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Currents invariant by a Kleinian group
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Abstract. The goal of this paper is to give, under some hypotheses, a characterization
of currents and distributions invariant by a group of diffeomorphisms of a manifold M
and especially in the case of a Kleinian group \Gamma acting on the n-sphere S^{n} .
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0. Introduction

Let p\in N and \Omega^{p}(M) be the space of differential forms of degree p with
compact support in M equipped with its usual C^{\infty} -topology. An element T
of the (topological) dual C_{p}(M) of \Omega^{p}(M) is called a current of degree p and
a distribution when p=0. An element T\in C_{p}(M) is said to be invariant
(or \gamma-invariant) under the action of a diffeomorphism \gamma : Marrow M if it
satisfies ( T, \gamma\varphi\rangle*=\langle T, \varphi\rangle for every \varphi\in\Omega^{p}(M) or if it vanishes on the space
K^{p}=\{\varphi-\gamma^{*}\varphi : \varphi\in\Omega^{p}(M)\} . So the space C_{p}^{\Gamma}(M) (where \Gamma is the cyclic
group generated by \gamma ) of invariant currents on M is canonically isomorphic
to the (topological) dual of the quotient \Omega^{p}(M)/K^{p} . More generally if \Gamma is
a group of diffeomorphisms of M we say that T\in C_{p}(M) is \Gamma invariant if
it is invariant by every element \gamma\in\Gamma

In [Ha], Haefliger characterized foliations with minimal leaves in terms
of currents invariant by pseudogroups. Thus if the foliation is a suspen-
sion with holonomy group \Gamma . then the interest is focused upon \Gamma invariant
currents. The case of a Fuchsian group was studied in [HL]: let \Gamma be a sub-
group of the diffeomorphism group Diffff(S^{1}) of the circle S^{1} whose elements
are restriction of elements of a Fuchsian group G of diffeomorphisms of the
unit disc D. Suppose that the quotient Riemannian surface S=G\backslash D

is of finite volume, of genus g and with k punctures. Then it was proved
in [HL] that the space of \Gamma -invariant distributions on the circle S^{1} which
vanish on constant functions is isomorphic to the space of harmonic forms
on S having at most poles of order one at the punctures x_{i} . Its dimension
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is \max(2g, 2g+2k-2) .
Other results in higher dimension can be found in [Ga]. Invariant cur-

rents by a locally free action of the affine group GA on a compact 3-manif0ld
with a solvable fundamental group were completely characterized in [Ek].

In this paper we study currents, especially distributions, invariant by
Kleinian groups. Distribution is a concept generalizing that of measure.
It is well known, easy to prove, that nonelementary Kleinian groups do
not admit invariant measure. So a natural question is: Does there exist
an invariant distribution? We shall show in Proposition 3.1 that Kleinian
group of certain kind admits an invariant distribution.

First of all let \Gamma be the cyclic group generated by a loxodromic trans-
formation \gamma : S^{n}arrow S^{n} and D=S^{n}-\{a_{+}, a_{-}\} where a_{+} and a_{-} are
respectively the repeller and the attractor of \gamma . The group \Gamma acts on D
properly discontinuously and the quotient \Gamma\backslash D is analytically diffeomor-
phic to S^{1}\cross S^{n-1} . We have the following exact sequence

0arrow C_{0}^{\Gamma} (S^{n}, \{a_{+}, a-\}) \underline{i}C_{0}^{\Gamma}(S^{n})arrow C_{0}^{\Gamma}(D)L_{0}

where C_{0}^{\Gamma} (S^{n}, \{a_{+}, a-\}) denotes the space of \Gamma-invariant distributions on S^{n}

with support contained in \{a_{+}, a_{-}\} and L_{0} is the localization map i.e. L_{0}

associates to every distribution on S^{n} its restriction to D . The question is
if L_{0} is surjective or not.

In \S 3, Image(L_{0}) is shown to be a codimension one subspace of C_{0}^{\Gamma}(D) .
This determines completely the space C_{0}^{\Gamma}(S^{n}) . In \S 4 we construct a cross
section of the localization map L_{0} .

Now we consider the problem in further generality. Let \Gamma be a Kleinian
group acting on S^{n} and let D_{\Gamma}=S^{n}-\Lambda_{\Gamma} be the domain of discontinuity
of \Gamma and consider the exact sequence for p-currents

0arrow C_{p}^{\Gamma}(S^{n}, \Lambda_{\Gamma})arrow C_{p}^{\Gamma}(S^{n})iarrow C_{p}^{\Gamma}(D_{\Gamma})L_{p} .

Here \Lambda_{\Gamma} is the limit set of \Gamma For p=0, it is very difficult to determine
Image(L_{p}) in general. But for p>\delta (where \delta is the critical exponent of \Gamma),
we show in \S 2 that L_{p} is surjective. Using this for certain groups, we show
that for p=0, Image(L_{0}) is a subspace of C_{0}^{\Gamma}(D_{\Gamma}) of codimension \leq 1 .

Also if \Gamma acts on D_{\Gamma} freely and properly discontinuously, we show that
C_{p}^{\Gamma}(D_{\Gamma}) is isomorphic to C_{p}(\Gamma\backslash D_{\Gamma}) . This is carried out in \S 1 in complete
generality. This result also can be derived from Haefliger’s paper [Ha] where
he has studied currents invariant by a pseud0-group. However we shall give
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a slightly different proof, since some concepts there play a crucial role in
later developments.

In Section 5 we study weakly invariant distributions i.e. distributions
with invariance lack localized in the limit set \Lambda_{\Gamma} . In \S 6 we use the preceding
results for computing the first bigraded cohomology group of the foliation
obtained by suspending a diffeomorphism group \Gamma

Unless otherwise stated all the objects considered are assumed to be of
class C^{\infty} .

1. Covering space

Let M, X be C^{\infty} -manifolds, \Gamma a discrete group and \Gammaarrow M\underline{\pi}X

a regular covering. The aim of this \S is to show that, for every p\in N ,
the space C_{p}^{\Gamma}(M) of \Gamma invariant p-currents is canonically isomorphic to the
space C_{p}(X) of the usual p-currents on the quotient manifold X=\Gamma\backslash M .

1.1. Preliminary
Let j= (j_{1}, . . ’ j_{p})\in N^{p} be a multi-index such that 1\leq j_{1}< . . <

j_{p}\leq n . Choose a local chart \{U, (x_{1}, . , x_{n})\} of Mr Then every element
\omega\in\Omega^{p}(M) has a local expression

\omega=\sum_{j}\omega_{j}dx_{j_{1}}\wedge
\wedge dx_{j_{p}}

where \omega_{j} are C^{\infty} functions on U . Let (U_{i})_{i\in I} be a locally finite cover of M
by charts U_{i} . We define the k-norm ||\omega||_{k} of \omega by

|| \omega||_{k}=maxi\in I\{|s|\max\leq k(\sum_{j}\sup_{x\in U_{i}}|\frac{\partial^{|s|}\omega_{j}}{\partial x_{1}^{s_{1}}\cdot\cdot\partial x_{n}^{s_{n}}}(x)|)\}

where s= (s_{1}, \ldots, s_{n})\in N^{n} and |s|=s_{1}+ +s_{n} . This number exists
because \omega has a compact support.

