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Abstract. An elliptic fibration over P3(C), naively arising from the Euler equation

for free rigid body dynamics, is studied from the viewpoint of complex algebraic ge-

ometry. With this elliptic fibration, associated is an elliptic fibration in Weierstraß

normal form, whose generic fibres are isomorphic to those of the original fibration.

This normal form is desingularized in a canonical manner. It is shown that there is a

four-to-one meromorphic mapping from the naive elliptic fibration to the Weierstraß

mormal form. The latter fibration is also shown to be bimeromorphic to the family of

spectral curves arising from the corresponding Manakov equation.

Key words: Free rigid body, elliptic fibration, Weierstraß normal form, quadrics inter-

section, spectral curve.

1. Introduction

The motion of a free rigid body can be described by the Euler equation

dp

dt
= p× (

A−1p
)
,

posed on the angular momentum vector p ∈ R3. Here, A stands for a
positive-definite symmetric 3 × 3 matrix, which is called the inertia tensor
of the rigid body, from the mechanical point of view. This dynamics pos-
sesses two first integrals, the energy and the squared norm of the angular
momentum. The integral curve of the system is contained in the intersection
of the two quadric level surfaces defined by these two first integrals, which
is, in general, a real elliptic curve, consisting of two connected components.
The integral curve coincides with one of them. Thus, the analysis of the dy-
namical system turns out to be the study of the geometry of the intersection
of two quadric surfaces. If one pays attention to the branching phenomena
of the dynamics (cf. [7]), it is natural to study the family of the integral
curves of the dynamics parameterized by the eigenvalues (principal axes) of
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A. In fact, the main result of the present paper concerns the compactifica-
tion of this elliptic fibration, which can be regarded as a description of the
asymptotic behavior of the solutions of the Euler equation for a free rigid
body around the critical values of the parameter from the mechanical point
of view.

In connection with the theory of integrable Hamiltonian systems, one
usually considers the Manakov equation, which is the Lax equation associ-
ated with the original Euler equation. The spectral curve associated with
this Lax equation is again an elliptic curve, so that we obtain another family
of elliptic curves with the same parameters.

The present paper deals with these families of elliptic curves appearing
in the free rigid body dynamics from the complex algebro-geometric point
of view. In Section 2, there are briefly reviewed some mechanical aspects of
free rigid bodies, and then, in Section 3, one is led to the four-fold in the
direct product P3(C) × P3(C) of complex projective spaces defined by the
following equations:

{
ax2 + by2 + cz2 + dw2 = 0,

x2 + y2 + z2 + w2 = 0,

for ((a : b : c : d), (x : y : z : w)) ∈ P3(C) × P3(C). This four-fold
naturally has the structure of elliptic fibration over P3(C) with respect to
the projection to the first component, although it is not flat. This elliptic
fibration is called the naive elliptic fibration in the present paper. It is shown
that the naive elliptic fibration admits no section.

The naive elliptic fibration admits an action of Z2 ×Z2 as some special
sign changes of the coordinates x, y, z, and w, which is free over the regu-
lar fibres, so that the quotient variety is also an elliptic fibration with the
same base space. In Section 4, this quotient variety is desingularized in an
appropriate way.

The main technical argument of this research is centered on Section
5. There has been made many researches on elliptic fibrations from the
viewpoint of algebraic geometry since the comprehensive study of elliptic
surfaces by K. Kodaira [12]. Especially, [9] and [16] treat elliptic fibrations
over compact surfaces. (See also [17] [18].) Roughly speaking, these general
theories assert that one can bring an elliptic fibration into the Weierstraß
normal form, if it admits a global section. Since the quotient fibration
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has a meromorphic section, one obtains the Weierstraß normal form and
desingularizes this form, so that it may, regarded as an elliptic fibration,
have only singular fibres appearing in Kodaira’s list of singular fibres of
elliptic surfaces, as was required in [16]. (In fact, the desingularization can
be obtained from an elliptic fibration over the complex projective plane.)
At the end of Section 5, there is given an explicit meromorphic mapping of
the quotient fibration onto the Weierstraß normal form, so that the naive
elliptic fibration is mapped onto the last elliptic fibration by a four-to-one
meromorphic mapping.

In the last section, Section 6, it is shown that the Weierstraß normal form
and the family of the spectral curves associated with the Manakov equation
are essentially the same. In fact, there is given an explicit bimeromorphic
mapping between them. The Weierstraß normal form describes the family of
spectral curves, although the Weierstraß normal form is introduced purely
from the viewpoint of complex algebraic geometry.

It should be pointed out that the preceding studies on the integrable
Hamiltonian systems from the viewpoint of algebraic geometry have been
mainly concentrated on the spectral curves and their Jacobian varieties (cf.
[2] [4] [11]), but it might be expected that the study of the integrable Hamil-
tonian systems would be enriched more from the algebro-geometric point of
view. The authors hope that the present paper will serve as an example of
such trials.

2. Review of Free Rigid Body Dynamics

A free rigid body is a spinning top whose fixed point coincide with the
centre of mass. This problem is equivalent to the study of the geodesic flow
over the three-dimensional rotation group SO(3,R) with respect to the left-
invariant metrics, defined by the shape of the rigid body. Moreover, using
the canonical symplectic form Θ on T ∗SO(3,R), the geodesic flow can be re-
formulated as a Hamiltonian system (T ∗SO(3,R),Θ, H̃) with respect to the
Hamiltonian H̃, naturally defined by the left-invariant metric on SO(3,R).
In fact, we can regard the metric as a function on T ∗SO(3,R) canonically.

The tangent bundle TSO(3,R) and the cotangent bundle T ∗SO(3,R)
can be identified with the product SO(3,R) × so(3,R) and SO(3,R) ×
so(3,R)∗, respectively, through the left-trivializations:
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TSO(3,R) 3 (g, Xg) → (g, Lg−1∗Xg) ∈ SO(3,R)× so(3,R),

and

T ∗SO(3,R) 3 (g, αg) → (g, Lg
∗αg) ∈ SO(3,R)× so(3,R)∗,

where Lg denotes the left-action by g ∈ SO(3,R) : a 7→ ga for a ∈ SO(3,R).
The left-invariant metric H̃ on SO(3,R) induces the Euclidean metric
on so(3,R), which can be realized by a real symmetric 3 × 3 matrix A

through the Lie algebra isomorphism between so(3,R) and R3 equipped
with the ordinary exterior product ×. Using the natural projection π :
T ∗SO(3,R) → SO(3,R), the canonical one form θ on T ∗SO(3,R) is given
by θ(X̃)|(g,α) = αg(π∗X̃), where X̃ ∈ T(g,αg)(T ∗SO(3,R)). The canonical
symplectic form Θ on T ∗SO(3,R) is defined to be Θ = −dθ. The Hamil-
tonian vector field ΞH̃ of the system (T ∗SO(3,R),Θ, H̃) is defined through
dH̃ = ιΞH̃

Θ, where ι denotes the interior product by a vector field. Identify-
ing T(g,αg)(T ∗SO(3,R)) with TgSO(3,R)×so(3,R)∗, the Hamiltonian vector
field ΞH̃ can be decomposed as ΞH̃ = (ΞH̃

′,ΞH̃
′′), where ΞH̃

′ ∈ TgSO(3,R)
and ΞH̃

′′ ∈ so(3,R)∗. We have the following proposition. For the proof, see
[1, p. 315, Proposition 4.4.1].

Proposition 1 Regarding the differential dH̃ on so(3,R)∗ as an element
of so(3,R), we have

Ξ′
H̃

= Lg∗dH̃,

Ξ′′
H̃

= −ad∗
(dH̃)Π

Π,

where Π = L∗gαg ∈ so(3,R)∗.

Identifying so(3,R) with so(3,R)∗ through the standard metric, we ob-
tain the Euler equation of a free rigid body

dΠ
dt

= [Π,Ω],

where Π,Ω ∈ so(3,R), and where Ω = (dH̃)Π is the image of Π through
the symmetric linear endomorphism of so(3,R) defined by H̃. Equivalently,
the Lie algebra isomorphism R : so(3,R) ∼→ (R3,×) transforms the Euler
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equation into

dp

dt
= p× (A−1p),

where p = R(Π) ∈ R3. Note that Ω = (dH̃)Π = R−1(A−1(R(Π))) and
that there is a unique real symmetric matrix J, with which Π = JΩ + ΩJ.
In fact, we can assume that A = diag(I1, I2, I3). Then, we can set J =
diag(J1, J2, J3), such that I1 = J2 + J3, I2 = J3 + J1, and I3 = J1 + J2.

It is obviously checked that the Euler equation has two first integrals:
the energy H(p) = 1

2pTA−1p and the half of the squared norm of the angular
momentum L(p) = 1

2pTp. The flow of the Euler equation is contained in the
intersection of the two quadric surfaces





1
I1

p2
1 +

1
I2

p2
2 +

1
I3

p2
3 = 2h,

p2
1 + p2

2 + p2
3 = 2l,

where p = (p1, p2, p3)T, and where h and l are determined by the initial
conditions. These equations can be transformed into

{
ax2 + by2 + cz2 + dw2 = 0,

x2 + y2 + z2 + w2 = 0,
(1)

by putting p1 =
√−2l x

w , p2 =
√−2l y

w , p3 =
√−2l z

w , I1 = 1
a , I2 = 1

b ,
I3 = 1

c , and h
l = d. We consider Eqs. (1) in the next section from the

complex algebro-geometric point of view.
On the other hand, it is well-known that the equation (called the Man-

akov equation)

d

dt
(Π + λJ2) = [Π + λJ2,Ω + λJ]

is equivalent to the Euler equation, where λ is a complex parameter (cf.
[13]). Its spectral curve is the set of all eigenvalues µ of the matrices Π+λJ2

parameterized by λ:

det(Π + λJ2 − µE) = 0, (2)
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where (λ, µ) ∈ C2, and where E denotes the unit matrix. It can be shown
that the generic integral curves of the Euler equation are the real part of the
corresponding spectral curves on which the flows are linearized. We mention
the family of the spectral curves (2) in Section 6.

