtain \dim(^{a}P, \Omega)=\aleph .
A fortiori (18) is also true. \square

We now show that \dim(P, \Omega_{a}) is constant for sufficiently small a>0 :

Theorem 32 Suppose P is a radial density on \Omega\cup\Gamma There exists a

b\in(0,1] such that \dim(P, \Omega_{a})=\dim(P, \Omega_{b}) for every 0<a\leq b .

Proof In view of the fundamental theorem 11, \gamma=\sup\{\dim(P, \Omega_{a})=

\dim(^{a}P, \Omega) : 0<a\leq 1 } is 0, 1 or \aleph . If \gamma=0 , then (17) assures that we only
have to set b=1 . If \gamma=1 , then there exists a b\in(0,1] with \dim(P, \Omega_{b})=1

so that again (17) assures that \dim(P, \Omega_{a})=\dim(P, \Omega_{b}) for every a\in(0, b] .
Finally let \gamma=\aleph . There exists a b\in(0,1] such that \dim(P, \Omega_{b})=\aleph . Hence,
by (17), \dim(P, \Omega_{a})=\dim(P, \Omega_{b})=\aleph for every a\in(0, b] . \square
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As mentioned in the introduction we define the Picard dimension \dim P

at the origin 0 of a general density P on \Omega\cup\Gamma by

\dim P=\lim_{a\downarrow 0}\dim(P, \Omega_{a}) ,

which is in fact a common fixed cardinal number \dim(P, \Omega_{a}) for every small
a>0 . A proof for this assertion will be given in Appendix at the end of
this paper. However, as far as radial densities P concern, this fact is just
established in the above Theorem 32.

Proof of Theorem 1 (Monotoneity). Suppose that radial densities P and
Q on \Omega\cup\Gamma satisfies P\leq Q on \Omega_{b} for some 0<b<1 . Then aP\leq aQ on
\Omega\cup\Gamma for every 0<a\leq b . By Theorem 14, we have \dim(^{a}P, \Omega)\leq\dim(^{a}Q, \Omega)

or \dim(P, \Omega_{a})\leq\dim(Q, \Omega_{a}) for every 0<a\leq b . Therefore

\dim P=\lim_{a\downarrow 0}\dim(P, \Omega_{a})\leq\lim_{a\downarrow 0} dim (Q, \Omega_{a})=\dim Q .

\square

Example 33 The Picard dimension at the origin dimO of the harmonic
density 0 on \Omega\cup\Gamma is one.

Proof. By Example 10, \dim(0, \Omega)=1 . Since a0=0 for every 0<a<1 ,
\dim(0, \Omega_{a})=\dim(^{a}0, \Omega)=\dim(0, \Omega)=1 and dimO = \lim_{a\downarrow 0}\dim(0, \Omega_{a})=

1 . \square

Proposition 34 Suppose P is a radial density on \Omega\cup\Gamma If P is nonnega-
tive (nonpositive, resp.) in a punctured ball about the origin, then \dim P\geq 1

(\dim P\leq 1 , resp.).

Proof. Suppose P\geq 0 ( P\leq 0 , resp.) in \Omega_{b} for some b\in(0,1] . By
Theorem 1 and Example 33, we see that \dim P\geq dimO =1(\dim P\leq

dimO =1 , resp.). \square

Proof of Theorem 2 (Homogeneity). It is clear that two assertions in The-
orem 2 are equivalent. Hence we only have to prove that \dim(cP)\geq\dim P

holds for any radial density P on \Omega\cup\Gamma and for any 0<c\leq 1 . By Theorem
25, we have \dim(c^{a}P, \Omega)\geq\dim(^{a}P, \Omega) for every 0<a\leq 1 because aP is also
a radial density on \Omega\cup\Gamma In view of a(cP)=c^{a}P , we see that \dim(cP, \Omega_{a})=

\dim(^{a}(cP), \Omega)=\dim(c^{a}P, \Omega) and trivially \dim(P, \Omega_{a})=\dim(^{a}P, \Omega) . Thus
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we see that \dim(cP, \Omega_{a})\geq\dim(P, \Omega_{a}) for every 0<a\leq 1 . Therefore

\dim(cP)=\lim_{a\downarrow 0}\dim(cP, \Omega_{a})\geq\lim_{a\downarrow 0}\dim(P, \Omega_{a})=\dim P.

\square

Proposition 35 ([11]). Suppose P is a radial density on \Omega\cup\Gamma such that
P\geq 0 in a punctured ball about the origin. Then \dim(cP)=\dim P for
every c>0 .

