Automorphisms and conjugate connections

Mitsuhiro Ітон

(Received October 30, 1995)

Abstract. We study how the automorphism group of a Lie group G acts on the space of gauge-equivalence classes of connections on a principal G-bundle P provided P is reducible to H-subbundles. The action is investigated in terms of conjugate connections and holonomy groups.

Key words: conjugate connection, automorphism group, holonomy group.

1. Introduction

Let P be a principal bundle over a manifold M with a structure group G.

We consider the situation that the structure group G of the bundle P happens to be reduced to a closed subgroup H.

Let σ be an automorphism of G leaving fixed all elements of H.

It turns out then that σ induces via the subgroup reduction a transformation of the space of connections on P, called a conjugation, a generalization of the notion of conjugate affine connection in affine differential geometry ([7]). The notion of conjugate connection in a principal bundle is due to S. Kobayashi and E. Shinozaki ([5]).

It is a principal question how this conjugation relates to the gauge theory of connections on a principal bundle.

- S. Kobayashi and Shinozaki gave in [5] a substantial answer to this question as follows.
- **Theorem** ([5]) Let Aut(G, H) be the group of automorphisms of G leaving fixed each element of H. Let $\mathcal{G}(P)$ be the group of gauge transformations of P, and let $\mathcal{C}(P)$ be the space of connections on P. Then
- (i) the group $\operatorname{Aut}(G,H)$ acts on P, $\mathcal{G}(P)$ and $\mathcal{C}(P)$ in a natural way so that it induces an action on $\mathcal{C}(P)/\mathcal{G}(P)$, and
 - (ii) for a fixed Riemannian metric on an oriented M and for an au-

¹⁹⁹¹ Mathematics Subject Classification: 53C05, 58E15.

tomorphism invariant inner product of \mathbf{g} , the Lie algebra of G, $\operatorname{Aut}(G, H)$ acts on the space of Yang-Mills connections and on the moduli space $\mathcal{M}(P)$ of Yang-Mills connections.

The subject of this article is to understand in a more definite way the action of Aut(G, H) on C(P)/G(P) and on $\mathcal{M}(P)$.

Let $\operatorname{Int}(G,H)$ be the subgroup of $\operatorname{Aut}(G,H)$ consisting of inner automorphisms. Then, as will be shown, an inner automorphism acts on each connection as a constant gauge transformation so that the action of $\operatorname{Aut}(G,H)$ restricted to $\operatorname{Int}(G,H)$ on the space $\mathcal{C}(P)/\mathcal{G}(P)$ turns out to be trivial. Namely,

Theorem 1 The action of Aut(G, H) on C(P)/G(P) and on $\mathcal{M}(P)$ induces an action of the group of outer automorphisms Aut(G, H)/Int(G, H) on C(P)/G(P) and on $\mathcal{M}(P)$.

Furthermore we have

Theorem 2 The action of $\operatorname{Aut}(G, H)/\operatorname{Int}(G, H)$ restricted to $\mathcal{C}^*(P)/\mathcal{G}(P)$ and on $\mathcal{M}^*(P)$ is free. Here $\mathcal{C}^*(P)$ denotes the space of connections on P whose holonomy group is G, and $\mathcal{M}^*(P) = \mathcal{M}(P) \cap (\mathcal{C}^*(P)/\mathcal{G}(P))$.

In several cases, a bundle P has non-equivalent reductions to H-subbundles. If P admits, for instance, two non-equivalent H-subbundles Q_1 , Q_2 , then from Theorem 1 the free group generated by two copies of the group $\operatorname{Aut}(G,H)/\operatorname{Int}(G,H)$ inherits an action on the space $\mathcal{C}(P)/\mathcal{G}(P)$. It is shown in Proposition 6 in section 5 that the action is not effective and the quotient of this free group by a certain normal subgroup acts effectively on $\mathcal{C}(P)/\mathcal{G}(P)$ and freely on $\mathcal{C}^*(P)/\mathcal{G}(P)$.

2. Conjugate connections

If the structure group G of P is reducible to a closed subgroup H, then there exist an open covering $\{U_i\}$ of M giving local trivializations of P and sections $\{s_i: U_i \longrightarrow P\}$ such that the transition functions a_{ij} given by

$$s_j(x) = s_i(x) \ a_{ij}(x), \quad x \in U_i \cap U_j \tag{1}$$

take values in $H \subset G$ (refer to Proposition 5.3, p. 52 in [4]).

Note In the principal bundle P the subset $\bigcup_{x\in M} \{s_i(x)a; a\in H\}$ de-

fines a subbundle Q whose structure group is H. The fibre of Q over x is $\{s_i(x)a; a \in H\}$, while the fibre of P is $\{s_i(x)a; a \in G\}$.

The actions of $\operatorname{Aut}(G, H)$ on P, $\mathcal{G}(P)$ and on $\mathcal{C}(P)$ are defined by making use of the sections $\{s_i: U_i \longrightarrow P\}$ and the transition functions $\{a_{ij}: U_i \cap U_j \longrightarrow H\}$.

The formulations we adopt here were first given in [5]. See Remark in §2 in [5].