Remark 1 We make a comment on the complete integrability of the
dynamics for a free rigid body. Taking the momentum mapping ϕ :
T ∗SO(3,R) ∼= SO(3,R) × so(3,R)∗ → so(3,R)∗ given by (g, Π) 7→ Ad∗g−1Π
with (g, Π) ∈ SO(3,R)× so(3,R)∗, we have the following commutative dia-
gram:

ϕ−1(Π) � � //

²²

T ∗SO(3,R) H̃ //

ϕ

²²

R

SΠ
� � // so(3,R)∗ H // R

Here, the coadjoint orbit SΠ through Π ∈ so(3,R)∗ is diffeomorphic to the
quotient of the momentum manifold ϕ−1(Π) by the action of the stabilizer
SO(3,R)Π ⊂ SO(3,R) at the point Π ∈ so(3,R)∗. Since the Hamiltonian
system (T ∗SO(3,R),Θ, H̃) is left-invariant, the Marsden-Weinstein reduc-
tion procedure [15] provides the reduced Hamiltonian system (SΠ, ωΠ,H|SΠ)
on the coadjoint orbit through Π equipped with the natural symplectic form
(called Kirrilov-Kostant-Souriau form) ωΠ. This reduced system is com-
pletely integrable in the sense of Liouville-Arnold [3], since the coadjoint
orbits are of dimension two or of dimension zero.

3. Naive Elliptic Fibration

In this section, we study the algebraic variety defined through Eqs. (1)
appearing in the previous section as the integral curve of the Euler equation
up to component.

Let (x : y : z : w) and (a : b : c : d) be homogeneous coordinates of
the complex projective space P3(C). It is known that the intersection of
generic two quadric surfaces in P3(C) is an elliptic curve. Indeed, we have
the following proposition. For another proof, see [4].

Proposition 2 If a, b, c, and d are mutually distinct, then the variety
C in P3(C) defined through Eqs. (1) is an elliptic curve, which has the four
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branch points a, b, c, and d as a double covering over the projective line
P1(C) = C ∪ {∞}.
Proof. Under the hypothesis, the variety C is an algebraic curve. We
consider the curve C0 defined through the equations

{
aX + bY + cZ + dW = 0,

X + Y + Z + W = 0,

where (X : Y : Z : W ) is the homogeneous coordinates of P3(C). It is
obvious that C0 is a smooth rational curve. There are four points on C0

where one of the coordinates is zero:

(X : Y : Z : W ) = (b− c : c− a : a− b : 0),

(d− b : a− d : 0 : b− a),

(d− c : 0 : a− d : c− a),

(0 : c− d : d− b : b− c). (3)

The curve C is the inverse image of C0 through the mapping P3(C) 3 (x :
y : z : w) 7→ (x2 : y2 : z2 : w2) ∈ P3(C) and the mapping C → C0 is a
covering of degree eight with the covering group G = {±1}4/{±(1, 1, 1, 1)}.
Here, we assume that the group {±1}4 acts on P3(C) as

P3(C) 3 (x : y : z : w) 7→ (s1x : s2y : s3z : s4w) ∈ P3(C), (4)

where (s1, s2, s3, s4) ∈ {±1}4, and where the subgroup {±(1, 1, 1, 1)} acts
on P3(C) trivially. The branch points of the covering C → C0 are the four
points in (3).

Let G → {±1} be the group homomorphism induced by the multipli-
cation of all four components: {±1}4 3 (s1, s2, s3, s4) 7→ s1s2s3s4 ∈ {±1}.
Taking the kernel of this group homomorphism, we have the exact sequence
1 → N → G → {±1} → 1. The action by N on C can easily be shown to
be fixed-point-free.

We obtain the sequence of the covering spaces

C → C ′ → C0
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corresponding to the above exact sequence. The second covering C ′ → C0

is a double-covering with four branch points (3), so that C ′ is an elliptic
curve. There exists a lattice L ∼= Z2, such that C ′ ∼= C/L, where we
can naturally identify one of the branch points in C ′ with the zero of the
Abelian group C/L. Since the covering C → C ′ is unramified, there is a
unique subgroup L0 of L = π1(C ′), such that C is isomorphic to C/L0

and that L/L0
∼= N ∼= {±1}2, which implies L0 = 2L. In other words, the

mapping C → C ′ is a surjective homomorphism with the kernel L/2L, which
can be identified with the group of two-torsions of C. This will be called
the canonical four-to-one isogeny, later. Taking the last two components of
the homogeneous coordinates of the branch points (3) as the homogeneous
coordinates of P1(C), for example, the branch locus can be considered to be
(1 : 0) (0 : 1),

(
a−d
c−a : 1

)
, and

(
d−b
b−c : 1

)
, which can be transformed into a, b,

c, and d through an appropriate linear fraction, since the cross ratios of the
both quadruplets coincide with a−d

a−c · b−c
b−d . ¤

Next, we consider the algebraic variety F defined through Eqs. (1) as a
four-dimensional subvariety of P3(C)× P3(C).

Lemma 1 The variety F is a smooth four-fold.

This lemma is verified by a straightforward calculation of Jacobian ma-
trix. Moreover, we have the following proposition.

Proposition 3 The variety F is rational, i.e. bimeromorphic to P4(C).

Proof. Taking the homogeneous coordinates ((a : b : c : d), (x : y : z : w))
∈ P3(C) × P3(C), it can easily be checked that the projection onto the
second component induces the projection from F onto the quadric surface
x2 + y2 + z2 + w2 = 0 in P3(C). Then, F possesses the structure of P2(C)-
bundle over P1(C)× P1(C), which is bimeromorphic to P4(C). ¤

On the other hand, the projection onto the first component P3(C) ×
P3(C) 3 ((a : b : c : d), (x : y : z : w)) 7→ (a : b : c : d) ∈ P3(C) makes F an
elliptic fibration over P3(C). This is a direct consequence of Proposition 2.
(An elliptic fibration is defined to be a proper surjective holomorphic map-
ping between complex spaces with generic fibres being elliptic curves. We
sometimes refer to its total space as an elliptic fibration, as well.) Although
the four-fold itself is rational, it is not so simple to investigate the elliptic
fibration πF : F → P3(C). In fact, over the six planes
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a− b = 0, a− c = 0, a− d = 0, b− c = 0, b− d = 0, c− d = 0,

the fibres are not smooth elliptic curves, and even over the point (a : b :
c : d) = (1 : 1 : 1 : 1), the fibre is not a curve, but a quadric surface in
P3(C). In particular, the elliptic fibration πF is not flat. Here, we mention
the classification of the fibres of πF , which is essentially given in [6]:

Classification of the fibres of πF

1. In the case where the coordinates a, b, c, and d are distinct, the fibres
π−1

F (a : b : c : d) are smooth elliptic curves by Proposition 2.
2. In the case where only two of the coordinates a, b, c, and d are equal, the

fibre consists of two smooth rational curves intersecting at two points.
This is a singular fibre of type I2 in Kodaira’s notation (cf. [12] or [5]).

3. In the case where two of the coordinates a, b, c, and d are equal and
that the other two are also equal without further coincidence, the fibre
consists of four smooth rational curves intersecting cyclically. This is a
singular fibre of type I4 in Kodaira’s notation.

4. In the case where three of the coordinates a, b, c, and d are equal without
further coincidence, the fibre is a smooth rational curve, as a point set,
but with multiplicity two. This singular fibre is not included in the list
of singular fibres of elliptic surfaces by Kodaira.

5. In the case where all the coordinates a, b, c, and d are equal, Eqs. (1)
define a space quadric surface x2 + y2 + z2 + w2 = 0.

Remark 2 Here, we briefly mention the relation between the classifica-
tion of singular fibres of the naive elliptic fibration πF and the branching
phenomena of the dynamical system of the Euler equation. It is well-known
that there appear two pairs of stable equilibria on the generic coadjoint orbit
in so(3)∗, where we assume that I1, I2, and I3 are distinct. (See, e.g., the
front cover of [14].) These two pairs of simply closed curves correspond to
the real part of the singular fibre of type I2. (Note that we have to take care
of the term

√−2l, when we determine the real structure. See the transfor-
mation to obtain Eqs.(1).) There are also four heteroclinic orbits connecting
the two unstable equilibria on the coadjoint orbit. The union of these four
orbits, including the unstable equilibria, corresponds to the real part of the
singular fibre of type I2. Clearly, the generic integral curves appear in pair
on the coadjoint orbit and they correspond to the real part of the regular
fibres of the naive elliptic fibration. On the other hand, a rigid body is
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called a symmetric top, when two of the principal axes I1, I2, and I3 are
equal. In this case, the pair of generic integral curves, which are symmetric
with respect to one of the three coordinate planes, and each of which is a
circle, corresponds to the real part of the singular fibre of type I2. The in-
tersection of the coadjoint orbit and the coordinate plane, which is a circle,
corresponds to the real part of the singular fibre appearing as a rational
curve with multiplicity two. Further, there is one pair of stable equilibria on
the coadjoint orbit, for the symmetric top. This pair corresponds to the real
part of the singular fibre of type I4. The two-dimensional fibre corresponds
to the case where I1 = I2 = I3.

The following proposition states another difficult aspect of the elliptic
fibration πF : F → P3(C).

Proposition 4 There exists no local holomorphic section of πF on any
neighbourhood of the point (a : b : c : d) = (1 : 1 : 1 : 1).

Proof. We concentrate ourselves in the coordinate neighbourhood with
d 6= 0 and w 6= 0 of P3(C) × P3(C), where we put d = 1 and w = 1, and
where we regard ((a, b, c), (x, y, z)) as the inhomogeneous coordinates. Set
a′ = a − 1, b′ = b − 1, and c′ = c − 1. The equations defining F can be
expressed as

{
a′x2 + b′y2 + c′z2 = 0,

x2 + y2 + z2 + 1 = 0.