Proof. We only have to consider the case 0<c\leq 1 . Theorem 2 assures
that \dim(cP)\geq\dim P . On the other hand, since cP\leq P in a punctured ball
centered at the origin where P\geq 0 , Theorem 1 implies \dim(cP)\leq\dim P .
Thus we can deduce the identity \dim(cP)=\dim P . \square

From the view point of the above Proposition 35 one might suspect that
the inequality signs in \dim(cP)\geq\dim P(0<c\leq 1) and \dim(cP)\leq\dim P

(c>1) of Theorem 2 are in reality able to be replaced by the equality signs.
That this is not the case and therefore that Theorem 2 is the best possible
generalization of proposition 35 to signed radial densities are seen by the
following two assertions 36 and 37.

Assertion 36 There exists a radial density P on \Omega\cup\Gamma such that \dim P>

\dim(cP) for every c >1 .

Proof. Take the Imai density I in Example 27. Since \dim(I, \Omega_{a})=

1 and \dim(cI, \Omega_{a})=0 for every c>1 and every 0<a\leq 1 , we have
\dim I=\lim_{a\downarrow 0} dim(I, \Omega_{a})=1 and dim(cI)= \lim_{a\downarrow 0} \dim(cJ, \Omega_{a}) =0. Thus
I qualifies to be a P in the above assertion. \square

Assertion 37 There exists a radial density P on \Omega\cup\Gamma for any given
0<c<1 such that \dim P<\dim(cP) .

Proof. Take an arbitrary density Q satisfying Assertion 36. For an ar-
bitrarily chosen c\in(0,1) we consider P=c^{-1}Q . Since c^{-1}>1 , we have
dim(c^{-1}Q)<\dim Q or, by Q=cP., \dim P<\dim(cP) . \square

The above Assertion 37 is not as strong as Assertion 36 but actually it
is recently shown by Imai [10] that the complete analogue to Assertion 36 is
valid: There exists a radial density P on \Omega\cup\Gamma such that \dim P<\dim(cP) for
every 0<c<1 . In the Assertions 36 and 37 the relevant densities involve
those with zero Picard dimension at the origin and hence we are naturally
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led to ask the following problem whose partial answer corresponding to
Assertion 37 is recently given in [30].

Problem 38 Does there exist a radial density P such that \dim(cP)>
\dim P\geq 1 (for every 0<c<1 ) ( 1\leq\dim(cP)<\dim P (for every c>1 ),
resp.) ?

Appendix

Let M be a connected, countable, orient and noncompact Rieman-
nian manifold of class C^{\infty} of dimension d\geq 2 and \triangle the Laplace-Beltrami
operator on M . A density P on M is a locally H\"older continuous function
on M. We consider the time independent Schr\"odinger equation

(-\triangle+P(x))u(x)=0 (19)

whose potential is a density P on M . As in the text we denote by P(G) the
space of C^{2}-solutions of (19) on an open subset G of M . We also consider the
space PP(G)= {u\in P(G) : u\geq 0 on G} as in the text. An end N of M is
an open subset of M such that M\backslash N is the closure of a nonempty relatively
compact subregion of M and the relative boundary \partial N of N consists of a
finite number of mutually disjoint smooth closed hypersurfaces. Again as
in the text we are interested in the space

PP(N;\partial N)=\{u\in PP(N)\cap C(\overline{N}) : u|\partial N=0\} .

For two ends N_{1} and N_{2} we say that PP(N_{1} ; \partial N_{1}) is isomorphic to
PP(N_{2;}\partial N_{2}) if there exists a positively homogeneous additive bijection
\tau of PP(N_{1} ; \partial N_{1}) onto PP(N_{2;}\partial N_{2}) . In this case we have

\#(ex. PP(N_{1;}\partial N_{1}))=\#(ex.PP(N_{2;}\partial N_{2}))

where ex. PP(N_{i;}\partial N_{i}) is the set of extremal rays of the positive cone
PP(N_{i;}\partial N_{i}) and \# indicates the cardinal number. We prove

Theorem 40 There exists an end N_{0} of M such that PP(N_{1} ; \partial N_{1}) is
isomorphic to PP(N_{2;}\partial N_{2}) for all ends N_{1} and N_{2} of M contained in N_{0}

with their closures.