The next Lemma will be useful mainly in a later \S . Endow \Omega^{p}(M)

with the usual C^{\infty}-topology. That is, \omega_{n}arrow\omega if and only if supp(\omega_{n}) is
contained in a fixed compact subset and all the derivatives of \omega_{n} converge
to the corresponding derivatives of \omega uniformly on this subset.

Lemma 1.2 A linear form T:\Omega^{p}(M)arrow C is continuous if and only if
for every compact set A\subset M there exists a positive constant C, an integer
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k\in N such that

|\langle T, \omega\rangle|\leq C||\omega||_{k}

for every \omega\in\Omega^{p}(M) with support contained in A .

The proof of this lemma is obvious.
Now let \overline{\Omega}^{\eta)}(M) be the space of all C-valued p-forms on M (not neces-

sarily compactly supported) and \overline{\Omega}_{\Gamma}^{\eta)}(M) the subspace of \overline{\Omega}^{\eta)}(M) whose ele-
se ts \omega are \Gamma-invariant and such that the quotient \Gamma\backslash supp(\omega) is compact
in X Then we have obviously the following:

Proposition 1.3 \pi^{*} : \Omega^{p}(X)arrow\overline{\Omega}^{\eta)}(M) is a bijection onto \neg\Omega_{\Gamma}

)

(M) .

Lemma 1.4 There exists a positive C^{\infty} -function f : Marrow R such that
i) for every compact B\subset X , supp(f)\cap\pi^{-1}(B) is compact; or equiv-

alently for every compact A\subset M , supp(f)\cap\gamma A\neq\emptyset for but finitely many
\gamma\in\Gamma

ii) \sum_{\gamma\in\Gamma}fo\gamma=1 .

Proof. Let (U_{i})_{i\in I} be a locally finite cover of X by relatively compact open
sets U_{i} which are evenly covered by \pi . Let V_{i} any lift of U_{i} ; then the family
(V_{i})_{i\in I} is locally finite but it is not a covering of M . Let g_{i} : Marrow R_{+} be
a C^{\infty} -function such that

g_{i}>0 on V_{i} and g_{i}=0 outside a neighbourhood of V_{i} .

Clearly the function g= \sum_{i\in I}g_{i} satisfies i). Hence for every compact
A\subset M we have

supp(g\circ\gamma)\cap A\neq\emptyset for but finitely many \gamma\in\Gamma

Thus

\sum g\circ\gamma

\gamma\in\Gamma

is a well defined positive C^{\infty}-function Put

f= \frac{g}{\sum_{\gamma\in\Gamma}g\circ\gamma} .

It is clear that f satisfies the conditions of Lemma 1.4. \square
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Given \omega\in\Omega^{p}(M) , let

\overline{\omega}=\sum_{\gamma\in\Gamma}\gamma^{*}\omega\in\overline{\Omega}^{p}(M)
.

It is easy to show that \overline{\omega} is \Gamma-invariant and that \Gamma\backslash supp(\overline{\omega})=\pi(supp(\omega))

is compact. That is \overline{\omega}\in\overline{\Omega}_{\Gamma}^{p}(M) . By 1.3 one can define a map

\pi_{!} : \Omega^{p}(M)arrow\Omega^{p}(X)

by the condition

\pi^{*}(\pi_{!}(\omega))=\sum_{\gamma\in\Gamma}\gamma^{*}\omega
.

Lemma 1.5 The map \pi_{!} is linear, continuous and surjective.

Proof. The fact that \pi_{!} is linear and continuous is obvious. We shall
prove that it is surjective. Let \eta\in\Omega^{p}(X) and put \omega=f \pi^{*}\eta . Then
supp (\omega)=supp(f)\cap\pi^{-1}(supp(\eta)) is compact. Also

\pi^{*}(\pi_{!}(\omega))=\sum_{\gamma\in\Gamma}(fo\gamma)

\gamma^{*}\pi^{*}\eta

= \sum(fo\gamma) \pi^{*}\eta

\gamma\in\Gamma

=\pi^{*}\eta

That is \pi_{!}(\omega)=\eta . \square

Let p\in N ; in the introduction we have defined K^{p} to be the linear
subspace of \Omega^{p}(M)

K^{p}= \{\sum_{i=1}^{n}(\gamma_{i}^{*}\omega_{i}-\omega_{i})|\gamma_{i}\in\Gamma . \omega_{i}\in\Omega^{p}(M)\}

Then we have the following:

Proposition 1.6 The sequence

0arrow K^{p}arrow\Omega^{p}(M)arrow\Omega^{p}(X)\pi|arrow 0

is exact for every p\in N .

Proof. The inclusion K^{p}\subset Ker(\pi_{!}) is clear; all that need proof is
Ker(\pi_{!})\subset K^{p} . The proof of this fact was communicated to us by G. Hector.
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Choose an arbitrary element \omega\in Ker(\pi_{!}) . Define O(\omega) to be the set
of the points x\in X such that \omega vanishes all over \pi^{-1}(x) . Let U and V be
connected open subsets of X such that \overline{U}\subset V and V is evenly covered by
\pi . Then we will have the following: \square

Lemma 1.7 For any \omega , there exists \omega_{1}\in Ker(\pi_{!}) such that \omega_{1}\equiv\omega

mod K^{p} and O(\omega)\cup U\subset O(\omega_{1}) .

This Lemma is sufficient for the proof of Proposition 1.6. For, one can
choose finite families \{U_{i}\} and \{V_{i}\} (i=1, \ldots, k) of open subsets of X
covering \pi(supp(\omega)) such that \overline{U_{i}}\subset V_{i} and V_{i} is evenly covered by \pi . But
then using 1.7 successively, we will get a sequence of p-forms

\omega\equiv\omega_{1}\equiv\omega_{2}\equiv\cdot . \equiv\omega_{k}=0 mod K^{p} ,

showing Proposition 1.6.

Proof of 1.7 Let g be a nonnegative valued C^{\infty} -function on X such that
g=1 on U and g=0 outside V , and \overline{g}=g\circ\pi . Let \overline{U} (resp. \overline{V}) be a
connected component of \pi^{-1}(U) (resp. \pi^{-1}(V) ) (\overline{U}\subset\overline{V}) and let \gamma_{j}(0\leq

j\leq l) be the elements of \Gamma such that \gamma_{j}(\overline{V})\cap supp(\omega)\neq\emptyset . Let \eta_{j} be the
restriction of \overline{g}\omega to \gamma_{j}(\overline{V}) . Then we have

\omega=\sum_{j=0}^{l}\eta_{j}+(1-\overline{g})\omega .

Of course each term above is a C^{\infty}-form. Now define

\omega_{1}=\sum_{j=0}^{l}\gamma_{j}^{*}\eta_{j}+(1-\overline{g})\omega .