Assume that there is a holomorphic section near a fixed point (a′, b′, c′) =
(a′0, b

′
0, c

′
0). Then, the intersection of the section and the fibre over

(a′, b′, c′) = (a′0, b
′
0, c

′
0) can be determined by the following equations:





F0(a′, b′, c′, x, y, z) = 0

a′x2 + b′y2 + c′z2 = 0,

x2 + y2 + z2 + 1 = 0,

a′ = a′0,

b′ = b′0,

c′ = c′0,
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where F0 is a locally defined holomorphic function. The Jacobian matrix of
these equations is




∂F0

∂a′
∂F0

∂b′
∂F0

∂c′
∂F0

∂x

∂F0

∂y

∂F0

∂z

x2 y2 z2 2a′x 2b′y 2c′z
0 0 0 2x 2y 2z

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0




.

Since F0 = 0 defines the image of the section, it can be observed that the
determinant of this Jacobian matrix vanishes only at a′ = b′ = c′ = 0.
This is impossible, because the determinant is a holomorphic function of
(a′, b′, c′). ¤

A general theory of the elliptic fibrations in [17] asserts that an elliptic
fibration with a global meromorphic section has an elliptic fibration in Weier-
straß normal form within its bimeromorphic equivalent class. As to our naive
elliptic fibration, we have the following proposition.

Proposition 5 The naive elliptic fibration πF : F → P3(C) has no mero-
morphic section.

Proof. The proposition can be shown by the famous Greek argument as
follows: Assume that there would be a meromorphic section of πF . Then,
by the GAGA principle, this section should be a rational section, so that we
would have four homogeneous polynomials s0, s1, s2, s3 in a, b, c, d, which
would have no common divisor and which would satisfy the following:

{
s2
0 + s2

1 + s2
2 + s2

3 = 0,

as2
0 + bs2

1 + cs2
2 + ds2

3 = 0.
(5)

From this, we would have

(a− d)s2
0 + (b− d)s2

1 + (c− d)s3
2 = 0. (6)

If one of s0 and s1 could be a multiple of c − d, the other should be also
divided by c− d, so that s2 should be by (6). Further, s3 would be divisible
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by c−d from (5). This contradicts to our assumption. Now, we assume that
neither s0 nor s1 be divisible by c− d. Let š0 and š1 be the polynomials in
a, b, c obtained from s0 and s1 by setting d = c. These polynomials would
satisfy

(a− c)š2
0 + (b− c)š2

1 = 0. (7)

This implies š0 = š1 = 0. For, otherwise, both š0 and š1 would be non-zero,
so that

(
š1
š0

)2 = a−c
c−b is a non-zero element of the rational function field in a,

b, c. It is further to be noted that the polynomial ring in a, b, c is a UFD and
that the notion of prime factorization naturally extends to the quotient field.
Since a − c and c − b are obviously prime, the prime factorization of

(
š1
š0

)2

should coincide with a−c
c−b . On the other hand, this should be the double of

the prime factorization of š1
š0

, which is clearly a contradiction. From (6), s2

would be divisible by c − d. Then, Eq.(5) would imply that s3 would be
divisible by c− d. This is again a contradiction. ¤

From this proposition, we will rather form a quotient fibration without
changing the base space in the next section, and show that it has global
meromorphic sections.

4. Quotient Elliptic Fibration

Let P4(C; 2 : 1 : 1 : 1 : 1) be the four-dimensional weighted projective
space of weight (2 : 1 : 1 : 1 : 1) and (P : X : Y : Z : W ) its weighted
homogeneous coordinates. Note that the weighted projective space P4(C; 2 :
1 : 1 : 1 : 1) is the quotient manifold of C5 \ {0} by the action of C∗
as C5 \ {0} 3 (P, X, Y, Z,W ) 7→ (u2P, uX, uY, uZ, uW ) ∈ C5 \ {0}, where
u ∈ C∗. We consider the four-dimensional variety Q in P4(C; 2 : 1 : 1 : 1 : 1)
×P3(C) defined through





P 2 = XY ZW,

0 = aX + bY + cZ + dW,

0 = X + Y + Z + W,

(8)

where (a : b : c : d) is the homogeneous coordinates of P3(C) as in the
previous section.

The relation between the four-dimensional varieties F and Q can be
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described by the mapping P3(C)× P3(C) 3 ((x : y : z : w), (a : b : c : d)) 7→
((P : X : Y : Z : W ), (a : b : c : d)) ∈ P4(C; 2 : 1 : 1 : 1 : 1) × P3(C), where
P = xyzw, X = x2, Y = y2, Z = z2, W = w2. Indeed, this holomorphic
mapping induces a surjective mapping f : F → Q. We recall the group G =
{±1}4/{±(1, 1, 1, 1)} and the exact sequence 1 → N → G → {±1} → 1,
appearing in the proof of Proposition 2. Since the action of G on P3(C) is
induced by that of {±1}4 in (4), it is obvious that the mapping f : F → Q

is a realization of the quotient of F by N , i.e. Q ∼= F/N .
We mention the singularities of the quotient variety Q. Though the

ambient space P4(C; 2 : 1 : 1 : 1 : 1) × P3(C) of Q itself has a singularity
where (P : X : Y : Z : W ) = (1 : 0 : 0 : 0 : 0), the variety Q does not pass
through it. The variety Q, however, has its own singularity.

Proposition 6 The singularity of the variety Q consists of the six surfaces

P = 0, X + Y = 0, Z = W = 0, a = b;

P = 0, X + Z = 0, Y = W = 0, a = c;

P = 0, X + W = 0, Y = Z = 0, a = d;

P = 0, Y + Z = 0, X = W = 0, b = c;

P = 0, Y + W = 0, X = Z = 0, b = d;

P = 0, Z + W = 0, X = Y = 0, c = d, (9)

which is the image of those points of F where the action by N has non-trivial
stabilizer.

The proof of this proposition can also be performed by a straightforward
calculation of the Jacobian matrix. Here, we give the list of the points on
F , where the stabilizer of the action by N is non-trivial.

(x : y : z : w) (a : b : c : d) stabilizer

(1 : ±√−1 : 0 : 0) a = b 〈(1, 1,−1,−1)〉
(1 : 0 : ±√−1 : 0) a = c 〈(1,−1, 1,−1)〉
(1 : 0 : 0 : ±√−1) a = d 〈(−1, 1, 1,−1)〉
(0 : 1 : ±√−1 : 0) b = c 〈(1,−1,−1, 1)〉
(0 : 1 : 0 : ±√−1) b = d 〈(1,−1, 1,−1)〉
(0 : 0 : 1 : ±√−1) c = d 〈(1, 1,−1,−1)〉
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Note that the six surfaces in (9) do not intersect with each other. This can
be verified easily. Since the action by N preserves the fibres of the elliptic
fibration πF : F → P3(C), and since the quotients of the regular fibres by
N are also smooth elliptic curves as shown in the proof of Proposition 2,
the quotient variety Q is an elliptic fibration over P3(C), which we denote
by πQ : Q → P3(C).

We explain the types of the fibres of πQ. Except the fibre over (a : b :
c : d) = (1 : 1 : 1 : 1), the fibres of πQ are curves.

Classification of the fibres of πQ

1. The case where the coordinates a, b, c, and d are distinct:
In this case, the fibres π−1

Q (a : b : c : d) are smooth elliptic curves by the
proof of Proposition 2.

2. The case where only two of the coordinates a, b, c, and d are equal:
We can assume that a 6= b 6= c = d 6= a without loss of generality.

Proposition 7 If a 6= b 6= c = d 6= a, the fibre is a cubic curve with a
double point, which is the intersection of the fibre π−1

Q (a : b : c : d) and
the singular set P = 0, Z + W = 0, X = Y = 0, c = d in (9).

3. The case where two of the coordinates a, b, c, and d are equal and that
the other two are also equal without further coincidence:
We can assume that a = b 6= c = d without loss of generality.

Proposition 8 If a = b 6= c = d, the fibre π−1
Q (a : b : c : d) is the

union of two smooth rational curves intersecting at two points, which are
the intersection of the fibre and the singular sets P = 0, X + Y = 0,
Z = W = 0, a = b and P = 0, Z + W = 0, X = Y = 0, c = d in (9),
respectively.

4. The case where three of the coordinates are equal without further coin-
cidence:
We can assume that a 6= b = c = d without loss of generality.

Proposition 9 If a 6= b = c = d, the fibre is a smooth rational curve,
which intersects with the singular sets P = 0, Y + Z = 0, X = W = 0,
b = c; P = 0, Y + W = 0, X = Z = 0, b = d; P = 0, Z + W = 0,
X = Y = 0, c = d, at three distinct points.

5. The case where a = b = c = d:
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In this case, the fibre is a surface with six singular points (P : X : Y : Z :
W ) = (0 : 1 : −1 : 0 : 0), (0 : 1 : 0 : −1 : 0), (0 : 1 : 0 : 0 : −1), (0 : 0 : 1 :
−1 : 0), (0 : 0 : 1 : 0 : −1), (0 : 0 : 0 : 1 : −1), all of which are A1-singular
points. Note that these six singularities are the intersections of the fibre
π−1

Q (1 : 1 : 1 : 1) and the six singular sets in (9).

Desingularizing the variety Q by blowing-ups, we can obtain a smooth
elliptic fibration Q̂ over P3(C), which is bimeromorphic to Q, in the sense
that there is a bimeromorphic mapping between the Zariski open subsets of
the elliptic fibrations consisting of the regular fibres. In fact, the smooth
variety Q̂ can be realized as the blowing-up of Q separately along the disjoint
six surfaces (9). We mention the types of the singular fibres of the elliptic
fibration π bQ : Q̂ → P3(C), which can be determined essentially by those of
πQ.