Let $\sigma \in \operatorname{Aut}(G, H)$. Then σ induces a transformation of $P, \sigma_Q : P \longrightarrow P$, satisfying

$$\sigma_Q \circ R_a = R_{\sigma(a)} \circ \sigma_Q, \quad a \in G \tag{2}$$

We write an arbitrary u in P as $u = s_i(x)$ a for some s_i and $a \in G$ and define

$$\sigma_Q(u) = s_i(x) \ \sigma(a) \tag{3}$$

Suppose that u has another representation $u = s_j(x)$ a'. Then from (1) we have $a_{ij}(x)$ a' = a and

$$s_i(x) \ \sigma(a') = s_i(x) \ a_{ij}(x) \ \sigma(a') = s_i(x) \ \sigma(a) \tag{4}$$

so that the definition of σ_Q does not depend on any choice of local trivializing sections s_i .

Note that σ_Q leaves fixed all points of Q.

A gauge transformation of P is a bundle automorphism of P, namely a diffeomorphism of P commuting with the right action R_a and inducing the identity transformation id_M of the base manifold M.

The group of automorphisms $\operatorname{Aut}(G, H)$ induces the action on $\mathcal{G}(P)$ in the following way

$$g \in \mathcal{G}(P) \longmapsto g^{\sigma} \in \mathcal{G}(P)$$
 (5)

where

$$g^{\sigma}(u) = (\sigma_Q \circ g \circ (\sigma_Q)^{-1})(u), \quad u \in P$$
(6)

Obviously, g^{σ} is a diffeomorphism of P commuting with the right action. It induces id_M on M.

The action of $\operatorname{Aut}(G, H)$ on the space of connections is defined by

$$\omega^{\sigma} = ((\sigma_Q)^{-1})^*(\sigma \circ \omega) \tag{7}$$

Note
$$(\sigma_Q)^{-1} = (\sigma^{-1})_Q$$

The right hand side needs to be explained. $\sigma \circ \omega$ is a **g**-valued 1-form on P, composed of ω and $\sigma \in \operatorname{Aut}(\mathbf{g})$.

 $((\sigma_Q)^{-1})^*$ is the pull-back of 1-forms on P induced by the transformation $(\sigma_Q)^{-1}$ of P.

To see that ω^{σ} is a connection we verify

$$\omega^{\sigma}(X^{\sharp}) = X, \quad X \in \mathbf{g} \tag{8}$$

where X^{\sharp} is the fundamental vector field on P induced by the right action $R_{a(t)},\ a(t)=\exp tX,$ and

$$R_a^* \ \omega^\sigma = Ad(a^{-1})\omega^\sigma, \quad a \in G \tag{9}$$

To simplify the argument we set $\tau = \sigma^{-1}$.

Since at $u \in P$ $X_u^{\sharp} = \frac{d}{dt}(u \exp tX)|_{t=0}$ it follows from $\tau_Q(ua) = \tau_Q(u) \ \tau(a)$ that $(\tau_Q)_*(X_u^{\sharp}) = (\tau(X))_{\tau_Q(u)}^{\sharp}$. So at $\tau_Q(u) \ (\tau_Q^*\omega)(X^{\sharp}) = \tau(X)$ and hence $\omega^{\sigma}(X^{\sharp}) = \sigma(\tau X) = X$.

To show

$$(R_a^* \ \omega^{\sigma})(Y) = Ad(a^{-1})\omega^{\sigma}(Y), \quad Y \in T_u P \tag{10}$$

we have $\tau_Q \circ R_a = R_{\tau(a)} \circ \tau_Q$ and hence

$$(R_{\tau(a)})_*((\tau_Q)_*Y) = (\tau_Q)_*((R_a)_*(Y)) \tag{11}$$

so that

$$(R_a^* \tau_Q^* \omega)(Y) = \omega((\tau_Q)_* (R_a)_* (Y)) = \omega((R_{\tau(a)})_* (\tau_Q)_* Y)$$

= $Ad((\tau(a))^{-1}) \omega((\tau_Q)_* Y)$ (12)

Since $\sigma((\tau(a))^{-1}) = (\sigma\tau(a))^{-1} = a^{-1}$

$$R_a^* \omega^{\sigma}(Y) = \sigma(Ad((\tau(a))^{-1})\omega((\tau_Q)_*(Y))$$

= $Ad(a^{-1})\sigma(\omega((\tau_Q)_*Y) = Ad(a^{-1})\omega^{\sigma}(Y).$ (13)

Definition We call ω^{σ} the σ -conjugate of ω for $\sigma \in \text{Aut}(G, H)$.

On the H-subbundle Q a connection and a gauge transformation are naturally regarded as ones on P. To see this we represent connections on

P and gauge transformations of P in terms of local data on M by applying the local sections $s_i: U_i \longrightarrow P$.

In fact, let ω be a connection on P. Then ω has a local representation

$$\omega = \{\omega_i\} \tag{14}$$

where each $\omega_i = s_i^* \omega$ is a **g**-valued 1-form defined over $U_i \subset M$, the pull-back of ω by the section s_i .