Notice that \omega_{1}\equiv\omega mod K^{p} . Also it follows immediately that O(\omega)\subset

O(\omega_{1}) .
Let us show finally that U\subset O(\omega_{1}) . Let x be an arbitrary point of

U . Then (1-\overline{g})\omega clearly vanishes on \pi^{-1}(x) . Also since supp(\gamma_{j}^{*}\eta_{j})\subset\overline{V} .
we have that \omega_{1} vanishes on \pi^{-1}(x) except at one point in \pi^{-1}(x)\cap\overline{V}

But actually \omega_{1} also vanishes there since \omega_{1}\in Ker(\pi_{!}) . Therefore we have
x\in O(\omega_{1}) . \square

Since C_{p}^{\Gamma}(M) is canonically isomorphic to the dual space of the quotient
\Omega^{p}(M)/K^{p} , from Proposition 1.6 we get easily the following:
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Theorem 1.8 The space C_{p}^{\Gamma}(M) of \Gamma invariant p-currents on M is canon-
ically isomorphic to the space C_{p}(X) of p-currents on X. The isomorphism
is given by the transpose of \pi_{!} .

2. Kleinian groups

Let S^{n} and D^{n+1} denote respectively the unit sphere and the unit disc
of the Euclidean space R^{n+1} :

S^{n}=\{x\in R^{n+1}||x|=1\} and D^{n+1}=\{x\in R^{n+1}||x|<1\} .

We denote by

dm^{2}= \frac{\sum_{i=1}^{n+1}dx_{i}^{2}}{(1-|x|^{2})^{2}}

the Lobatchevski metric on D^{n+1} . Let Iso^{+}(D^{n+1}) and Conf^{+}(S^{n}) be re-
spectively the group of orientation preserving isometries of D^{n+1} and the
group of the M\"obius (or conformal) transformations of S^{n} . It is well known
that

Conf^{+}(S^{n})=Iso^{+}(D^{n+1})=SO(n+1,1)_{0} .

If \Gamma is a discrete subgroup of Conf^{+}(S^{n}) the set

\Lambda_{\Gamma}=\overline{\Gamma a}\cap S^{n}

is independent of the choice of the point a\in D^{n+1} . It is called the limit set
of \Gamma Its complement D_{\Gamma}=S^{n}-\Lambda_{\Gamma} is called the domain of discontinuity
of \Gamma r Now for fixed z\in D^{n+1} and s>0

\Phi_{s}(z)=\sum_{\gamma\in\Gamma}|\gamma’(z)|^{s}

(where \gamma’ is the derivative of \gamma ) is called the absolute Poincar\’e series of \Gamma

If it converges for one point z\in D^{n+1} . it converges for all and uniformly on
compact subsets. The number

\delta(\Gamma)=\inf {s>0 : \Phi_{s}(z) converges forz\in D^{n+1} }

is called the critical exponent of \Gamma

As before we put

C_{p}^{\Gamma}(S^{n})= { \Gamma invariant p-currents on S^{n} }
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C_{p}^{\Gamma}(S^{n}, \Lambda_{\Gamma})=\{T\in C_{p}^{\Gamma}(S^{n})|supp(T)\subset\Lambda_{\Gamma}\} .

Then there is an exact sequence

0arrow C_{p}^{\Gamma}(S^{n}, \Lambda_{\Gamma})arrow C_{p}^{\Gamma}(S^{n})arrow C_{p}^{\Gamma}(D_{\Gamma})L_{p}

where L_{p} is the localization map.

Problem 2.1 When L_{p} is surjective?

We have the following

Theorem 2.2 If \Gamma\backslash D_{\Gamma} is compact and if p>\delta(\Gamma) , then L_{p} is surjective.

Let T\in C_{p}^{\Gamma}(D_{\Gamma}) and define T^{*}\in C_{p}^{\Gamma}(S^{n}) by the following formula:
f\in C^{\infty}(D_{\Gamma}) is chosen as in Lemma 1.4 which is of compact support this
time, since \Gamma\backslash D_{\Gamma} is compact; for \omega\in\Omega^{p}(M) , let

\langle T^{*}, \omega\rangle=\sum_{\gamma\in\Gamma}\langle T, (fo\gamma^{-1}), \omega\rangle
. (1)

Recall that

\sum f\circ\gamma^{-1}=1 on D_{\Gamma} .
\gamma\in\Gamma

To give a meaning to the expression (1), we need estimate |\langle T , (fo\gamma^{-1}) .
\omega\rangle| .

Now since T is \Gamma-invariant we have

|\langle T, (fo\gamma^{-1})\cdot\omega\rangle|=|\langle T, f\gamma^{*}\omega\rangle|

\leq C||f\cdot\gamma^{*}\omega||_{k}

\leq constant||\gamma^{*}\omega||_{k}

where C is the positive constant chosen in Lemma 1.2 for the compact set
A=supp(f) .

Now let us make a simple observation for a Fuchsian group of the first
kind. We consider

S^{2}=U_{+}\cup S^{1}\cup U_{-}

where U_{+} and U_{-} are respectively the upper disc and the lower disc. The
group \Gamma acts on S^{2} leaving U_{+} , S^{1} and U_{-} invariant and \Gamma\backslash U_{+} and \Gamma\backslash U_{-}

are homeomorphic to a closed Riemann surface of genus g\geq 2 .
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Now \Gamma has a 4g-gon as a fundamental domain and the action of each
\gamma\in\Gamma looks like Fig. 1.

Imagine \gamma\in\Gamma very far away from e\in\Gamma Then the action of \gamma , restricted
to some compact region, say \underline{D} , becomes very much like “minute contrac-
tion” For a 0-current (i.e. a distribution), this does not mean ||\gamma^{*}(\omega)||_{k}

small ( \omega is a function and ||\omega\circ\gamma||_{0} is not small). But if we consider p-current
(for p large), the sum \sum_{\gamma\in\Gamma}||\gamma^{*}(\omega)||_{k} actually converges on compact region
which we are going to show.

Fig. 1.

1^{o} -k-norm on \Omega^{p}(M) .
We always consider S^{n} to be the unit sphere in R^{n+1} . A M\"obius

transformation\in Conf^{+}(S^{n}) is an even-time composite of inversions at n-
dimensional spheres orthogonal to S^{n} . Therefore it acts on R^{n+1}\cup\{\infty\} .

Let V_{\in} be an \epsilon-neighbourhood of S^{n} and let \pi : V_{\Xi}arrow S^{n} be the radial
projaction
Given \omega\in\Omega^{p}(M) , we identify \omega with \pi^{*}(\omega)\in\Omega^{p}(V_{\in}) and write it down
using coordinates of R^{n+1} . Thus

\omega=\sum_{j}\alpha_{j}(x_{1}, \ldots, x_{n+1})dx_{j_{1}}\wedge

\cdot 1 \wedge dx_{j_{p}}
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Fig. 2.