Proof If PP(N;\partial N)=\{0\} for every end N of M , then clearly any choice
of an end N_{0} of M will do. If there is an end N_{0} of M with PP(N_{0;}\partial N_{0})\neq

\{0\} , then we can show that the end N_{0} is a required one: PP(N_{1} ; \partial N_{1}) is
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isomorphic to PP(N_{2;}\partial N_{2}) for all ends N_{1} and N_{2} of M with \overline{N}_{1}\cup\overline{N}_{2}\subset

N_{0} . Clearly we only have to prove that PP(N_{1;}\partial N_{1}) is isomorphic to
PP(N_{2;}\partial N_{2}) when \overline{N}_{2}\subset N_{1}\subset\overline{N}_{1}\subset N_{0} . We fix an exhaustion \{M_{n}\}

(n=1,2, \cdots) of M with M\backslash N_{2}\subset M_{1} , i.e. \{M_{n}\} is a sequence of relatively
compact subregions M_{n} of M such that \overline{M}_{n}\subset M_{n+1} and \partial M_{n} consists
of a finite number of mutually disjoint smooth closed hypersurfaces (n=
1,2 , \cdot.) and \bigcup_{n\geq 1}M_{n}=M . We consider the third end N_{3}=M\backslash \overline{M}_{1} which
satisfies \overline{N}_{3}\subset N_{2} . We fix an s\in PP(N_{0;}\partial N_{0})\backslash \{0\} such that

s(x)\geq 1 (x\in\overline{N}_{1}\backslash N_{3}) .

Since s is strictly positive on \overline{N}_{1} , the minimum principle for solutions for
(19) on any relatively compact open subset of N_{1} is valid and the Dirichlet
problem for the equation (19) for any relatively compact smooth open subset
of N_{1} is solvable (cf. e.g. Chapters 2 and 3 in [6]).

For each \varphi\in C(\partial N_{2}) let D_{n}\varphi\in P(M_{n}\cap N_{2})\cap C(\overline{M}_{n}\cap\overline{N}_{2}) such that
D_{n}\varphi=\varphi on \partial N_{2} and 0 on \partial M_{n}(n=1,2, \cdots) . By the minimum principle,
D_{n}\varphi\leq D_{n+1}\varphi on \overline{M}_{n}\cap\overline{N}_{2} and D_{n} \varphi\leq(\sup_{\partial N_{2}}\varphi)s(n=1,2, \cdot.) if \varphi\geq 0

on \partial N_{2} . Thus

D \varphi=\lim_{narrow\infty}D_{n}\varphi

exists on \overline{N}_{2} and belongs to PP(N_{2})\cap C(\overline{N}_{2}) . For general \varphi\in C(\partial N_{2}) we
can define

D\varphi=D\varphi+-D\varphi-

where \varphi^{+}=\max(\varphi, 0) and \varphi^{-}=-\min(\varphi, 0) on \partial N_{2} . Clearly D : C(\partial N_{2}) -

P(N_{2})\cap C(\overline{N}_{2}) is a linear operator and order-preserving: \varphi_{1}\leq\varphi_{2} implies
D\varphi_{1}\leq D\varphi_{2} .

Using the operator D we define an operator \tau by

\tau u=u-Du .

If u\in PP(N_{1;}\partial N_{1}) , then u-D_{n}u\geq 0 on \partial(M_{n}\cap N_{2}) and by the minimum
principle the same inequality holds on M_{n}\cap N_{2} . On letting n\uparrow\infty we see that
u- Du\geq 0 on N_{2} and belongs to PP(N_{2;}\partial N_{2}) . Hence \tau : PP(N_{1} ; \partial N_{1}) –

PP(N_{2;}\partial N_{2}) is positively homogeneous and additive operator. We will see
that \tau is injective and surjective, i.e. \tau is bijective.

To see that \tau is injective, let \tau u=\tau v on N_{2} for some u and v in
PP(N_{1;}\partial N_{1}) . We need to show that u=v or w=u-v=0 on N_{1} .
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For the purpose we only have to show that w=0 on \partial N_{2} . Then w=0
on \partial(N_{1}\backslash \overline{N}_{2}) and the minimum principle assures that w=0 on N_{1}\backslash \overline{N}_{2} .
By the unicity principle we can conclude that w=0 on N_{1} as required.
Contrary to the assertion we assume that w\neq 0 on \partial N_{2} . Considering -w
instead of w if necessary, we can assume that \sup_{\partial N_{2}}w>0 . Clearly

c= \inf{ \lambda\in R : \lambda s\geq w on \partial N_{2} } >0

and there exists an x_{0}\in\partial N_{2} such that cs(x_{0})=w(x_{0}) . Since cs – w\geq 0

on \partial(N_{1}\backslash \overline{N}_{2}) , we have cs – w\geq 0 on N_{1}\backslash \overline{N}_{2} . Clearly, since w=D_{n}w on
\partial N_{2} , cs-D_{n}w\geq 0 on \partial(N_{2}\cap M_{n}) and hence cs-D_{n}w\geq 0 on N_{2}\cap M_{n} .
By letting n\uparrow\infty we have cs – Dw\geq 0 on N_{2} , and since w=Dw on N_{2} ,
cs – w\geq 0 on N_{2} . Hence cs – w\geq 0 on N_{1} and cs – w=cs>0 on \partial N_{1} .
Thus cs – w>0 on N_{1} but cs(x_{0})-w(x_{0})=0 , a contradiction.