Over $U_i \cap U_j$ they satisfy the compatibility condition

$$\omega_j = a_{ij}^{-1} \omega_i a_{ij} + a_{ij}^{-1} da_{ij}. \tag{15}$$

As a routine business shows, a family of **g**-valued 1-forms defined over each local trivializing neighborhood U_i satisfying the compatibility condition yields conversely a connection on P whose pull-back by each s_i is again itself.

The σ -conjugate ω^{σ} is represented

$$\omega^{\sigma} = \{ \sigma(\omega_i) \}, \tag{16}$$

since $\sigma_Q(s_i(x)) = s_i(x), \ x \in U_i$.

Let ω be a connection on Q. Since each s_i may be a section of Q, each local representative of $\omega = \{\omega_i\}$, $\omega_i = s_i^*(\omega)$, is now a **h**-valued 1-form. $\{\omega_i\}$ satisfies the compatibility condition (15) so that we can regard it as a connection on P, whose σ -conjugate ω^{σ} is ω for any $\sigma \in \operatorname{Aut}(G, H)$.

This means that the set C(Q) of all connections on the H-subbundle Q is a fixed-point set under the Aut(G, H)-action when regarded as connections on P;

$$C(Q) \subset C^{\operatorname{Aut}(G,H)}(P).$$
 (17)

Remark. If $H = \{a \in G; \sigma(a) = a, \sigma \in \operatorname{Aut}(g, H)\}$, then

$$C(Q) = C^{\operatorname{Aut}(G,H)}(P). \tag{18}$$

A gauge transformation of P can be also represented in a local form;

$$g = \{g_i; U_i \longrightarrow G\} \tag{19}$$

satisfying the compatibility condition

$$g_j(x) = a_{ij}^{-1}(x) \ g_i(x) \ a_{ij}^{-1}, \quad x \in U_i \cap U_j.$$
 (20)

Here g_i is given by

$$g(s_i(x)) = s_i(x)g_i(x), \quad x \in U_i$$
(21)

From the definition (6) the σ -conjugate g^{σ} of a $g \in \mathcal{G}(P)$ is then represented as

$$g^{\sigma} = \{ \sigma(g_i); U_i \longrightarrow G \} \tag{22}$$

A gauge transformation of Q is regarded as a $g \in \mathcal{G}(P)$ by requiring $g(ua) = g(u)a, u \in Q, a \in G$.

So, a gauge transformation g of Q satisfies from (22) $g^{\sigma} = g$ for all $\sigma \in \operatorname{Aut}(G, H)$, since such a g has a local form $\{g_i : U_i \longrightarrow G\}$ taking values in H. On the other hand suppose that $H = \{a \in G; \sigma(a) = a, \sigma \in \operatorname{Aut}(G, H)\}$. Then, $g \in \mathcal{G}(P)$ is fixed under the $\operatorname{Aut}(G, H)$ -action if and only if g is a gauge transformation of Q.

We will briefly understand in Theorem given by Kobayashi and Shinozaki how the group $\operatorname{Aut}(G,H)$ acts on $\mathcal{C}(P)/\mathcal{G}(P)$ and on the moduli space $\mathcal{M}(P)$.

We say that connections $\omega_1, \omega_2 \in \mathcal{C}(P)$ are gauge equivalent if $\omega_2 = g^*\omega_1$ for some $g \in \mathcal{G}(P)$.

We apply $((\sigma_Q)^{-1})^*$ and $\sigma \in \operatorname{Aut}(\mathbf{g})$ to $\omega_2 = g^*\omega_1$ to have

$$\omega_2^{\sigma} = ((\sigma_Q)^{-1})^* g^*(\sigma(\omega_1)) = ((\sigma_Q)^{-1})^* g^* \sigma_Q^*((\sigma_Q^{-1})^* (\sigma(\omega_1))$$
 (23)

which is just $(g^{\sigma})^*(\omega_1^{\sigma})$. So,

Proposition 1 Assume that ω_1, ω_2 are gauge equivalent connections on P, namely, $\omega_2 = g^*(\omega_1)$, $g \in \mathcal{G}(P)$. Then, their conjugate ω_1^{σ} and ω_2^{σ} , $\sigma \in \text{Aut}(G, H)$, are gauge equivalent under $g^{\sigma} \in \mathcal{G}(P)$.

Therefore, the automorphism group Aut(G, H) acts naturally on the space of gauge equivalence classes of connections on P;

$$\operatorname{Aut}(G, H) \times \mathcal{C}(P)/\mathcal{G}(P) \longrightarrow \mathcal{C}(P)/\mathcal{G}(P)$$

$$(\sigma, [\omega]) \longmapsto [\omega^{\sigma}] \tag{24}$$

The first part of Theorem ([5]) follows from this proposition.

Let $\Omega = d\omega + \frac{1}{2}[\omega \wedge \omega]$ be the curvature form of a connection ω on P. If we consider the connection as a family $\omega = \{\omega_i\}$ of local **g**-valued 1-forms, then the curvature form $\Omega = \{\Omega_i\}$, $\Omega_i = d\omega_i + \frac{1}{2}[\omega_i \wedge \omega_i]$, is a \mathbf{g}_P -valued, globally defined 2-form on M. Here $\mathbf{g}_P = P \times_{Ad} \mathbf{g}$ is the adjoint bundle of P.