Fig. 3.

where, as in \S 1, j= (j_{1}, \ldots j_{p})\in\{1, . . , n+1\}^{p} . Define the k-norm of \omega by

|| \omega||_{k}=\sum_{j}||\alpha_{j}||_{k}

where

|| \alpha_{j}||_{k}=\max|s|\leq k\{\sup_{x\in V_{\in}}|\frac{\partial^{|s|}\alpha_{j}}{\partial x_{1}^{s_{1}}\cdot\cdot\partial x_{n}^{s_{n}}}(x)|\}

where s= (s_{1}, , s_{n}) and |s|=s_{1}+ \cdot+s_{n} . This k-norm is of course
equivalent to the usual k-norm defined by using coordinates of S^{n} .

2^{O} -M\"obius transformation.
For \gamma\in ConF(S^{n}) and x\in R^{n+1} , D_{x}\gamma (the matrix derivative of \gamma ) is a
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conformal matrix. Denote by |D_{x}\gamma| its norm. Now for \gamma such that \gamma(0)\neq 0

I(\gamma)=\{x\in R^{n+1}||D_{x}\gamma|=1\}

is an n-sphere perpendicular to S^{n} called the isometric sphere of \gamma . It is
very small if \gamma is very far away from e . Suppose \gamma(0)\neq 0 . Then it is known
that such \gamma decomposes as

\gamma=J_{\theta}\circ J_{I(\gamma)}\circ P

where

P\in SO(n+1) ; P keeps I(\gamma) invariant
J_{I(\gamma)} is the inversion at I(\gamma)

J_{\theta} is the inversion at a plane \theta passing through 0.

For details see [Ma]. The transformations J_{\theta} and P does not affect the
derivatives of \gamma . Thus we need only study the derivatives of J_{I(\gamma)} .
3^{O} -Inversion.

For the estimate of the derivative of J_{I(\gamma)} , we shall change the coor-
dinates and consider the following simple situation. Fix \lambda>0 sufficiently
small. Then

x \in R^{n+1}arrow h_{\lambda}(x)=\frac{\lambda^{2}}{|x|^{2}}x\in R^{n+1}

is the inversion at |x|=\lambda . Let us estimate k-th derivative at the region
A=\{x||x|\geq a\} (where a>0 is fixed. We are considering the situation
\lambda<<a) . Now each coordinate of h_{\lambda}(x) is a rational function

\lambda^{2}\frac{g(x)}{f(x)} f, g homogeneous with \deg(g)<\deg(f) .

This property does not change if we take derivatives. That is, we have the

Lemma 2.3 There exists a positive constant C=C(a, k) such that any
i derivative (1 \leq i\leq k) of the coordinates of h_{\lambda} at x\in\{|x|\geq a\} is smaller
than \lambda^{2}C in norm.

Let A be a compact set in D_{\Gamma} . For \gamma\in\Gamma denote by ||\gamma||_{1,k}^{A} the supre-
mum of any the i-th derivative (1 \leq i\leq k) of the coordinates of \gamma on
A .
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Note that in the definition of ||\omega||_{k} , we considered the 0-th derivative
also. But with ||\gamma||_{1,k}^{A} we do not take the 0-derivative into account.

Corollary 2.4 There exists a positive constant C=C(a, k) such that

||\gamma||_{1,k}^{A}\leq\lambda(\gamma)^{2}C

where \lambda(\gamma) is the radius of the isometric sphere of \gamma .

Proof. There exists a>0 such that except for finite number of \gamma\in\Gamma . the
center of the isometric sphere of \gamma is at least a-apart from A . Now Corollary
2.4 follows from the decomposition \gamma=J_{\theta}\circ J_{I(\gamma)}\circ P and Lemma 2.3.

A

limit set isometric spheres

Fig. 4.

Now as before let

\omega=\sum_{j}\alpha_{j}(x_{1}
, . .^{ x_{n+1})dx_{j_{1}}}

’
\wedge \cdot . \wedge dx_{j_{p}}\in\Omega^{p}(S^{n}) .

Let us estimate ||\gamma^{*}\omega||_{k}^{A} for \gamma\in\Gamma (A is compact in D_{\Gamma} ). Let

D_{x}\gamma=(\begin{array}{lll}a_{11} a_{1,n+1}\vdots \ddots \vdots a_{n+1,1} a_{n+1,n+1}\end{array})

Then we obtain

\gamma^{*}\omega=\sum_{i}(\sum_{j}(a_{i_{1},j_{1}} a_{i_{p},j_{p}})\alpha_{j}\circ\gamma dx_{j_{1}}\wedge \wedge dx_{j_{p}})
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and

|| \gamma^{*}\omega||_{k}^{A}\leq constant\sum_{j}\{||\alpha_{j}0\gamma||_{k}^{A}(||\gamma||_{1,k}^{A})^{p}\}

because for \gamma , \sigma\in\Gamma we have (easy to show)

||\gamma\sigma||_{1,k}^{A}\leq C||\gamma||_{1,k}^{A} ||\sigma||_{1,k}^{A} .

Now by the Leibnitz rule we have

||\alpha_{j}0\gamma||_{k}^{A}\leq||\alpha_{j}||_{k}^{\gamma(A)} Q(||\gamma||_{1,k}^{A})

where Q is a polynomial with positive coefficients and with leading term 1.
This is because we consider 0-th derivative in ||\alpha_{j}\circ\gamma||_{k}^{A} . By Corollary 2.4
we have Q\leq constant . Thus we get the following:

Lemma 2.5 We have

||\gamma^{*}\omega||_{k}^{A}\leq C||\omega||_{k} \lambda(\gamma)^{2p} .

It is easy to show, except for a finite number of \gamma\in\Gamma , that we have

\frac{1}{2}\lambda(\gamma)^{2}\leq|\gamma’(0)|\leq\lambda(\gamma)^{2} .

End of the proof of Theorem 2.2.
Let \omega\in\Omega^{p}(S^{n}) and T\in C_{p}^{\Gamma}(D_{\Gamma}) . Define \langle T^{*}, \omega\rangle by

\langle T^{*}, \omega\rangle=\sum_{\gamma\in\Gamma}\langle T, f\circ\gamma^{-1}\cdot\omega\rangle

= \sum_{\gamma\in\Gamma}\langle T, f\gamma^{*}\omega\rangle
.

Then on A=supp(f) we have

|\langle T, f\gamma^{*}\omega\rangle|\leq constant||\gamma^{*}\omega||_{k}^{A}

\leq constant||\omega||_{k}\lambda(\gamma)^{2p} .

Now for z\in D^{n+1} , we have

||D_{z} \gamma||=\frac{\lambda(\gamma)^{2}}{|z-b(\gamma)|^{2}}

where b(\gamma) is the center of the isometric sphere (see [Ma] p. 189).
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Since |z-b(\gamma)|^{2}>constant for any \gamma\in\Gamma . we have

\sum_{\gamma\in\Gamma}|\langle T, f\cdot\gamma^{*}(\omega)\rangle|\leq constant||\omega||_{k}\sum_{\gamma\in\Gamma}\lambda(\gamma)^{2p}

\leq constant||\omega||_{k}\sum||D_{z}\gamma||^{p}

\gamma\in\Gamma

\leq constant||\omega||_{k}

if p>\delta(\Gamma) (the critical exponent of \Gamma ). Thus T^{*} defines a p-current on S^{n} .
It is clear that T^{*} is \Gamma-invariant and that L_{p}(T^{*})=T \square

Remark 2.6 According to Sullivan [Su], if \Gamma is convex-cocompact, then
we have \delta(\Gamma)=d_{H}(\Lambda_{\Gamma}) where d_{H} denotes the Hausdorff dimension.