Classification of the fibres of π bQ

1. The case where the coordinates a, b, c, and d are distinct:
In this case, the fibres π−1

bQ (a : b : c : d) are smooth rational curves as in
the classifications of the fibres of πQ.

2. The case where only two of the coordinates a, b, c, and d are equal:
In this case, the fibres π−1

bQ (a : b : c : d) consist of two rational curves
intersecting at two points. These are singular fibres of type I2 in Kodaira’s
notation.

3. The case where two of the coordinates a, b, c, and d are equal and that
the other two are also equal without further coincidence:
In this case, the fibres π−1

bQ (a : b : c : d) consist of four smooth ratio-
nal curves intersecting cyclically. These are singular fibres of type I4 in
Kodaira’s notation.

4. The case where three of the coordinates are equal without further coin-
cidence:
In this case, the fibres π−1

bQ (a : b : c : d) consist of four rational curves
intersecting as in Figure 1. These singular fibres do not belong to the list
of singular fibres of elliptic surfaces.

Figure 1.
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5. The case where all the coordinates are equal:
In this case, the fibre is the desingularization of the surface π−1

Q (1 : 1 : 1 :
1) along the six A1-singularities. The resulting smooth surface is a del
Pezzo surface of degree two, which can be obtained as a double covering
of P2(C) branched over four lines in general position.

The elliptic fibration Q̂ is smooth, but is non-flat. From the viewpoint
of complex algebraic geometry, we aim to construct an elliptic fibration
Ŵ which is bimeromorphic to Q and to Q̂, i.e. there are biholomorphic
mappings respecting the fibrations between the Zariski open subsets of Q,
Q̂, and Ŵ consisting of the regular fibres, and which satisfies the following
conditions:

(A) Ŵ is smooth and is a flat elliptic fibration.
(B) The singular fibres of Ŵ are of types contained in Kodaira’s classifica-

tion list of the singular fibres of elliptic surfaces (cf. [12] or [5]).

In order to construct the desired elliptic fibration Ŵ , it is needed to
modify the base space P3(C) of πQ and π bQ. In fact, it is shown that Ŵ can
be obtained from the elliptic fibration W in Weierstraß normal form, which
is constructed in the next section.

As was mentioned at the last of the previous section, the quotient elliptic
fibration has global meromorphic sections.

Proposition 10 The quotient elliptic fibration πQ : Q → P3(C) has mero-
morphic sections.

Proof. It can easily be checked that the mappings (a : b : c : d) 7→ (P : X :
Y : Z : W ) = (0 : b − c : c − a : a − b : 0), (0 : b − d : d − a : 0 : a − b), (0 :
c − d : 0 : d − a : a − c), (0 : 0 : c − d : d − b : b − c) give rise to global
meromorphic sections of πQ. ¤

This fact assures the existence of an elliptic fibration in Weierstraß nor-
mal form within its bimeromorphic equivalent class, but we construct the
Weierstraß normal form in a concrete way as in the next section.

5. Weierstraß Normal Form

In order to construct the desired elliptic fibration stated as in the end of
the previous section, we utilize the notion of Weierstraß normal form. Some
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of its generalities are mentioned in Subsection 5.1. See [8], [16], [17], [18],
for detailed general discussion. In Subsection 5.2, we give the Weierstraß
normal form πW : W → P3(C) for the naive elliptic fibration πF . Since the
Weierstraß normal form W has singularities on its total space, we desingular-
ize it in Sub-subsection 5.3.1. After taking the blowing-up ΦB : B → P3(C)
of the base space of πW with the centre at (a : b : c : d) = (1 : 1 : 1 : 1), we
introduce an elliptic fibration πT : T → E in Weierstraß normal form over
the exceptional set E of the blowing-up ΦB , which will be related to πW in
Proposition 13. Because the total space T of πT is still singular, we give
its desingularization T̂ . In fact, taking an appropriate blowing-up Ê of the
exceptional set E, the desingularization T̂ can be shown to be an elliptic
fibation over Ê which satisfies the conditions (A) and (B) stated at the last
of the previous section. By means of this fibration and Proposition 13, the
desired elliptic fibration πcW : Ŵ → B̂ can be given as a fibraiton over an
appropriate blowing-up B̂ of B. Its singular fibres are listed in Theorem
2. Finally, we give a bimeromorphic mapping between Q and W in Sub-
subsection 5.3.2. Here, we add diagrams which explain the relation of the
fibrations appearing in Subsection 5.3 as in Figure 2 and Figure 3:

Figure 2. Figure 3.

5.1. Some Generalities
Let S be a complex manifold and L → S a holomorphic line bundle over

it. We choose three holomorphic sections e1, e2, e3 ∈ H0(S,L⊗2), such that
e1 + e2 + e3 = 0. Let (x : y : z) be the homogeneous fibre coordinates of the
P2(C)-bundle P (L⊗2 ⊕ L⊗3 ⊕OS) over S, where OS denotes the structure
sheaf of S, which we identify with the trivial line bundle over S. Consider
the hypersurface Σ of the total space P of P2(C)-bundle P (L⊗2⊕L⊗3⊕OS)
defined through the equation

y2z = 4(x− e1z)(x− e2z)(x− e3z), (10)
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or, equivalently,

y2z = 4x3 − g2xz
2 − g3z

3, (11)

where g2 = −4(e1e2 + e2e3 + e3e1), and g3 = 4e1e2e3 are holomorphic sec-
tions of L⊗4 and L⊗6, respectively. The discriminant ∆ and the functional
invariant J are given by

∆ = g3
2 − 27g2

3 = 16(e1 − e2)2(e2 − e3)2(e3 − e1)2,

J =
g3
2

∆
= − 4(e1e2 + e2e3 + e3e1)3

(e1 − e2)2(e2 − e3)2(e3 − e1)2
.

Restricting the natural projection P → S to Σ, we have an elliptic fibration
πΣ : Σ → S. This elliptic fibration is called in Weierstraß normal form. As
is easily observed, this elliptic fibration is flat, but has singularities on its
total space. These singularities can be determined as follows:

Proposition 11 ([16]) Let G2, G3, and D be the divisors on S defined by
g2 = 0, g3 = 0, and ∆ = 0, respectively. We write a point of P in the form
(x : y : z;σ) with σ being its projection onto S. Then, we have the following
statement.

1. Σ is smooth when z = 0 and the set of {(x : y : z) = (1 : 0 : 0)} of the
total space P gives a holomorphic section of the fibration πΣ.

2. If Σ is singular at (x : y : z;σ), then we have y = 0 and z 6= 0 necessarily.
3. For Σ to be singular at (0 : 0 : z;σ), it is necessary and sufficient that

both G2 and G3 contain σ and that G3 is singular at σ.
4. For Σ to be singular at (x : 0 : z;σ) with x 6= 0, it is necessary and

sufficient that neither G2 nor G3 contains σ, but D contains σ and that
it is singular at σ. In this case, we have (x : 0 : z) = (−3g3 : 0 : 2g2).

From this proposition, it can be concluded that the singular fibres of the
elliptic fibration πΣ lies over the support of the divisor D on the base space
S. As is discussed in the next subsection, we give the holomorphic sections
e1, e2, and e3 in association with the naive elliptic fibration πF : F → P3(C),
and construct an elliptic fibration in Weierstraß normal form.

Remark 3 In the general theory of elliptic fibrations, it is often required
that an elliptic fibration in Weierstraß normal form should be minimal, in
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the sense that there is no prime divisor Γ on S with which both G2 ≥ 4Γ and
G3 ≥ 6Γ are satisfied. In fact, the elliptic fibration in Weierstraß normal
form which we construct in the next subsection is minimal.

5.2. Weierstraß Normal Form for F

In this subsection, we define the holomorphic line bundle L over P3(C)
and the holomorphic sections e1, e2, and e3 of L⊗2, or equivalently g2 of
L⊗4 and g3 of L⊗6, so that we obtain the Weierstraß normal form for the
naive elliptic fibration πF . Following Proposition 2, the regular fibres of
πF are the double covering of P1(C) over the four points a, b, c, and d.
These four points are transformed into κ := (a−c)(b−d)

(a−d)(b−c) , 1, 0, and ∞ by

the linear fraction (z−c)(b−d)
(z−d)(b−c) , and, subsequently, into 2κ−1

3 , 2−κ
3 , −κ+1

3 ,
and ∞ by subtracting the mean of the first three. The triple 2κ−1

3 , 2−κ
3 ,

−κ+1
3 essentially determine the sections e1, e2, e3, but there still remains

the ambiguity of scale changes. For this reason, we are freed from the
artificial denominator (a− d)(b− c) and we can replace it by the square of
any nontrivial section s of OP3(C)(1), so that we have on the open set Us

where s 6= 0:

e1 =
1

3s2
{(a− b)(c− d) + (a− c)(b− d)},

e2 =
1

3s2
{−2(a− b)(c− d) + (a− c)(b− d)},

e3 =
1

3s2
{(a− b)(c− d)− 2(a− c)(b− d)}. (12)

We can, then, regard them as the local expression on Us of the sections e1,
e2, e3 of OP3(C)(2). Thus, we should take L = OP3(C)(1).

Further parameters can be calculated as follows:

g2 =
4

3s4
{(a− b)(c− d) + ω(a− c)(b− d)}

× {(a− b)(c− d) + ω2(a− c)(b− d)},

g3 =
4

27s6
{(a− b)(c− d) + (a− c)(b− d)}

× {−2(a− b)(c− d) + (a− c)(b− d)}
× {(a− b)(c− d)− 2(a− c)(b− d)},
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∆ =
16
s12

(a− b)2(a− c)2(a− d)2(b− c)2(b− d)2(c− d)2,

J =
{(a− b)2(c− d)2 + (a− c)2(b− d)2 + (a− d)2(b− c)2}3

54(a− b)2(a− c)2(a− d)2(b− c)2(b− d)2(c− d)2
.