We provide a Riemannian metric on an oriented manifold M and an automorphism invariant positive definite inner product $\langle ., . \rangle$ on \mathbf{g} . The existence of such an inner product is guaranteed if G is a compact Lie group.

The Yang-Mills functional $\mathcal{YM}(\omega)$ is defined by the integral over M of an n-form $\langle \Omega \wedge *\Omega \rangle$ $(n = \dim M)$, which is over U_i given by $\langle \Omega_i \wedge *\Omega_i \rangle$.

Since over $U_i \cap U_j$

$$\Omega_j = a_{ij}^{-1} \Omega_i \ a_{ij}^{-1} \tag{25}$$

and the inner product is automorphism invariant, the two *n*-forms $\langle \Omega_i \wedge *\Omega_i \rangle$ and $\langle \Omega_j \wedge *\Omega_j \rangle$ coincide over $U_i \cap U_j$ so that the functional \mathcal{YM} is well defined.

Let ω^{σ} be the conjugate of ω . Then it has the curvature form Ω^{σ} ;

$$\Omega^{\sigma} = ((\sigma_Q^{-1})^*(\sigma(\Omega)) \tag{26}$$

whose local representation is $(\Omega^{\sigma})_i = \sigma(\Omega_i)$. It follows that

$$\langle (\Omega^{\sigma})_i \wedge *(\Omega^{\sigma})_i \rangle = \langle \Omega_i \wedge *\Omega_i \rangle \tag{27}$$

which implies that $\mathcal{YM}(\omega^{\sigma}) = \mathcal{YM}(\omega)$, $\sigma \in \text{Aut}(G, H)$, that is, the Yang-Mills functional \mathcal{YM} is Aut(G, H)-invariant.

Therefore, if ω is a Yang-Mills connection, so is ω^{σ} .

Remarks. (i) A Yang-Mills connection ω is a solution of the Yang-Mills equation

$$d_{\omega}(*\ \Omega) = 0 \tag{28}$$

where $\Omega \in \Gamma(\mathbf{g}_P \otimes \Lambda_M^2)$ and d_{ω} is the covariant exterior derivative associated to the connection ω . It is obviously seen that the Yang-Mills equation is $\operatorname{Aut}(G, H)$ -invariant, that is,

$$d_{\omega^{\sigma}}(* \Omega^{\sigma}) = (d_{\omega}(* \Omega))^{\sigma}. \tag{29}$$

So we assert again that the moduli space $\mathcal{M}(P)$ is invariant under the action.

(ii) Suppose a base manifold M is an oriented Riemannian 4-manifold. Since $\Omega_i^{\sigma} = \sigma(\Omega_i)$, the curvature form $\{\Omega_i\}$ is self-dual (or anti-self-dual) if and only if so is the curvature form of the σ -conjugate connection. Thus,

when the structure group G of P is reducible to a closed subgroup $H \subset G$, $\operatorname{Aut}(G, H)$ acts naturally on the moduli space of self-dual connections on P (or of anti-self-dual connections).

- (iii) Generalizations of the notion of self-duality are given for a Kähler manifold and for a quaternionic Kähler manifold (for instances see [8] and [6]). We observe that over these manifolds the group $\operatorname{Aut}(G, H)$ acts on the moduli space of respective self-dual connections on P provided the structure group G of P is reducible to H
- (iv) Similarly as the case of connections the automorphism group $\operatorname{Aut}(G, H)$ enjoys an action on the space of Yang-Mills-Higgs fields (ω, Φ) (or monopoles) modulo the gauge transformations of P. Here a Higgs field Φ is a section of \mathbf{g}_P (for Yang-Mills-Higgs fields refer for examples to [2] and [3]). The covariant derivatives of Φ satisfy in terms of the action of $\operatorname{Aut}(G, H)$

$$\nabla^{\sigma}\Phi^{\sigma} = (\nabla\Phi)^{\sigma} \tag{30}$$

Here ∇ and ∇^{σ} mean the covariant derivatives with respect to ω and ω^{σ} , respectively.

3. Inner automorphisms

Before stating the $\operatorname{Aut}(G, H)$ -action on $\mathcal{C}(P)/\mathcal{G}(P)$ in terms of holonomy groups, we make a brief observation that any inner automorphism $\sigma \in \operatorname{Aut}(G, H)$ induces naturally a constant gauge transformation of P.

In fact, if there is an element $b \in G$ such that

$$\sigma(a) = b \ a \ b^{-1}, \quad a \in G, \tag{31}$$

then $R_b \circ \sigma_Q$ gives a gauge transformation, because

$$(R_b \circ \sigma_Q)(ua) = \sigma_Q(u)\sigma(a)b = \sigma_Q(u)ba \tag{32}$$

which is $R_a(R_b \circ \sigma_Q(u))$.

It is easily checked that the gauge transformation $R_b \circ \sigma_Q$ has a local representation consisting of constant mappings $\{g_i = b; U_i \longrightarrow G\}$. Thus, $R_b \circ \sigma_Q$ may be a "constant" gauge transformation.