3. Invariant distributions

Assume that (1) \delta(\Gamma)<1 , (2) \Gamma acts on D_{\Gamma} freely and (3) \Gamma\backslash D_{\Gamma} is
compact and connected. The localization map L_{1} : C_{1}^{\Gamma}(S^{n})arrow C_{1}^{\Gamma}(D_{\Gamma}) is
surjective by Theorem 2.2. Consider the following diagram.

C_{1}^{\Gamma}(S^{n})
arrow d

C_{0}^{\Gamma}(S^{n})

L_{1}\downarrow \downarrow L_{0}

C_{1}^{\Gamma}(D_{\Gamma})
arrow d

C_{0}^{\Gamma}(D_{\Gamma}) arrow C (**)
\hat{\theta}

\pi^{!}\uparrow \uparrow\pi^{!} ||

C_{1}(\Gamma\backslash D_{\Gamma})
arrow d

C_{0}(\Gamma\backslash D_{\Gamma})
arrow\theta C

Here \theta is the augmentation defined by

\theta(T)=\langle T, 1\rangle

where 1 is the function identically equal to 1. The bottom row is exact
since \Gamma\backslash D_{\Gamma} is connected; \hat{\theta} is defined by

\hat{\theta}(T)=\langle T, f\rangle

where f is the function given by Lemma 1.4. Let us show the commutativity
of the diagram (**) . All that need proof is \pi^{!}\circ\theta=\hat{\theta}.

Recall the arguments in \S 1 showing the surjectivity of the map \pi_{!} . It
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says that for T\in C_{0}^{\Gamma}(D_{\Gamma})

\langle(\pi^{!})^{-1}(T), 1\rangle=\langle T, f\pi^{*}(1)\rangle

=\langle T, f\rangle .

In other words

\theta((\pi^{!})^{-1}(T))=\hat{\theta}(T) .

Theorem 3.1 We have

image (L_{0})\supset Ker(\hat{\theta}) .

Proof. This follows from the surjectivity of L_{1} and the exactness of the
second row. \square

This theorem shows that \Gamma-invariant currents abound.
Now let us consider the case that \Gamma is elementary. The simplicity of the

situation enables us to determine the image of L_{0} completely.

Theorem 3.2 Suppose that \Gamma is elementary generated by a single loxO-
dromic element \gamma with repeller a_{+} and attractor a_{-} . Then

Image(L_{0})=Ker(\hat{\theta}) .

a_{+}

Fig. 5.
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Now choose a\in D_{\Gamma} and set

T_{a}= \sum_{n\in Z}\delta_{\gamma^{n}a}

where \delta_{x} denotes the Dirac distribution at a point x .
Clearly T_{a}\in C_{0}^{\Gamma}(D_{\Gamma}) and \hat{\theta}(T_{a})=1 . We are going to construct an

element S_{a}\in C_{0}(S^{n}) such that L_{0}(S_{a})=T_{a} . But S_{a} will fail to be \Gamma
-

invariant. Thanks to the simplicity of the situation this failure will show
Theorem 3.2.

Consider the following sum

S_{a}= \delta_{a}+\sum_{n>0}(\delta_{\gamma^{n}a}-\delta_{a})++\sum_{n<0}(\delta_{\gamma^{n}a}-\delta_{a-})

To show that S_{a} is a well-defined distribution, we only need to show that
for any g\in C^{\infty}(S^{n}) , \langle S_{a}, g\rangle converges. But

\langle S_{a}, g\rangle=g(a)+\sum_{n>0}(g(\gamma^{n}a)-g(a_{+}))+\sum_{n<0}(g(\gamma^{n}a)-g(a_{-}))

and

\sum_{n>0}|g(\gamma^{n}a)-g(a_{+})|\leq constant
\sum_{n>0}d(\gamma^{n}a, a_{+})

\leq constant\sum_{n>0}\lambda^{n}
for some 0<\lambda<1

<+\infty .

The same estimate holds for the sum \sum_{n<0}|g(\gamma^{n}a)-g(a_{+})| , which
proves that S_{a} is a distribution. Clearly L_{0}(S_{a})=T_{a} .

Now let us compute \gamma_{*}(S_{a}) . We have

\langle\gamma_{*}(S_{a}), g\rangle=\langle S_{a}, g\circ\gamma\rangle

=g( \gamma a)+\sum_{n>0}(g(\gamma^{n+1}a)-g(a_{+}))

+ \sum_{n<0}(g(\gamma^{n+1}a)-g(a_{-})) .

So

\langle\gamma_{*}(S_{a})-S_{a}, g\rangle

=g(\gamma a)-g(a)
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+ \{\sum_{n>0}(g(\gamma^{n+1}a)-g(a_{+}))-\sum_{n>0}(g(\gamma^{n}a)-g(a_{+}))\}

+ \{\sum_{n<0}(g(\gamma^{n+1}a)-g(a_{-}))-\sum_{n<0}(g(\gamma^{n}a)-g(a_{-}))\}

= \sum(g(\gamma^{n+1}a)-g(\gamma^{n}a))

n\in Z

=g(a_{+})-g(a_{-}) .

For the proof of the last equality, consider the partial sum

\sum_{n=-N}^{N-1}(g(\gamma^{n+1}a)-g(\gamma^{n}a))

=g(\gamma^{N}a)-g(\gamma^{-N}a)arrow g(a_{+})-g(a_{-})N+\infty .

Thus we have

\gamma_{*}(S_{a})-S_{a}=\delta_{a}+-\delta_{a-} .

Now let us embark upon the proof of Theorem 3.2. By Theorem 3.1
we have already Ker(\hat{\theta})\subset Image(L_{0}) . For absurdity assume L_{0}(S)=T_{a} for
some S\in C_{0}^{\Gamma}(S^{n}) . Consider U=S_{a}-S . Then supp(U)\subset \{a_{+}, a_{-}\} and
\gamma_{*}(U)-U=\delta_{a}+-\delta_{a-} .

Let 1_{+} be a bump function, equal to 1 near a_{+} and 0 near a_{-} . Then
\langle U, 1_{+}\circ\gamma\rangle=\langle U, 1_{+}\rangle . Thus

\langle\gamma_{*}(U)-U, 1_{+}\rangle=0 .

But we also have

\langle\delta_{a}+-\delta_{a-}, 1_{+}\rangle=1 .

This is a contradiction.
Now let T\in C_{0}^{\Gamma}(D_{\Gamma})-Ker(\hat{\theta}) . Then T-\hat{\theta}(T)T_{a}\in Ker(\hat{\theta}) ; so there

exists an element S\in C_{0}^{\Gamma}(S^{n}) such that

T-\hat{\theta}(T)T_{a}=L_{0}(S) .