Finally we show that \tau is surjective. For the purpose we need to find
u\in PP(N_{1} ; \partial N_{1}) for an arbitrarily given v\in PP(N_{2;}\partial N_{2}) such that \tau u=

v , i.e. we need to solve the equation

u-Du=v (20)

on N_{2} with unknown u\in PP(N_{1} ; \partial N_{1}) for a given v\in PP(N_{2;}\partial N_{2}) . To
solve (20) we consider an operator K : C(\partial N_{3})arrow P(N_{1}\backslash \overline{N}_{3})\cap C(\overline{N}_{1}\backslash N_{3})

given as follows. For any \varphi\in C(\partial N_{3}) we let K\varphi\in P(N_{1}\backslash \overline{N}_{3})\cap C(\overline{N}_{1}\backslash N_{3})

such that K\varphi=\varphi on \partial N_{3} and K\varphi=0 on \partial N_{1} . Then K is linear and
order-preserving.

As the last one we define a linear operator T of C(\partial N_{3}) into itself given
by

T\varphi=(D((K\varphi)|\partial N_{2}))|\partial N_{3}

or more roughly T\varphi=DK\varphi for all \varphi\in C(\partial N_{3}) (cf. e.g. [26]). By the
order-preservingness of D and K , we see that T is also order-preserving.
We wish to solve

\varphi-T\varphi=v (21)

on \partial N_{3} with unknown \varphi\in C(\partial N_{3}) for the given v|\partial N_{3}\in C(\partial N_{3}) . If (21)
is solved by a \varphi\in C(\partial N_{3}) with \varphi\geq 0 on \partial N_{3} , then we define

u=\{
K\varphi on \overline{N}_{1}\backslash N_{3} ,

DK\varphi+v on \overline{N}_{2} .
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Observe that K\varphi and DK\varphi+v belong to P(N_{2}\backslash \overline{N}_{3})\cap C(\overline{N}_{2}\backslash N_{3}) and

K\varphi-(DK\varphi+v)=\varphi-(T\varphi+v)=(\varphi-T\varphi)-v=0

on \partial N_{3} by (21) and

K\varphi-(DK\varphi+v)=K\varphi-(K\varphi+0)=0

on \partial N_{2} . By the minimum principle, K\varphi=DK\varphi+v on \overline{N}_{2}\backslash N_{3} and thus
the definition of u above is well-defined on \overline{N}_{1} and u\in P(N_{1})\cap C(\overline{N}_{1}) and
u\geq 0 on N_{1} and

u=DK\varphi+v=Du+v

on N_{2} so that (20) is satisfied by this u\in PP(N_{1;}\partial N_{1}) .
Thus we only have to solve the abstract integral equation (21) by \varphi\in

C(\partial N_{3}) with \varphi\geq 0 on \partial N_{3} . Considering v as in C(\partial N_{3}) with v\geq 0 , we
see that

0\leq v\leq||v||s

on \partial N_{3} where ||v||= \sup_{\partial N_{3}}|v| , the norm on C(\partial N_{3}) . Applying the order-
preserving operator T^{n}(n=1,2, \cdots) we have

0\leq T^{n}v\leq||v||T^{n}s

on \partial N_{3} . Since s>0 on N_{0} and Ks=0 on \partial N_{1} and s=Ks on \partial N_{3} , we
see that Ks<s on \partial N_{2} and therefore DKs<Ds\leq s on \partial N_{3} , i.e. Ts<s
on \partial N_{3} . Then

q= \sup_{x\in\partial N_{3}}\frac{Ts(x)}{s(x)}\in(0,1) .

Hence Ts\leq qs on \partial N_{3} . Inductively we see that T^{n}s\leq q^{n}s . Therefore

||T^{n}v||\leq q^{n}||s||||v|| .

Thus the series

\varphi=\sum_{n=0}^{\infty}T^{n}v

has ||s||||v|| \sum_{n=0}^{\infty}q^{n} as its majorant series and a fortiori \varphi\in C(\partial N_{3}) and
satisfies (21). Clearly \varphi\geq 0 along with v\geq 0 on \partial N_{3} . \square
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