Furthermore for any $\omega \in \mathcal{C}(P)$ the σ -conjugate ω^{σ} is gauge equivalent to ω with respect to the gauge transformation $g_{\sigma} = R_b \circ \sigma_Q$. This is because

 ω^{σ} is written as

$$R_b^*(g_\sigma^{-1})^*\sigma(\omega) = \sigma(Ad(b^{-1})(g_\sigma^{-1})^*\omega) = (g_\sigma^{-1})^*\omega.$$
(33)

Here we used $\sigma(Ad(b^{-1})(X) = X, X \in \mathbf{g}.$

Thus we get the following

Proposition 2 Let $\sigma \in \text{Int}(G, H)$, the group of inner automorphisms of G leaving fixed all elements of H. Then for each $\omega \in \mathcal{C}(P)$ the σ -conjugate ω^{σ} is gauge equivalent to ω .

Therefore the action of Aut(G, H) is trivial on C(P)/G(P) when restricted to the subgroup Int(G, H).

So, Theorem 1 in Introduction follows from this proposition, namely the action of $\operatorname{Aut}(G, H)$ induces in a natural way an action of the outer automorphism group $\operatorname{Aut}(G, H)/\operatorname{Int}(G, H)$ on $\mathcal{C}(P)/\mathcal{G}(P)$ and also on the moduli space of Yang-Mills (respective self-dual) connections on P.

4. Conjugate connections and holonomy groups

We investigate how the conjugation on connections affect the holonomy groups.

The holonomy group is defined in terms of horizontal curves [4].

Let x_t , $0 \le t \le 1$ be a closed curve in M starting at a point $x \in M$.

Let u be a point of P over x. We say that a lift u_t of x_t , a curve in P whose projection is x_t , starting at u ω -horizontal when it satisfies

$$\omega\left(\frac{d}{dt}u_t\right) = 0\tag{34}$$

The existence of a horizontal lift u_t of x_t starting at u is unique.

When t = 1, u_1 is over x so that there is an $a \in G$ such that $u_1 = ua$.

The set of $a \in G$ given in this way where x_t moves over all closed curves starting at x is a subgroup of G which we call the holonomy group $\Phi(\omega) = \Phi_u(\omega)$ of ω with a reference point u.

If we change a reference point as v = ua, then $\Phi_v(\omega) = a^{-1} \Phi_u(\omega) a$ (see Proposition 4.1, p.72, [4]).

Proposition 3 Let $\sigma \in \text{Aut}(G, H)$. Then, u_t is a ω -horizontal curve if and only if $\sigma_Q(u_t)$ is a ω^{σ} -horizontal curve.

Therefore, for a fixed reference point $u = s_i(x), x \in U_i$ σ induces an isomorphism of $\Phi_u(\omega)$ to $\Phi_u(\omega^{\sigma})$;

$$\sigma: \Phi_u(\omega) \longrightarrow \Phi_u(\omega^{\sigma}); \quad a \longmapsto \sigma(a)$$
 (35)

Proof. Since $\frac{d}{dt}(\sigma_Q(u_t)) = (\sigma_Q)_*(\frac{d}{dt}u_t)$, it follows from the definition (7) of the σ -conjugation

$$\omega^{\sigma} \left(\frac{d}{dt} (\sigma_Q(u_t)) \right) = \sigma \left(\omega \left(\frac{d}{dt} u_t \right) \right). \tag{36}$$

So the first statement is shown.

Take a reference point $u=s_i(x)$. Then u_t and $\sigma_Q(u_t)$ are lifts of the same curve x_t and have the same starting point u. So, for $a\in\Phi_u(\omega)$ $u_1=s_i(x)a$ and thus

$$\sigma_Q(u_1) = \sigma_Q(s_i(x)a) = u\sigma(a) \tag{37}$$

This implies that σ induces an isomorphism between the holonomy groups.

The following lemma is plainly clear. But we have no references to refer to. So we are going to state

Lemma Let $\omega \in \mathcal{C}(P)$ and $g \in \mathcal{G}(P)$. Let u_t be a lift of a closed curve x_t in M.

Then u_t is ω -horizontal if and only if $g^{-1}(u_t)$ is a $g^*(\omega)$ -horizontal curve.

Proposition 4 Let $\sigma \in \operatorname{Aut}(G, H)$ and let $\omega \in \mathcal{C}(P)$ be a connection whose holonomy group $\Phi_u(\omega)$ is G.

If ω^{σ} is gauge equivalent to ω , then σ must be an inner automorphism.

Proof. Suppose $\omega^{\sigma} = g^*(\omega)$ for a $g \in \mathcal{G}(P)$.

For $a \in \Phi_u(\omega)$ let u_t be a ω -horizontal curve for which $u_1 = ua$.

From Proposition 3 $\sigma_Q(u_t)$ is ω^* -horizontal, while from the above lemma $g^{-1}(u_t)$ is a $g^*(\omega)$ -horizontal curve starting at $g^{-1}(u)$. Since u and $g^{-1}(u)$ are on the same fibre, we may set $g^{-1}(u) = ub$, $b \in G$.