Here, ω = −1+
√−3
2 is a cubic root of the unit. We denote the elliptic

fibration over P3(C) in Weierstraß normal form defined through Eq. (10) or
Eq. (11) with the above parameters by πW : W → P3(C). (Here, W should
not be confused with one of the coordinates in the weighted projective space
P4(C; 2 : 1 : 1 : 1 : 1).)

The three divisors G2, G3, and D can be described as follows:

• G2 is the sum of the two quadric surfaces

(a− b)(c− d) + ω(a− c)(b− d) = 0,

(a− b)(c− d) + ω2(a− c)(b− d) = 0.

• G3 is the sum of the three quadric surfaces

(a− b)(c− d) + (a− c)(b− d) = 0,

−2(a− b)(c− d) + (a− c)(b− d) = 0,

(a− b)(c− d)− 2(a− c)(b− d) = 0.

• D is the sum of the six planes

a = b, a = c, a = d, b = c, b = d, c = d,

with multiplicities two.

Note that Eqs. (12) define the minimal Weierstraß normal form.
By means of Proposition 11, the singular set of W can be determined

as the union of the six surfaces whose local expressions on the open set
Us × {z 6= 0} are as follows:

(x : y : z) =
(

(a− c)(a− d)
3s2

: 0 : 1
)

, a = b;

(x : y : z) =
(

(a− b)(a− d)
3s2

: 0 : 1
)

, a = c;
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(x : y : z) =
(

(a− b)(a− c)
3s2

: 0 : 1
)

, a = d;

(x : y : z) =
(

(b− d)(b− a)
3s2

: 0 : 1
)

, b = c;

(x : y : z) =
(

(b− c)(b− a)
3s2

: 0 : 1
)

, b = d;

(x : y : z) =
(

(c− b)(c− a)
3s2

: 0 : 1
)

, c = d. (13)

There are three curves in W , where two of the six surfaces in (13) intersect:

(x : y : z) = (0 : 0 : 1), a = b, c = d;

(x : y : z) = (0 : 0 : 1), a = c, b = d;

(x : y : z) = (0 : 0 : 1), a = d, b = c.

There are four curves in W , where three of the six surfaces in (13) intersect:

(x : y : z) = (0 : 0 : 1), a = b = c;

(x : y : z) = (0 : 0 : 1), b = c = d;

(x : y : z) = (0 : 0 : 1), c = d = a;

(x : y : z) = (0 : 0 : 1), d = a = b.

Note that all the above six surfaces in (13) intersect each other only at the
point ((x : y : z), (a : b : c : d)) = ((0 : 0 : 1), (1 : 1 : 1 : 1)). We concentrate
our attention on this point and construct the desingularization of W as in
the next subsection.

5.3. Construction of Smooth Elliptic Fibration Bimeromorphic
to Q

In this subsection, we construct an elliptic fibration which is bimeromor-
phic to Q and to Q̂ and which satisfies the conditions (A) and (B) at the
last of Section 4. Firstly, we desingularize the elliptic fibration W in Weier-
straß normal form. Then, we show that there is a bimeromorphic mapping
between Q and W , which is biholomorphic on the Zariski open subsets of
both elliptic fibrations consisting of the regular fibres.
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5.3.1 Desingularization of W

In order to observe the fibration over a neighbourhood of the base point
(a : b : c : d) = (1 : 1 : 1 : 1), we blow up the base space P3(C) with
(a : b : c : d) = (1 : 1 : 1 : 1) as the centre. We denote the modified space
by B, the canonical surjection by ΦB : B → P3(C), and the exceptional set,
isomorphic to P2(C), by E. Write B∗ = B \ E and P3(C)∗ = P3(C) \ {(1 :
1 : 1 : 1)}, then B∗ ∼= P3(C)∗. We will regard E as the totality L of the
lines in P3(C) passing through the point (a : b : c : d) = (1 : 1 : 1 : 1),
and the blowing-up B itself as the disjoint union of such lines. From this
point of view, we naturally obtain the projection τB : B → E. Further, one
can obtain an isomorphism from E to any plane E′ of P3(C) not passing
through (a : b : c : d) = (1 : 1 : 1 : 1), letting each line of L corresponding to
its intersection with the plane E′. We take the line bundle LE = OP2(C)(1)
over E ∼= P2(C).

Lemma 2 We have the following isomorphism of vector bundles:

(τ∗B(LE))|B∗ ∼= (Φ∗B(L))|B∗ .

Proof. We can consider the line bundle (Φ∗B(L))|B∗ ∼= L|P3(C)∗ to be con-
structed by the transition functions, e.g., b−a

c−a , c−a
d−a , and d−a

b−a , which are
defined on the intersections of two of the open sets b − a 6= 0, c − a 6= 0,
and d − a 6= 0. Note that these transition functions give rise to the line
bundle LE , when they restricted on E′ ∼= E. Since the transition functions
are constant along each line l ∈ L, the lemma follows. ¤

It is to be noted that, for any positive integer k, the holomorphic sections
in H0(P3(C), L⊗k), which is isomorphic to H0(P3(C),OP3(C)(k)), can be
identified with the homogeneous polynomials of degree k with a, b, c, d as the
variables. We write the space of these homogeneous polynomials of degree
k generated by b − a, c − a, d − a as H ′

k. Through the above identification,
we can consider H ′

k to be a subspace of H0(P3(C), L⊗k).

Proposition 12 We have the following identification of the holomorphic
sections:

H ′
k
∼= H0

(
E, L⊗k

E

)
.

Proof. Since all elements of H ′
k are constant along each line l ∈ L, we
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have H ′
k ⊂ H0(E, L⊗k

E ). Then, the proposition follows by counting the
dimensions of these vector spaces. ¤

Note that the holomorphic sections e1, e2, e3 ∈ H0(P3(C), L⊗2) actually
lie in the subspaces H ′

2, whence g2 ∈ H0(P3(C), L⊗4), g3 ∈ H0(P3(C), L⊗6),
and ∆ ∈ H0(P3(C), L⊗12) lie in H ′

4, H ′
6, and H ′

12, respectively. Therefore,
Proposition 12 implies that e1, e2, and e3 also define a Weierstraß normal
form over E ∼= P2(C), denoted by πT : T → E, and that W |B∗ coincides
with the lifting of T by the projection τB |B∗ through the isomorphism of
the Lemma 2. To sum up, we have the following proposition.

Proposition 13 We have the following biholomorphic isomorphism which
respects the elliptic fibrations:

τ∗B(T )|B∗ ∼= Φ∗B(W )|B∗ .

In particular, τ∗B(T ), W and Φ∗B(W ) are bimeromorphically equivalent.

We describe these holomorphic sections, by choosing the plane a + b +
c + d = 0 as the above plane E′ without breaking the symmetry. For this
choice, the blowing-up ΦB : B → P3(C) can be performed in the following
manner. Set m = a+b+c+d

4 and choose the point (t0 : t1 : t2 : t3) ∈ P3(C)
which satisfies

t0 + t1 + t2 + t3 = 0,

and

rank
(

a−m b−m c−m d−m
t0 t1 t2 t3

)
< 2.

Then, (t0 : t1 : t2 : t3) with t0 + t1 + t2 + t3 = 0 serves as the blowing-up
coordinates. The corresponding holomorphic sections can be described as
follows:

e1 =
1

3s2
{(t0 − t1)(t2 − t3) + (t0 − t2)(t1 − t3)},

e2 =
1

3s2
{−2(t0 − t1)(t2 − t3) + (t0 − t2)(t1 − t3)},
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e3 =
1

3s2
{(t0 − t1)(t2 − t3)− 2(t0 − t2)(t1 − t3)},

g2 =
4

3s4
{(t0 − t1)(t2 − t3) + ω(t0 − t2)(t1 − t3)}

× {(t0 − t1)(t2 − t3) + ω2(t0 − t2)(t1 − t3)},

g3 =
4

27s6
{(t0 − t1)(t2 − t3) + (t0 − t2)(t1 − t3)}

× {−2(t0 − t1)(t2 − t3) + (t0 − t2)(t1 − t3)}
× {(t0 − t1)(t2 − t3)− 2(t0 − t2)(t1 − t3)},

∆ =
16
s12

(t0 − t1)2(t0 − t2)2(t0 − t3)2(t1 − t2)2(t1 − t3)2(t2 − t3)2, (14)

where the linear polynomial s is chosen as in Subsection 5.2, so that these
sections are given local representations on the open patch s 6= 0.

In order to construct the desingularization of W , we first desingularize
T and construct the elliptic fibration T̂ , bimeromorphic to T , and satisfying
the conditions (A) and (B). To this aim, we have to modify the base plane
E of πT through the blowing-up by taking the four points t0 = t1 = t2,
t1 = t2 = t3, t2 = t3 = t0, and t3 = t0 = t1 as its separate centres. After
this, we blow up B along the inverse images of these four points of E through
τB : B → E. Pulling back the elliptic fibration T̂ onto the modified space
of B, the desired elliptic fibration, bimeromorphic to W and satisfying the
conditions (A) and (B), can be obtained.

The divisor D for the elliptic three-fold πT : T → E is the sum of the
six lines

l01 : t0 = t1, l02 : t0 = t2, l03 : t0 = t3,

l12 : t1 = t2, l13 : t1 = t3, l23 : t2 = t3,

with multiplicity two. The configuration of these six lines can be drawn as
in Figure 4.

For the convenience in what follows, we introduce the homogeneous co-
ordinates (T0 : T1 : T2) =

( (t0+t1)−(t2+t3)
2 : (t0+t2)−(t1+t3)

2 : (t1+t2)−(t0+t3)
2

)
of the base plane E. Note that



Elliptic fibrations arising from free rigid bodies 389

Figure 4.

e1 =
1

3s2

(
T 2

0 + T 2
1 − 2T 2

2

)
,

e2 =
1

3s2

(
T 2

0 − 2T 2
1 + T 2

2

)
,

e3 =
1

3s2

(− 2T 2
0 + T 2

1 + T 2
2

)
,

in this coordinate system. The irreducible components of the discriminant
divisor D can be described as

l01 : T1 = T2, l02 : T2 = T0, l03 : T0 = −T1,

l12 : T0 = T1, l13 : T2 = −T0, l23 : T1 = −T2.