This implies that T is not an element of Image(L_{0}) . So we have necessarily

Ker (\hat{\theta})=Image(L_{0})

which proves the theorem.
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4. Cross section of the localization map

As before X=\Gamma\backslash D_{\Gamma} . In the previous section, we have shown that
the localization map L_{0} : C_{0}^{\Gamma}(S^{n})arrow C_{0}(X) is surjective onto Ker(\theta) for an
elementary Kleinian group generated by a single loxodromic transformation
\gamma . That is, given a distribution T\in C_{0}(X) , such that \langle T, 1\rangle=0 , one can
choose S\in C_{0}^{\Gamma}(S^{n}) such that L_{0}(S)=T However since the argument
there is indirect, one cannot construct S explicitely even when T is given
concretely. In this section we shall solve this problem by constructing a
cross-section of L_{0} . The construction has two steps. Denote by \overline{C}^{\infty}(S^{n})

the space of C^{\infty}-functions which vanish on the fixed points a_{+} and a_{-} of \gamma

and by \overline{C}(S^{n}) its topological dual. Denote by \overline{C}^{\Gamma}(S^{n}) the subspace of \overline{C}(S^{n})

consisting of the elements U such that \langle U^{*}, \gamma\varphi-\varphi\rangle=0 for any \varphi\in\overline{C}^{\infty}(S^{n}) .
The inclusion \overline{C}^{\infty}(S^{n})(-*C^{\infty}(S^{n}) defines the projection

p : C_{0}^{\Gamma}(S^{n})arrow\overline{C}^{\Gamma}(S^{n}) .

Also we have the localization map

\overline{L}_{0} : \overline{C}^{\Gamma}(S^{n})arrow C_{0}(X) .

Clearly we have L_{0}=\overline{L}_{0}\circ p .
The first step is to construct a cross section

s : C_{0}(X)arrow\overline{C}^{\Gamma}(S^{n}) .

This will be carried out on the whole C_{0}(X) , not only on Ker(\theta) .

Define \overline{\theta} : \overline{C}^{\Gamma}(S^{n})
– C also by \overline{\theta}(U)=\langle U, f\rangle . The second step is the

construction of a cross section

t : Ker(\overline{\theta})arrow C_{0}^{\Gamma}(S^{n}) .

Then t\circ s is the desired cross section of L_{0} .

1^{O} -First step

For any \psi\in\overline{C}^{\infty}(S^{n}) , consider the series

\Psi=\sum_{n\in Z}\psi\circ\gamma^{n}
.

Lemma 4.1 The series \Psi converges in the C^{\infty} -topology on compact subset
in D_{\Gamma} and defines a function \Psi\in C^{\infty}(X) .
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Define a map \sigma : \overline{C}^{\infty}(S^{n})arrow C^{\infty}(X) by \sigma(\psi)=\Psi .

Lemma 4.2 The map \sigma is linear, continuous and surjective.

For the surjectivity, given \Psi\in C^{\infty}(X) we have \Psi=\sigma(f\Psi) . The proof
of the other parts consists of estimations of derivatives. They are more
or less the same as those in \S 2 and of course based upon the fact that \psi

vanishes on the fixed points of \gamma . The details are left to the reader.
Now the cross section

s : C_{0}(X)arrow\overline{C}^{\Gamma}(S^{n})

is defined as the dual of \sigma .

2^{O} -Second step

Choose U\in\overline{C}^{\Gamma}(S^{n}) such that \langle U, f\rangle=0 . Let

g-= \sum_{n\geq 0}fo\gamma^{n}

This function can be extended differentiably to S^{n} . to yield a bump function,
constant by 1 around a_{-} and 0 around a_{+} . Let us define

t : \overline{C}^{\Gamma}(S^{n})arrow C_{0}^{\Gamma}(S^{n})

by the following formula. For \varphi\in C^{\infty}(S^{n}) , let

\langle t(U), \varphi\rangle=\langle U, \varphi 0\rangle

where \varphi_{0}=\varphi-\varphi(a_{-})g_{-}-\varphi(a_{+})(1-g-) . Clearly t(U)\in C^{\Gamma}(S^{n}) . Let us
show that t(U) is \Gamma-invariant. Let

\langle t(U), \varphi 0\gamma-\varphi\rangle

=\langle U, \varphi 0\gamma-\varphi(a_{-})g_{-}-\varphi(a_{+})(1-g-)

-\varphi_{0}0\gamma+\varphi_{0}0\gamma-\varphi_{0}\rangle

=\langle U, \varphi 0\gamma-\varphi(a_{-})g_{-}-\varphi(a_{+})(1-g-)

-\{\varphi 0\gamma-\varphi(a_{-})g_{-}o\gamma-\varphi(a_{+})(1-g_{-}o\gamma)\}

+(\varphi_{0}0\gamma-\varphi 0)\rangle

=(\varphi(a_{-})-\varphi(a_{+}))\langle U, g_{-}o\gamma-g-\rangle+\langle U, \varphi_{0}0\gamma-\varphi 0\rangle .

The first term vanishes since g-\circ\gamma-g_{-}=-f and the second term
vanishes since \varphi_{0}\in\overline{C}^{\infty}(S^{n}) . This completes the construction of the cross
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section t of the projection p.

All that we proved in this paragraph are in fact applicable to a more
general situation.

Let M^{n} be a manifold and let \gamma : Marrow M be a diffeomorphism with
a finte set \Sigma=A\cup R of fixed points. Assume that

(1) all the points of A are attractors, that is, the spectral radius of the
derivatives at these points is smaller than 1;

(2) all the points of R are repellers;
(3) \gamma acts freely and properly discontinuously on M-\Sigma .
The method of constructing s and t works if \gamma satisfies (1), (2) and (3).
There are examples on S^{1} in which there exist the same number of

attractors and repellers, placed alternatively.
Also on S^{n} , there are examples with one attractor and one repeller.

Let us show that they are exhausting. Let n\geq 2 . Consider a small sphere
S centered at an attractor. Denote by Q the closed region bounded by S
and \gamma S . Then \langle\gamma\rangle\backslash Q is a closed manifold, homeomorphic to S^{1}\cross S^{n-1} .

Now \langle\gamma\rangle\backslash (M-\Sigma) is also a manifold by (3). Since n\geq 2 , it is connected.
Therefore we have

\langle\gamma\rangle\backslash Q=\langle\gamma\rangle\backslash (M-\Sigma) .

Now it is easy to show that M=S^{n} and that there are only one
attractor and only one repeller. The case n=1 is left to the reader. But
let us give an example:

Let \overline{\gamma} : Rarrow R be the diffeomorphism given by \overline{\gamma}(x)=x+\alpha\sin(2\pi nx)

where n\in N^{*} and \alpha\in ]0, \frac{1}{2\pi n} [. Then \overline{\gamma} satisfies the relation \overline{\gamma}(x+1)=

\overline{\gamma}(x)+1 and hence induces a diffeomorphism \gamma of the circle S^{1}=R/Z . It
has 2n fixed point

\Sigma=\{0 , \frac{1}{2n} , \frac{2}{2n} , \frac{3}{2n} , . . . ’
\frac{2n-1}{2n}\}

The manifold S^{1}-\Sigma is a disjoint union of 2n intervalles I_{k} , k=
1 , \ldots , 2n .