From the right translation invariance $R_{b^{-1}}g^{-1}(u_t)$ is $g^*(\omega)$ -horizontal and starts at $ubb^{-1} = u$.

Since $\omega^{\sigma} = g^*(\omega)$, from the uniqueness of solution of the horizontal

curve equation (34) with respect to an initial point it holds

$$\sigma_Q(u_t) = R_{b^{-1}}g^{-1}(u_t), \quad 0 \le t \le 1$$
(38)

for which, if t = 1,

$$\sigma_Q(u_1) = R_{b^{-1}}g^{-1}(u_1). \tag{39}$$

We take a reference point $u = s_i(x), x \in U_i$. Then $\sigma_Q(u_1) = u\sigma(a)$ and $R_{b^{-1}}g^{-1}(u_1) = g^{-1}(u)ab^{-1} = ubab^{-1}$. Thus

$$\sigma(a) = bab^{-1}, \quad a \in \Phi_u(\omega) \tag{40}$$

Since
$$\Phi_u(\omega) = G$$
, σ is an inner automorphism.

We write $\overline{\sigma} \in \operatorname{Aut}(G, H)/\operatorname{Int}(G, H)$ for the equivalence class represented by $\sigma \in \operatorname{Aut}(G, H)$.

It suffices for the proof of Theorem 2 in Introduction to show that if

$$[\omega]^{\overline{\sigma}} = [\omega] \tag{41}$$

for some $\omega \in \mathcal{C}^*(P)$, then $\overline{\sigma}$ is the identity, that is, $\sigma \in \text{Int}(G, H)$.

Here we define the action of $\overline{\sigma}$ as $[\omega]^{\overline{\sigma}} = [\omega^{\sigma}]$.

The condition (41) for $\overline{\sigma}$ is equivalent to that

$$\omega^{\sigma} = g^*(\omega) \tag{42}$$

for a $g \in \mathcal{G}(P)$. But this is just the assumption of Proposition 4. So, Theorem 2 is shown.

Remark. Let ω be a connection having holonomy group not necessarily to be the whole group G. If it has some σ -conjugate ω^{σ} gauge equivalent to ω , i.e., $\omega^{\sigma} = g^*(\omega)$, then the $\sigma \in \operatorname{Aut}(G, H)$ induces from (40) a group conjugation between two subgroups $\Phi_u(\omega)$ and $\Phi_u(\omega^{\sigma})$, which is a condition on an outer automorphism $\overline{\sigma}$ having a fixed point on $\mathcal{C}(P)/\mathcal{G}(P)$.

Of course $\operatorname{Aut}(G,H)/\operatorname{Int}(G,H)$ leaves fixed the subspace $\mathcal{C}(Q)/\mathcal{G}(P)$ pointwise.

5. Further remarks

A principal bundle P of structure group G may have many non-equivalent reductions to H-subbundles even if a subgroup H is fixed. Here H-subbundles Q_1 , Q_2 are equivalent in P if there is a $g \in \mathcal{G}(P)$ sending Q_1

onto Q_2 .

For instance, a principal SU(2) bundle P has the number m of non-equivalent SO(2)-reductions when the base manifold M is a 4-dimension oriented closed manifold;

$$m = \frac{1}{2} \sharp \{ \alpha \in H^2(M; \mathbf{Z}); \alpha \cdot \alpha = k \}. \tag{43}$$

Here $k = c_2(P)[M]$ is the second Chern number of the associated vector bundle $E = P \times_{\rho} \mathbb{C}^2$ and $\alpha \cdot \alpha$ is the quadratic form of α .

Consider the case that P has, for example, two non-equivalent Hreductions, Q_1 and Q_2 .

Then the group Aut(G, H) has the two actions on P derived from the reductions Q_1 and Q_2 .

Proposition 5 (i) Let $\sigma, \tau \in \text{Aut}(G, H)$. If $\sigma \tau = e$ in Aut(G, H), then $\sigma_{Q_1} \circ \tau_{Q_2}$ and $\sigma_{Q_2} \circ \tau_{Q_1}$ act on P as gauge transformations so that $\sigma_{Q_1} \circ \tau_{Q_2}$ and $\sigma_{Q_2} \circ \tau_{Q_1}$ induce the trivial action on C(P)/C(P).

(ii) More generally, if $\sigma \tau \in \text{Int}(G, H)$, then $\sigma_{Q_1} \circ \tau_{Q_2}$ and $\sigma_{Q_2} \circ \tau_{Q_1}$ act trivially on $C(P)/\mathcal{G}(P)$.

Proof. For $a \in G$

$$(\sigma_{Q_1}\tau_{Q_2})(ua) = \sigma_{Q_1}(\tau_{Q_2}(u)\tau(a)) = \sigma_{Q_1}\tau_{Q_2}(u)a, \tag{44}$$

since $\sigma \tau = e$ in Aut(G, H). So, (i) follows.