By Proposition 11, the singularities of the three-fold T can be given as
the union of the curves

(x : y : z) =
(

T 2
0 − T 2

1

3s2
: 0 : 1

)
, T1 = T2;

(x : y : z) =
(

T 2
1 − T 2

2

3s2
: 0 : 1

)
, T2 = T0;

(x : y : z) =
(

T 2
2 − T 2

0

3s2
: 0 : 1

)
, T0 = −T1;
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(x : y : z) =
(

T 2
2 − T 2

0

3s2
: 0 : 1

)
, T0 = T1;

(x : y : z) =
(

T 2
1 − T 2

2

3s2
: 0 : 1

)
, T2 = −T0;

(x : y : z) =
(

T 2
0 − T 2

1

3s2
: 0 : 1

)
, T1 = −T2, (15)

where (x : y : z) denotes the homogeneous fibre coordinates of the P2(C)-
bundle P (OE(2)⊕OE(3)⊕OE) over E.

Desingularization of T

(i) First, we resolve the singularities near the four points

(x : y : z) = (0 : 0 : 1), P0:(T0 : T1 : T2) = (1 : 1 : 1);

(x : y : z) = (0 : 0 : 1), P1:(T0 : T1 : T2) = (1 : 1 : −1);

(x : y : z) = (0 : 0 : 1), P2:(T0 : T1 : T2) = (1 : −1 : 1);

(x : y : z) = (0 : 0 : 1), P3:(T0 : T1 : T2) = (−1 : 1 : 1), (16)

each of which is the intersection of three of the six singular curves in (15).
For this purpose, we use the method of toroidal embeddings [10] in what
follows. Note that the four points P0, P1, P2, P3 ∈ E can also be given
by T 2

0 = T 2
1 = T 2

2 . Near these four points, we have z 6= 0, so that we can
put z = 1 and regard (x, y) as the inhomogeneous fibre coordinates of the
P2(C)-bundle P (OE(2)⊕OE(3)⊕OE). We set

p = x− e1, q = x− e2, r = x− e3, y′ =
y

2
.

Note that the quadratic function s in (14) is chosen on each neighbourhood
of P0, P1, P2, and P3, such that s 6= 0. We can take, e.g., s = T0 near
these points. We can easily check that (p, q, r, y′) give the local coordinates
in P (OE(2)⊕OE(3)⊕OE). Then, the equation of T is written as

y′2 = pqr (17)

around each of the four points (16). From now on, we operate in
C4:(p, q, r, y′) and observe the hypersurface defined by (17) in this affine
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space C4. The singular set (15) is the union of the three lines

y′ = p = q = 0, y′ = q = r = 0, y′ = r = p = 0,

which intersect only at a point p = q = r = y′ = 0. Note that this point is
nothing but the local expression of the above four points in (16). Regarding
p, q, r, and y′ as elements of C∗, we have r = p−1q−1y′2. For any monomial
plqmy′n of p, q, y′, we choose the point (l, m, n) ∈ Z3, so that any monomial
corresponds to a point in Z3. Then, the specific monomials p, q, r, y′

correspond to

(1, 0, 0), (0, 1, 0), (−1,−1, 2), (0, 0, 1),

respectively. The cone generated by these four vectors is described as




2l + n ≥ 0,

2m + n ≥ 0,

n ≥ 0,

where (l, m, n) are regarded as the coordinates of R⊗Z3 = R3, and its dual
cone is generated by

(2, 0, 1), (0, 2, 1), (0, 0, 1),

which is not unimodular. To obtain a unimodular subdivision of this dual
cone, we divide the triangle with the vertices (2, 0, 1), (0, 2, 1), and (0, 0, 1),
which is transverse to the dual cone, by adding the points (1, 0, 1), (1, 1, 1),
and (0, 1, 1) on the edges as in Figure 5.

The four cones

S0 : generated by (0, 1, 1), (1, 0, 1), (1, 1, 1),

S1 : generated by (2, 0, 1), (1, 1, 1), (1, 0, 1),

S2 : generated by (1, 1, 1), (0, 2, 1), (0, 1, 1),

S3 : generated by (1, 0, 1), (0, 1, 1), (0, 0, 1)

are unimodular and give rise to the holomorphic mappings of C4:
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Figure 5.

Ω0 3 (u0, v0, w0) 7→ (v0w0, w0u0, u0v0, u0v0w0) ∈ C4:(p, q, r, y′),

Ω1 3 (u1, v1, w1) 7→ (u2
1v1w1, v1, w1, u1v1w1) ∈ C4:(p, q, r, y′),

Ω2 3 (u2, v2, w2) 7→ (u2, u2v
2
2w2, w2, u2v2w2) ∈ C4:(p, q, r, y′),

Ω3 3 (u3, v3, w3) 7→ (u3, v3, u3v3w
2
3, u3v3w3) ∈ C4:(p, q, r, y′).

Gluing these four affine spaces Ω0, Ω1, Ω2, and Ω3 in the natural way (cf.
[10]), we obtain a smooth three-fold Ω∗ =

⋃3
i=0 Ωi and the natural holomor-

phic mapping $ : Ω∗ → C4. The inverse images through $ of the points on
y′ = p = q = 0, y′ = q = r = 0, and y′ = r = p = 0 except p = q = r = 0 are
smooth rational curves, while the inverse image of p = q = r = 0 through $

is the union of three rational curves which intersect at a point. These three
rational curves can be described as

v0 = w0 = 0,

w0 = u0 = 0,

u0 = v0 = 0, (18)

in the coordinate patch Ω0. These three curves intersect each other only at
the point (u0, v0, w0) = (0, 0, 0).

We look into the structure of the elliptic fibration πT ◦$ over a neigh-
bourhood of one of the four points P0, P1, P2, and P3. The singular fi-
bres lie over the lines l01, l02, l03, l12, l13, and l23. It can immediately be
checked that the singular fibres are of type I2 in Kodaira’s notation unless
T 2

0 = T 2
1 = T 2

2 , while the fibre over P0, P1, P2, and P3 is the union of the
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three rational curves in Eq. (18) and the one

u0 = v0 = w0. (19)

Although the singularity of T near the four points in (16) are resolved, the
fibres are not of types in Kodaira’s list over the points on P0, P1, P2, and
P3.

In order to construct the desired elliptic fibration with conditions (A)
and (B), we have to modify Ω∗ as well as the base plane E as follows:

(a) Firstly, the total space Ω∗ is blown up at the point (u0, v0, w0) = (0, 0, 0).
The exceptional divisor E is isomorphic to P2(C). The proper transforms
of the four lines in (18) and (19) intersect with E at distinct four points
q1, q2, q3, and q4, respectively.

(b) Secondly, we blow up the base plane E at the four points P0, P1, P2,
and P3, successively. We denote the resulting surface by Ê and the
canonical surjection by τ bE : Ê → E. Then, each of the four exceptional
curves, in fact, parameterizes the pencil of conic curves in E ∼= P2(C)
passing through q1, q2, q3, and q4.

(c) Finally, we blow up the modified space Ω̂∗ of Ω∗ along the proper trans-
forms L1, L2, L3, and L4 of the four lines in (18) and (19), successively.
Now, the fibres of the elliptic fibration become of type I∗0 or I∗1 over the
exceptional rational curves of the blowing-up Ê. As will be seen, the
singular fibres of type I∗1 correspond to the singular conics of the pencil
in (b). It is to be noted that this third procedure is necessary for the
condition (B) stated at the last of Section 4.

In what follows, we explain the above procedure of blowing-ups in a
concrete manner. In each small neighbourhood of P0, P1, P2, P3, we can as-
sume T0 6= 0. Thus, we take s = T0 and use (T̃1, T̃2) =

((
T1
T0

)2−1,
(

T2
T0

)2−1
)

as the local coordinates centred at P0, P1, P2, P3, respectively. In these coor-
dinates, we have e1 = fT1−2fT2

3 , e2 = −2fT1+fT2
3 , e3 = fT1+fT2

3 . Since e1 = q+r−2p
3 ,

e2 = r+p−2q
3 , the elliptic fibration of Ω∗ over these neighbourhoods can be

given by

T̃1 = u0(w0 − v0),

T̃2 = v0(w0 − u0),
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in the patch Ω0. The description on the other neighbourhoods can be per-
formed similarly.

We pursue the blowing-ups step by step and determine the singular
fibres of the elliptic fibration concretely.

(a) Blowing-up of Ω∗ at (u0, v0, w0) = (0, 0, 0).
We blow up Ω0 at (u0, v0, w0) = (0, 0, 0). The exceptional surface E is
isomorphic to P2(C) and intersects at the four points q1, q2, q3, and q4

with the proper transforms L1, L2, L3, and L4 of the four lines in (18)
and (19), respectively. Using the blowing-up coordinates u = u0, v =
v0
u0

, and w = w0
u0

on the open set u0 6= 0, the proper transforms L1 and
L4 of the two rational curves v0 = w0 = 0 in (18) and u0 = v0 = w0 in
(19) are given as v = w = 0 and 1 = v = w, respectively, while the other
proper transforms L2 and L3 are out of the coordinate neighbourhood
u0 6= 0, which are described in the other open sets v0 6= 0 or w0 6= 0 in
the same manner. Note that the proper transforms L1, L2, L3, and L4

are mutually disjoint. On the open set u0 6= 0, we have

T̃1 = u2(w − v),

T̃2 = u2v(w − 1).