Let A= \{\frac{2k-1}{2n}|k=1, . , n\} and R= \{\frac{k}{n}|k=0, \ldots, n-1\} . The
spectral radius \rho_{x}(\gamma) , for x\in A and x\in R are respectively equal to 1-2\pi n\alpha

and 1+2\pi n\alpha .
Furthermore the action generated by \gamma on M-\Sigma is free and properly

discontinuous. The quotient manifold X=\langle\Gamma\rangle\backslash (M-\Sigma) is a disjoint union
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of 2n copies (X_{l})_{l=1,\ldots,2n} of the circle. \square

5. Weakly invariant distributions

Here we shall treat a nonelementary group by the same method as in
the previous section. However what we get is a weaker result. For this we
need the concept of weakly \Gamma-invariant distribution.

Definition 5.1 A group \Gamma is called a Schottky group if it is generated by
s elements \gamma_{1} , . . ’

\gamma_{s} such that for mutually disjoint closed balls A_{1} , . , A_{s} ,
B_{1} , \ldots , B_{s} , we have \gamma_{i}(A_{i})=\overline{S^{n}-B_{i}} .

The following facts are well known.
(1) \Gamma\simeq\langle\gamma_{1}\rangle* \cdot . *\langle\gamma_{s}\rangle .
(2) \Gamma acts on D_{\Gamma} freely.
(3) \Gamma\backslash D_{\Gamma} is homeomorphic to \neq_{s}(S^{1}\cross S^{n-1}) .
(4) \Gamma is convex-cocompact and thus by [Su]: \delta(\Gamma)=d_{H}(\Lambda_{\Gamma}) .
(5) \Lambda_{\Gamma} is a tame Cantor set.
(6) Any element of \Gamma is loxodromic.

Definition 5.2 A distribution T\in C_{0}(S^{n}) is said to be weakly \Gamma invariant
if for any \gamma\in\Gamma , supp(\gamma_{*}(T)-T) is contained in \Lambda_{\Gamma} .

Let us denote weakly \Gamma-invariant distributions by C_{0}^{(\Gamma)}(S^{n}) . Clearly the
localization map L_{0} carries C_{0}^{(\Gamma)}(S^{n}) into C_{0}^{\Gamma}(D_{\Gamma}) .

Theorem 5.3 If \Gamma is a Schottky group such that d_{H}( \Lambda_{\Gamma})<\frac{1}{2} , then

L_{0} : C_{0}^{(\Gamma)}(S^{n})arrow C_{0}^{\Gamma}(D_{\Gamma})

is a surjection.

Proof By Theorem 3.1, we have

L_{0}(C_{0}^{(\Gamma)}(S^{n}))\supset L_{0}(C_{0}^{\Gamma}(S^{n}))\supset Ker(\hat{\theta}) .

So we need only to show hat T_{a}\in L_{0}(C_{0}^{(\Gamma)}(S^{n})) , where

T_{a}= \sum_{\gamma\in\Gamma}\delta_{\gamma a}

a\in D_{\Gamma} .

In fact, for any T\in C_{0}^{\Gamma}(S^{n}) we have a decomposition

T=(T-\hat{\theta}(T)T_{a})+\hat{\theta}(T)T_{a} .
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The first summand lies in Ker(\hat{\theta}) since \hat{\theta}(T_{a})=1 . Thus we will have
T\in L_{0}(C_{0}^{(\Gamma)}(S^{n})) .

Now any element \gamma\in\Gamma’=\Gamma-\{e\} is loxodromic. Let a(\gamma) be the
attract of \gamma . For T_{a} define S_{a} as follows.

S_{a}= \delta_{a}+\sum_{\gamma\in\Gamma’}(\delta_{\gamma a}-\delta_{a(\gamma)})
.

Notice that except for a finite number of \gamma , \gamma a and a(\gamma) lie in the isometric
sphere I(\gamma^{-1}) . For a test function g\in C^{\infty}(S^{n}) ,

\langle S_{a}, g\rangle=g(a)+\sum_{\gamma\in\Gamma’}\{g(\gamma a)-g(a(\gamma))\}

and

\sum_{\gamma\in\Gamma}, |g( \gamma a)-g(a(\gamma))|\leq constant\sum_{\gamma\in\Gamma},
| radius I(\gamma^{-1})|

\leq constant\sum_{\gamma\in\Gamma’}|\gamma’(0)|^{\frac{1}{2}}

<+\infty

since d_{H}( \Lambda_{\Gamma})<\frac{1}{2} . Thus S_{a} is a distribution. Clearly L_{0}(S_{a})=T_{a} and the
\Gamma-invariance of T_{a} shows that S_{a}\in L_{0}(C_{0}^{(\Gamma)}(S^{n})) . \square

6. Application to a bigraded cohomology with compact support

We will apply the preceding results to compute a bigraded cohomology
with compact support of a foliation obtained by suspending one of all the
groups \Gamma considered in the above sections. First let us recall some definitions
and useful properties.

6.1. Cohomology of groups
Let \Gamma be a discrete group acting on a module E and denote by C^{k}(\Gamma, E)

the set of all the maps \Gamma^{k}arrow E . We define d : C^{k}(\Gamma, E)arrow C^{k+1}(\Gamma, E)

by

(dc) (\gamma_{1}, , \gamma_{k+1})=\gamma_{1} c(\gamma_{2}, , \gamma_{k+1})

+ \sum_{i=1}^{k}(-1)^{i}c(\gamma_{1}, \ldots, \gamma_{i}\gamma_{i+1}, \ldots, \gamma_{k+1})

+(-1)^{k+1}c(\gamma_{1}, . , \gamma_{k}) .
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The operator d is linear and satisfies d^{2}=0 ; so the image B^{k}(\Gamma, E) of
this operator d:C^{k-1}(\Gamma, E)arrow C^{k}(\Gamma, E) is an ideal of the kernel Z^{k}(\Gamma, E)

of d : C^{k}(\Gamma, E)arrow C^{k+1}(\Gamma, E) . The quotients

H^{k}(\Gamma, E)=Z^{k}(\Gamma, E)/B^{k}(\Gamma, E) for k\in N

are called the cohomology groups of \Gamma with values in the \Gamma-module E.