To show (ii) we let $\mu^{-1} = \sigma \tau$ and have from (i) and $\sigma \tau \mu = e$ that $\sigma_{Q_1}(\tau \mu)_{Q_2} = \sigma_{Q_1}\tau_{Q_2}\mu_{Q_2}$ is a gauge transformation of P so that $\sigma_{Q_1}\tau_{Q_2}\mu_{Q_2}$ acts trivially on $\mathcal{C}(P)/\mathcal{G}(P)$. Since μ is an inner automorphism, μ_{Q_2} and hence $\sigma_{Q_1} \circ \tau_{Q_2}$ act on $\mathcal{C}(P)/\mathcal{G}(P)$ also trivially.

We denote by $\overline{\sigma}_{Q_i}$ the transformation of $\mathcal{C}(P)/\mathcal{G}(P)$ given by $\overline{\sigma} \in \operatorname{Aut}(G,H)/\operatorname{Int}(G,H)$ via the H-reduction $Q_i, i=1,2$ and let

$$\overline{\operatorname{Aut}(G,H)}_{Q_i} = \{ \overline{\sigma}_{Q_i}; \overline{\sigma} \in \operatorname{Aut}(G,H) / \operatorname{Int}(G,H) \}. \tag{45}$$

Then we get a free group generated by $\overline{\operatorname{Aut}(G,H)}_{Q_i}$, i=1,2 and denote it by $\overline{\operatorname{Aut}(G,H)}_{Q_1}*\overline{\operatorname{Aut}(G,H)}_{Q_2}$.

From the above proposition the action of this free group on $\mathcal{C}(P)/\mathcal{G}(P)$ induced by each factor $\overline{\mathrm{Aut}(G,H)}_{Q_i}$ is not effective.

In fact, this free group has a canonical homomorphism

$$\varphi; \overline{\operatorname{Aut}(G, H)}_{Q_1} * \overline{\operatorname{Aut}(G, H)}_{Q_2} \longrightarrow \operatorname{Aut}(G, H) / \operatorname{Int}(G, H),$$
 (46)

$$\varphi((\overline{\sigma_1})_{Q_1}(\overline{\sigma_2})_{Q_2}(\overline{\sigma_3})_{Q_1}\cdots(\overline{\sigma_k})_{Q_2}) = \overline{\sigma_1}\ \overline{\sigma_2}\cdots\overline{\sigma_k}$$

$$(47)$$

whose kernel we denote by S acts on the space $\mathcal{C}(P)/\mathcal{G}(P)$ trivially. So,

Proposition 6 The actions of $\operatorname{Aut}(G,H)$ via the H-reductions Q_1 and Q_2 induce in a natural manner the action on $\mathcal{C}(P)/\mathcal{G}(P)$ of the quotient group $\operatorname{\overline{Aut}}(G,H)_{Q_1}*\operatorname{\overline{Aut}}(G,H)_{Q_2}/S$ of the free group by the normal subgroup S. This action is free on the subspace $\mathcal{C}^*(P)/\mathcal{G}(P)$.

Proof. To verify that this action is free on $\mathcal{C}^*/\mathcal{G}(P)$ let

$$\overline{\rho} = (\overline{\sigma_1})_{Q_1}(\overline{\sigma_2})_{Q_2} \cdots (\overline{\sigma_k})_{Q_2} \tag{48}$$

be an element of $\overline{\operatorname{Aut}(G,H)}_{Q_1} * \overline{\operatorname{Aut}(G,H)}_{Q_2}$ and assume

$$[\omega]^{\overline{\rho}} = [\omega] \tag{49}$$

for an $\omega \in \mathcal{C}^*(P)$.

To show $\overline{\rho} \in S$ we choose in $\overline{\rho}$ a representative $(\sigma_1)_{Q_1}(\sigma_2)_{Q_2}\cdots(\sigma_k)_{Q_2}$ acting on P as a diffeomorphism. Then (49) is equivalent to

$$(((\omega^{(\sigma_k)_{Q_2}})^{(\sigma_{k-1})_{Q_1}} \cdots)^{(\sigma_2)_{Q_2}})^{(\sigma_1)_{Q_1}} = g^*(\omega)$$
(50)

for a $g \in \mathcal{G}(P)$.

Since the holonomy group $\Phi_u(\omega)$ is the whole group G, we iterate the argument in the proof of Proposition 4 and have

$$\sigma_1 \sigma_2 \cdots \sigma_k : G \longrightarrow G$$
 (51)

must be inner. So, $\overline{\rho}$ is in $S = \ker \varphi$.

We finish this article with several remarks on outer automorphism groups.

An automorphism of G induces an automorphism of its Lie algebra \mathbf{g} . When G is simply connected, an automorphism of \mathbf{g} induces conversely an automorphism of the group G (see for example Theorem 3.27 in [9]). So the outer automorphism group $\operatorname{Aut}(G)/\operatorname{Int}(G)$ is isomorphic to that of its Lie algebra \mathbf{g} , namely to $\operatorname{Aut}(\mathbf{g})/\operatorname{Int}(\mathbf{g})$.

The following two facts on outer automorphism groups are well known.

The outer automorphism group $\operatorname{Aut}(G)/\operatorname{Int}(G)$ of a compact Lie group G is compact. If G is compact and semi-simple, then $\operatorname{Aut}(G)/\operatorname{Int}(G)$ is a finite group.