(b) Blowing-up of the base plane E.
On this step, we blow up E at P0, P1, P2, and P3. The canonical surjec-
tion from Ê to E is denoted by τ bE . Using the blowing-up coordinates

T1 = T̃1 and T2 = fT2
fT1

in the open set T1 = T̃1 6= 0, we have

T2 =
w − v

v(w − 1)
. (20)

On the exceptional rational curve T1 = 0, the function T2 serves as the
inhomogeneous coordinate. The homogeneous coordinates (T̃1 : T̃2) =
(1 : T2) ∈ P1(C) parameterize the pencil of the conic curves passing
through the four points q1:v0 = w0 = 0, q2:w0 = u0 = 0, q3:u0 = v0 = 0,
and q4:u0 = v0 = w0 in the exceptional plane E by

T̃1v0(w0 − u0)− T̃2u0(w0 − v0) = 0,
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where (u0 : v0 : w0) with u0 +v0 +w0 = 0 is viewed as the homogeneous
coordinates of E ∼= P2(C) in the similar manner as in p. 387. The points
q1, q2, q3, and q4 correspond to the indeterminate points of the fraction
(20), which are expressed as v = w = 0 and v = w = 1 on the open set
u = u0 6= 0. Since (20) can be transformed into

w =
(T2 − 1)v
T2(v − 1)

,

the singular conic curves correspond to the points T2 = 0, 1,∞ on the
exceptional rational curve.

(c) Blowing-up of the modified space Ω̂∗.
We blow up the modified space Ω̂∗ obtained in (a) along the proper
transforms L1, L2, L3, and L4 of the four rational curves in (18) and
(19), successively. It suffices to consider the blowing-up along the ra-
tional curve L1 : v = w = 0 by the symmetry. Using the blowing-up
coordinates ũ = u, ṽ = v, and w̃ = w

v in the open subset ṽ = v 6= 0, we
have

T2 =
w̃ − 1
ṽw̃ − 1

, (21)

which is definite near ṽ = w̃ = 0. Over the points T2 on the exceptional
rational curve in (b), the fibre of the elliptic fibration is the union of the
conic curve given by Eq. (21) and the four rational curves c1(T2), c2(T2),
c3(T2), and c4(T2) in the exceptional sets obtained by the blowing-up
along L1, L2, L3, and L4, respectively. In the exceptional set ṽ = 0,
corresponding to the proper transform L1 : v = w = 0 as above, we have
T2 = 1− w̃, i.e. w̃ = 1−T2, which is c1(T2). Thus, we have the singular
fibres of type I∗0 over the points on the exceptional curves in (b) with
T2 6= 0, 1,∞. Over the points T2 = 0, 1,∞, the conic curve defined by
Eq. (21) is singular and consists of two rational curves intersecting at
a point, one of which intersects two, e.g., c1(T2) and c2(T2) for T2 = 1,
of the above four rational curves c1(T2), c2(T2), c3(T2), and c4(T2), and
the other of which intersects with the other two, e.g., c3(T2), and c4(T2)
for T2 = 1. We have the singular fibres of type I∗1 over the exceptional
curves in (b) with T2 = 0, 1,∞.
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(ii) Next, we consider the three singular points

(x : y : z) =
(

T 2
0

3s2
: 0 : 1

)
, Q0:(T0 : T1 : T2) = (1 : 0 : 0);

(x : y : z) =
(

T 2
1

3s2
: 0 : 1

)
, Q1:(T0 : T1 : T2) = (0 : 1 : 0);

(x : y : z) =
(

T 2
2

3s2
: 0 : 1

)
, Q2:(T0 : T1 : T2) = (0 : 0 : 1). (22)

By the symmetry, it suffices to analyse the fibre over Q0. Using the coordi-
nates

T ′′1 =
T1

T0
+

T2

T0
,

T ′′2 =
T1

T0
− T2

T0
,

x′′ = 2
(

x− 2T 2
0 − T 2

1 − T 2
2

6T 2
0

)
+ y

(
x− −2T 2

0 + T 2
1 + T 2

2

3T 2
0

)−1/2

,

y′′ = 2
(

x− 2T 2
0 − T 2

1 − T 2
2

6T 2
0

)
− y

(
x− −2T 2

0 + T 2
1 + T 2

2

3T 2
0

)−1/2

,

and choosing s = T0 as in p. 390, the equation for the Weierstraß normal
form T can be written as

x′′y′′ = T ′′1
2
T ′′2

2
. (23)

Note that the elliptic fibration can be realized by the mapping
(x′′, y′′, T ′′1 , T ′′2 ) 7→ (T ′′1 , T ′′2 ) near Q0. The singular fibres lie over the
curves T ′′1 = 0 and T ′′2 = 0. The hypersurface (23) has singularity at
x′′ = y′′ = T ′′1 = 0 and x′′ = y′′ = T ′′2 = 0. We desingularize this singularity
by the method of toroidal embedding again. Regarding x′′, y′′, T ′′1 , T ′′2 as
elements in C∗, we have x′′ = y′′−1

T ′′1
2
T ′′2

2, so that we can consider that
Eq. (23) defines an Abelian Lie group isomorphic to (C∗)3 and y′′, T ′′1 , T ′′2
are the coordinates of this group. As in p. 391, we let (l, m, n) ∈ Z3 represent
the character y′′lT ′′1

m
T ′′2

n, so that any monomial of y′′, T ′′1 , T ′′2 corresponds
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to a point in Z3. Then, the monomials x′′, y′′, T ′′1 , and T ′′2 correspond to
the elements

(−1, 2, 2), (1, 0, 0), (0, 1, 0), (0, 0, 1) ∈ Z3,

respectively. The cone generated by these four vectors is described as




2l + m ≥ 0,

2l + n ≥ 0,

m ≥ 0,

n ≥ 0,

where (l, m, n) ∈ R⊗ Z3 = R3. The dual cone is generated by

(2, 1, 0), (2, 0, 1), (0, 1, 0), (0, 0, 1). (24)

To obtain the unimodular subdivision of this dual cone, we divide the rect-
angle with the vertices (24), which is transversal to the dual cone, by adding
(1, 0, 1) and (1, 1, 0) as in Figure 6.

Figure 6.

The four cones

S′0 : generated by (1, 1, 0), (0, 1, 0), (0, 0, 1),

S′1 : generated by (1, 0, 1), (1, 1, 0), (0, 0, 1),

S′2 : generated by (2, 1, 0), (1, 1, 0), (2, 0, 1),

S′3 : generated by (2, 0, 1), (1, 1, 0), (1, 0, 1)

are unimodular and the associated holomorphic mappings are
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Ω′0 3 (u0, v0, w0) 7→
(
u0v

2
0w2

0, u0, u0v0, w0

) ∈ C4:
(
x′′, y′′, T ′′1 , T ′′2

)
,

Ω′1 3 (u1, v1, w1) 7→
(
u1v1w

2
1, u1v1, v1, u1w1

) ∈ C4:
(
x′′, y′′, T ′′1 , T ′′2

)
,

Ω′2 3 (u2, v2, w2) 7→
(
v2, u

2
2v2w

2
2, u2v2, w2

) ∈ C4:
(
x′′, y′′, T ′′1 , T ′′2

)
,

Ω′3 3 (u3, v3, w3) 7→
(
v3w3, u

2
3v3w3, v3, u3w3

) ∈ C4:
(
x′′, y′′, T ′′1 , T ′′2

)
,

respectively, where Ω′i ∼= C4. Gluing the affine spaces Ω′i (i = 0, 1, 2, 3)
naturally, we obtain a smooth three-fold Ω′∗ :=

⋃3
i=0 Ω′i with the natural

holomorphic mapping $′ : Ω′∗ → C4. The exceptional set through $′ is
a P1(C)-fibration (with singular fibres) over the reducible curve T ′′1 T ′′2 = 0
in the base plane. As to the elliptic fibration, the fibre over (T ′′1 , T ′′2 ) with
T ′′1 = 0 and T ′′2 6= 0 is described locally as

u0 = 0, w0 = T ′′2 ; v0 = 0, w0 = T ′′2 on Ω′0,

v1 = 0, u1w1 = T ′′2 on Ω′1,

u2 = 0, w2 = T ′′2 ; v2 = 0, w2 = T ′′2 on Ω′2,

v3 = 0, u3w3 = T ′′2 on Ω′3.

Four of them coincide, being extended to their closures (∼= P1(C)). This ra-
tional curve and the remaining two curves intersect as is indicated in Figure
7. The horizontal curves in Figure 7 should be observed in a neighbourhood

Figure 7.

of the central rational curve with respect to the original local situation. By
completing the non-singular part of the fibre over (T ′′1 , T ′′2 ) with T ′′1 = 0
and T ′′2 6= 0, we obtain two rational curves intersecting at two points in
the case where T ′′2 6= 0, so that this singular fibre is of type I2. Note that
v0 = 0, w0 = T ′′2 on Ω′0 and u2 = 0, w2 = T ′′2 on Ω′2 form the proper trans-
forms of the two irreducible branches of the original fibre over (T ′′1 , T ′′2 ) with
T ′′1 = 0 and T ′′2 6= 0, described by the equation x′′y′′ = 0. Near the ex-
ceptional set through $′, the proper transforms of the fibres are contained
in two surfaces corresponding to the two local irreducible branches of each
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among them. By the similar argument, the singular fibres over (T ′′1 , T ′′2 )
with T ′′1 6= 0 and T ′′2 = 0 are shown to be of type I2. On the other hand,
the singular fibre over (T ′′1 , T ′′2 ) = (0, 0) is described as

u0 = w0 = 0; v0 = w0 = 0 on Ω′0,

u1 = v1 = 0; v1 = w1 = 0 on Ω′1,

u2 = w2 = 0; v2 = w2 = 0 on Ω′1,

u3 = v3 = 0; v3 = w3 = 0 on Ω′1.

Each of the following three pairs of the closures (∼= P1(C)) of these curves
coincides:

u0 = w0 = 0 on Ω′0 ; v1 = w1 = 0 on Ω′1

u1 = v1 = 0 on Ω′1 ; v3 = w3 = 0 on Ω′3

v2 = w2 = 0 on Ω′2 ; u3 = v3 = 0 on Ω′3

These three rational curves and the remaining two curves intersect as in
Figure 8.