6.2. Bigraded cohomology
Let \mathcal{F} a codimension n foliation on a manifold N of dimension m+n.

Denote by T\mathcal{F} the tangent bundle of \mathcal{F} and \nu \mathcal{F}=TN/T\mathcal{F} its normal
bundle. Let \Lambda^{q}T^{*}\mathcal{F} and \Lambda^{p*}\nu \mathcal{F} be the vector bundles of exterior g-forms
and exterior p-forms associated respectively to T^{*}\mathcal{F} and \nu^{*}\mathcal{F} . Let A_{\mathcal{F}}^{pq} be
the space of global sections of the bundle \Lambda^{q}T^{*}\mathcal{F}\otimes\Lambda^{p}\nu^{*}\mathcal{F} . An element of
A_{\mathcal{F}}^{pq} is considered to be a \Lambda^{p*}\nu \mathcal{F}-valued q-form along the leaves. Because
\Lambda^{p*}\nu \mathcal{F} is a foliated vector bundle we can define the exterior derivative along
the leaves d_{\mathcal{F}} : A_{\mathcal{F}}^{pq}arrow A_{\mathcal{F}}^{p,q+1} by

d_{\mathcal{F}}= \sum_{i}^{\eta(X_{1}}(’-\cdot 1)^{i \ldots }’ X_{i}\eta(X_{1}X_{q+1}),,\overline{X_{i}},\ldots ,X_{q+1})

+ \sum_{i<j}(-1)^{i+j}\eta([X_{i}, X_{j}], X_{1}, \ldots,\overline{X_{i}} , . . ’
\overline{X_{j}} . ,^{X_{q+1})} .

An easy computation shows that d_{\mathcal{F}}^{2}=0 and thus we obtain a differen-
tial complex

0arrow A_{\mathcal{F}}^{p0}arrow A_{\mathcal{F}}^{p1}d_{F}arrow d_{\mathcal{F}} . . arrow A_{\mathcal{F}}^{pm}d_{F}arrow 0 .

Its homology H^{p,*}(N, \mathcal{F}) is called the bigraded cohomology (foliated cohO-
mology when p=0) of the foliated manifold (N, \mathcal{F}) .

We can also define the bigraded cohomology with compact support as the
homology H_{c}^{p,*}(N, \mathcal{F}) of the differential complex

0arrow\Omega_{\mathcal{F}}^{p0}(M)arrow\Omega_{\mathcal{F}}^{p1}(M)d_{F}arrow d_{\mathcal{F}} . . arrow\Omega_{\mathcal{F}}^{pm}(M)d_{F}arrow 0

where \Omega_{\mathcal{F}}^{p,*}(M) is the space of sections of compact support of the vector
bundle \Lambda^{*}T^{*}\mathcal{F}\otimes\Lambda^{p*}\nu \mathcal{F} .

6.3. The case of a suspension
Let W be a compact manifold and suppose that there exists an faithful

representation \rho : \Gamma=\pi_{1}(W)arrow Diff(M) where Diff(M) is the diffe0-
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morphism group- of a manifold M . Let \overline{W} be the universal covering of W
The foliation \mathcal{F} on \overline{W}\cross M defined by the second projection is invariant
by the diagonal action of \Gamma , thus it induces a foliation \mathcal{F} on the manifold
N=\Gamma\backslash (W\cross M) transverse to the locally trivial fibration Marrow Narrow W

By using the same method as in [ET] we can prove that we have an isomor-
phism

H_{c}^{p,*}(N, \mathcal{F})\cong H^{*}(W, \Omega^{p}(M))

where \Omega^{p}(M) has a structure of a \Gamma-module defined by the induced action
of \Gamma on M. We have also

H_{c}^{p,*}(N, \mathcal{F})\cong H^{*}(\Gamma, \Omega^{p}(M))for*=0 and *=1 . (\mathcal{R})

Let us show that for a free group \Gamma . acting on M in a certain way, the
dimension of H^{1}(\Gamma, \Omega^{p}(M)) is infinite.

Now Z^{1}(\Gamma, \Omega^{p}(M)) consists of twisted homomorphisms, that is, all the
maps c : \Gammaarrow\Omega^{p}(M) such that for \gamma_{1} , \gamma_{2}\in\Gamma

c(\gamma_{1}\gamma_{2})=\gamma_{1}c(\gamma_{2})+c(\gamma_{1}) .

The space B^{1}(\Gamma, \Omega^{p}(M)) consists of those twisted homomorphisms c

such that for some \omega\in\Omega^{p}(M)

c(\gamma)=\gamma\omega-\omega , for all \gamma\in\Gamma

Therefore there exists a natural map

r : H^{1}(\Gamma, \Omega^{p}(M))arrow Hom(\Gamma, \Omega^{p}(M)/K^{p}) ,

where K^{p} is the submodule of \Omega^{p}(M) consisting of \sum_{i=1}^{s}(\gamma_{i}\omega_{i}-\omega_{i}) where
\gamma_{i}\in\Gamma and \omega_{i}\in\Omega^{p}(M) .

Let us show that for a free group \Gamma=Z* *Z , r is a surjection.
Let a_{1} , \ldots , a_{n} be free generators. For any \omega_{1} , \ldots , \omega_{n}\in\Omega^{p}(M) , we claim

that there exists uniquely a twisted homomorphism c such that

c(e)=0 and c(a_{i})=\omega_{i} for i=1 , \ldots , n .

Clearly the surjectivity of r follows from this.
This homomorphism is explicitly defined as follows. First let

c(a_{i}^{-1})=-a_{i}\omega_{i} .
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For a reduced word \gamma=\gamma_{1}\gamma_{2}\cdots\gamma_{n} , where \gamma_{i} is either a_{i} or a_{i}^{-1} , let

c(\gamma_{1} . . \gamma_{n})=\gamma_{1}\gamma_{2}\cdots\gamma_{n-1}c(\gamma_{n})+

. . +\gamma_{1}\gamma_{2}c(\gamma_{3})+\gamma_{1}c(\gamma_{2})+c(\gamma_{1}) .

The verification that c is actually a twisted homomorphism is left to the
reader. \square

Now from the surjectivity of r we get the following

Proposition 6.4 Let \Gamma be a free group acting on a manifold M. Assume
either of the followings

(1) \Gamma acts on M freely and properly.
(2) M=S^{n} , \Gamma is a Kleinian group and n\geq p>\delta(\Gamma)-1 .

Then we have dim\{H^{1}(\Gamma, \Omega^{p}(M))\}=+\infty .

Proof. Since the dual of \Omega^{p}(M)/K^{p} is C_{p}^{\Gamma}(M) , it suffices to show that the
dimension of the space C_{p}^{\Gamma}(M)is+\infty .

The case (1) follows from Proposition 1.6. Let us show the case (2).
Suppose n=p. It is well known that \delta(\Gamma)\leq n . Therefore the proposition
follows from Theorem 2.2. So suppose n-1\geq p\geq\delta(\Gamma)-1 . Consider the
following diagram

C_{p+1}^{\Gamma}(S^{n})
arrow d

C_{p}^{\Gamma}(S^{n})

L_{p+1}\downarrow \downarrow L_{p}

C_{p+1}(\Gamma\backslash D_{\Gamma})
arrow d

C_{p}^{\Gamma}(\Gamma\backslash D_{\Gamma})

Surjectivity of L_{p+1} (Theorem 2.2) implies that

d\{C_{p+1}(\Gamma\backslash D_{\Gamma})\}\subset{\rm Im}(L_{p}) .

But it is well known, easy to show, that \dim\{d(C_{p+1}(\Gamma\backslash D_{\Gamma}))\}=+\infty .
Therefore we have \dim\{C_{p}^{\Gamma}(S^{n})\}=+\infty . \square
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