The second fact stems from that every derivation of a semi-simple Lie algebra is an inner derivation.

Any automorphism of a Lie algebra ${\bf g}$ canonically extends as an automorphism of the complexification ${\bf g}^{\bf C}$ commuting with the C-conjugation. Thus the automorphism group ${\rm Aut}({\bf g})$ of ${\bf g}$ is the subgroup in ${\rm Aut}({\bf g}^{\bf C})$ consisting of automorphisms commuting with the C-conjugation.

For complex simple Lie algebras the outer automorphism groups $\operatorname{Aut}(\mathbf{g}^C)/\operatorname{Int}(\mathbf{g}^C)$ are completely determined in terms of the Dynkin diagrams.

If we fix a Cartan subalgebra in $\mathbf{g^C}$, then any coset in $\operatorname{Aut}(\mathbf{g^C})$ modulo $\operatorname{Int}(\mathbf{g^C})$ contains an automorphism leaving the Cartan subalgebra invariant. By using the structure theorem of simple Lie algebras the outer automorphism group of $\mathbf{g^C}$ is then isomorphic to the finite group consisting of linear transformations of the Cartan subalgebra leaving a simple root system, and furthermore isomorphic to automorphisms of the Dynkin diagram of $\mathbf{g^C}$.

In fact, the outer automorphism group is trivial for \mathbf{g}^C of type A_1 , B_ℓ , C_ℓ , E_7 , E_8 , F_4 or G_2 , isomorphic to $\mathbf{Z}_2 \cong \{1, -1\}$ for \mathbf{g}^C of type $A_\ell (\ell \geq 2)$, D_ℓ ($\ell \geq 5$) or E_6 and isomorphic to S_3 , the symmetric group of degree 3 for \mathbf{g}^C of type D_4 (see Theorem 3.29, Ch. X in [1]).

We exhibit one example of outer automorphisms of SU(n) fixing a subgroup.

Let

$$\sigma: \mathbf{su}(n) \longrightarrow \mathbf{su}(n); \quad \sigma(X) = \overline{X}$$
 (52)

is an involution yielding a Riemannian symmetric pair (SU(n), SO(n)).

When $n \geq 3$ the automorphism σ is outer, since rank $\mathbf{su}(n) > \operatorname{rank} \mathbf{so}(n)$ and we have the following theorem. Let \mathbf{g} be a compact semi-simple Lie algebra and let $\theta \in \operatorname{Aut}(\mathbf{g})$ be an involution. Let \mathbf{k} denote the set of fixed points of θ . Then $\theta \in \operatorname{Int}(\mathbf{g})$ if and only if $\operatorname{rank} \mathbf{g} = \operatorname{rank} \mathbf{k}$ (see Theorem 5.6, Ch IX, [1]).

So, when $n \geq 3$, $\mathbf{su}(n) \cong A_{n-1}$ and therefore the outer automorphism group

$$Aut(SU(n), SO(n))/Int(SU(n), SO(n)) \cong \mathbf{Z}_2, \tag{53}$$

(σ is a generator) acts effectively on the space of gauge equivalence classes of connections C(P)/G(P), provided an SU(n) principal bundle P is reducible to an SO(n)-subbundle.

For the n=2 case, contrarily to the $n\geq 3$ case, from the above arguments σ is an inner automorphism and $\operatorname{Aut}(SU(2),SO(2))/\operatorname{Int}(SU(2),SO(2))$ must be trivial so that the moduli space of self-dual SU(2)-connections does not admit any outer automorphism action.

After preparing this manuscript, the author received a paper written by S. Kobayashi and E. Shinozaki in which they obtained a theorem quite similar to our theorems.

References

- [1] Helgason S., Differential Geometry, Lie Groups, and Symmetric Spaces. Academic Press, New York, 1978.
- [2] Itoh M., Generalized magnetic monopoles over contact manifolds. J. Math, Phys. **36**(2) (1995), 742–749.
- [3] Jaffe A. and Taubes C., Vortices and Monopoles. Birkhäuser, Boston, 1980.
- [4] Kobayashi S. and Nomizu K., Foundations of Differential Geometry, Vol. I. Interscience Publishers, New York, 1963.
- [5] Kobayashi S. and Shinozaki E., Conjugate connections in principal bundles. preprint, 1994.
- [6] Nagatomo Y., Rigidity of c₁-self-dual connections on quaternionic Kähler manifolds.
 J. Math, Phys. 33(12) (1992), 4020–4025.
- [7] Nomizu K. and Sasaki T., Affine Differential Geometry. Shokabo, Tokyo, in Japanese, 1994.
- [8] Suh Y., On the anti-self-duality of the Yang-Mills connection over higher dimensional Kaehler manifold. Tsukuba J. Math. 14 (1990), 505–512.
- [9] Warner F., Foundations of Differential Manifolds and Lie Groups. Scott, Foresman and Company, Glenview, Illinois, 1981.

Institute of Mathematics University of Tsukuba, 305 Japan E-mail: itohm@sakura.cc.tsukuba.ac.jp