Figure 8.

The two curves indicated by ∗ in Figure 8 should be observed in a neigh-
bourhood of the central three rational curves with respect to the origi-
nal local situation. By completing the non-singular part of the fibre over
(T ′′1 , T ′′2 ) = (0, 0), we obtain four rational curves intersecting cyclically, so
that the singular fibres are of type I4 over Q0, Q1, and Q2.

Hence, we have the blowing-up of T at the three points. After blowing up
T along the proper transforms of the six curves in (15) and gluing the above
desingularizations, we have the elliptic fibration πbT : T̂ → Ê, bimeromorphic
to W and satisfying the conditions (A) and (B). The singular fibres over the
generic points on the proper transforms of the six lines l01, l02, l03, l12, l13,
and l23 are of type I2 in Kodaira’s notation.

(iii) We summarize the result from (i) and (ii) as follows:
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Theorem 1 The singular elliptic fibration πT : T → E in Weierstraß
normal form is bimeromorphic to the elliptic fibration

πbT : T̂ → Ê

over the blowing-up Ê of E at the four points t0 = t1 = t2, t1 = t2 = t3,
t2 = t3 = t0, and t3 = t0 = t1, which satisfies the conditions (A) and (B).
The singular fibres of πbT can be determined as follows:

• The fibres over three intersection points of each of the four components
of the exceptional set through τ bE and the proper transforms of the six
lines t0 = t1, t0 = t2, t0 = t3, t1 = t2, t1 = t3, and t2 = t3 are of type
I∗1 in Kodaira’s notation.

• The fibres over the generic points on the exceptional set through τ bE
are of type I∗0.

• The fibres over the three points t0 = t1, t2 = t3; t0 = t2, t1 = t3; and
t0 = t3, t1 = t2 are of type I4.

• The fibres over the generic points of the six lines t0 = t1, t0 = t2,
t0 = t3, t1 = t2, t1 = t3, and t2 = t3 are of type I2.

The other fibres are regular. Here, we use the coordinates (t0 : t1 : t2 : t3)
with the condition t0 + t1 + t2 + t3 = 0 as the points of E.

Remark 4 In [16], Miranda studies elliptic fibrations in Weierstraß nor-
mal form with some conditions and determines their singular fibres, using
the double-covering technique. Although we use different method to desin-
gularize the Weierstraß normal form, our result is completely consistent with
his study.

Desingularization of W

By pulling back the elliptic fibration πbT : T̂ → Ê through the projection
τB : B → E, we can get the desingularization of W . More precisely, we
have the following theorem. Let B̂ be the blowing-up of B along the proper
transforms of the four lines a = b = c, b = c = d, c = d = a, and d = a = b

in P3(C). Denote the corresponding four exceptional divisors in B̂ by C1,
C2, C3, and C4, respectively. Note that the natural projection τB : B → E

canonically induces the projection from B̂ onto Ê, which is denoted by
τ bB : B̂ → Ê. The pulling-back of πbT : T̂ → Ê through τ bB is written as Ŵ

with the fibration πcW : Ŵ → B̂.
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Theorem 2 The singular elliptic fibration πW : W → P3(C) in Weier-
straß normal form is bimeromorphic to the elliptic fibration

πcW : Ŵ → B̂,

which satisfies the conditions (A) and (B). The singular fibres of πcW can be
described as follows:

• The fibres over the points on the intersection of the exceptional divi-
sors C1 (respectively C2, C3, and C4) and the proper transforms of
the three lines a = b, b = c, and c = a, (respectively b = c, c = d, and
d = b; c = d, d = a, and a = c; d = a, a = b, and b = d) are of type
I∗1 in Kodaira’s notation.

• The fibres over the generic points on the exceptional divisors C1, C2,
C3, and C4 are of type I∗0.

• The fibres over the points on the proper transforms of the three lines
a = b, c = d; a = c, b = d; a = d, b = c are of type I4.

• The fibres over the generic points on the proper transforms of the six
planes a = b, a = c, a = d, b = c, b = d, and c = d are of type I2.

5.3.2 Bimeromorphic Mapping between Q and W

We construct a bimeromorphic mapping from the quotient variety Q to
W . Recall that Q is defined through Eqs. (8). We put

U = a2X + b2Y + c2Z + d2W,

V = a3X + b3Y + c3Z + d3W. (25)

(Here, we use W as one of the coordinates of the weighted projective space
P5(C; 2 : 1 : 1 : 1 : 1), while the Weierstraß normal form is denoted by the
same symbol, which should not be confused.) Then, we have on the variety
Q, if a, b, c, and d are distinct,

X = − (b + c + d)U + V

(a− b)(a− c)(a− d)
,

Y = − (c + d + a)U + V

(b− a)(b− c)(b− d)
,
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Z = − (d + a + b)U + V

(c− a)(c− b)(c− d)
,

W = − (a + b + c)U + V

(d− a)(d− b)(d− c)
, (26)

so that

P 2 = XY ZW

=
1

(a− b)2(a− c)2(a− d)2(b− c)2(b− d)2(c− d)2

× {(b + c + d)U + V }{(c + d + a)U + V }
× {(d + a + b)U + V }{(a + b + c)U + V }.

If we put

X =
1

3(d− a)(d− b)(d− c)

× [{(d− b)(d− c)(b + c + d) + (d− c)(d− a)(c + d + a)

+ (d− a)(d− b)(d + a + b)}U
+ {(d− b)(d− c) + (d− c)(d− a) + (d− a)(d− b)}V ]

,

Y =
2(a− b)(a− c)(a− d)(b− c)(b− d)(c− d)P

{(a + b + c)U + V } ,

Z = − (a + b + c)U + V

(d− a)(d− b)(d− c)
, (27)

we obtain the equation

Y2Z = 4(X − ê1Z)(X − ê2Z)(X − ê3Z), (28)

where

ê1 =
1
3
{(a− b)(c− d) + (a− c)(b− d)},

ê2 =
1
3
{−2(a− b)(c− d) + (a− c)(b− d)},
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ê3 =
1
3
{(a− b)(c− d)− 2(a− c)(b− d)}. (29)

Eq. (28) is equivalent to the equation of the elliptic fibration W in Weierstraß
normal form defined in Subsection 5.2, if we divide the parameters by the
suitable nontrivial holomorphic sections of OP3(C)(1). Since (25), (26), and
(27), together with the substitution P = xyzw, X = x2, Y = y2, Z = z2,
W = w2, are rational with respect to the coordinates ((a : b : c : d), (x : y :
z : w)), we conclude that there is a bimeromorphic mapping between Q and
W , which is biholomorphic on the Zariski open subsets of the two elliptic
fibrations consisting of the regular fibres.

Combining the previous result, we have the following theorem.

Theorem 3 There is a four-to-one meromorphic mapping from the naive
elliptic fibration πF : F → P3(C) onto the elliptic fibration πcW : Ŵ → B̂

satisfying the conditions (A) and (B)

g : F − · · · → Ŵ .

The mapping g is a four-to-one holomorphic mapping between the Zariski
open subsets of F and Ŵ consisting of regular fibres and induces the canon-
ical four-to-one isogeny (cf. the proof of Proposition 2) of the regular fibres
of πF onto those of πcW .

6. Relation to the Family of the Spectral Curves

In this section, we use the notation in Section 2. The spectral curve is
the completion of the affine curve defined through Eq. (2). This equation
can be written as

(J2
1λ− µ)(J2

2λ− µ)(J2
3λ− µ) + 2h′λ− 2lµ = 0, (30)

where we set h′ = 1
2 (J2

1p2
1 + J2

2p2
2 + J2

3p2
3), which can be calculated as

h′ = I1I2I3h +
(I1 + I2 + I3)2 − 4(I1I2 + I2I3 + I3I1)

4
l.

Since the parameters J1, J2, and J3 are determined by I1, I2, I3, h, and l,
Eq. (30) describes the family of spectral curves parameterized by I1, I2, I3,
h, and l. Furthermore, we can give its completion as follows: By putting
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λ =
√−2l

2I1I2I3

[X
Y − 1

3

{(
J2

1 −
h′

l

)(
J2

2 −
h′

l

)
+

(
J2

2 −
h′

l

)(
J2

3 −
h′

l

)

+
(

J2
3 −

h′

l

)(
J2

1 −
h′

l

)}Z
Y

]
,

h′

l
λ− µ =

(
J2

1 −
h′

l

)(
J2

2 −
h′

l

)(
J2

3 −
h′

l

) √−2l

2(I1I2I3)3
Z
Y ,

and through some lengthy calculation, we obtain

Y2Z = 4(X − ê1Z)(X − ê2Z)(X − ê3Z),

where ê1, ê2, and ê3 are the same parameters as in Eqs. (29). Thus, the
above family of the spectral curves is nothing but the elliptic fibration πW :
W → P3(C) in Weierstraß normal form, or, in other words, is described by
the Weierstraß normal form W , which is rather easier to deal with from the
viewpoint of complex algebraic geometry. Furthermore, this would enrich
the another significance of our study on the elliptic fibration W from the
viewpoint of the theory of finite-dimensional integrable systems.

7. Concluding Remarks

Starting with the naive elliptic fibration which naturally appears from
the integral curves of the Euler equation, we give the elliptic fibration
πcW : Ŵ → B̂ which satisfies the conditions (A) and (B) stated at the
end of Section 4. In fact, we have determined the types of the singular
fibres of πcW in Theorem 2. Finally, we have shown that the elliptic fibra-
tion πcW is bimeromorphic to the family of the spectral curves in Section
6. More precisely, we have shown that the Weierstraß normal form πW is
bimeromorphic to the family of the spectral curves. On the other hand, the
Weierstraß normal form πW has been naturally constructed from the naive
fibration πF and these two fibrations have been related to each other through
a four-to-one meromorphic mapping. Thus, one can see that the Weierstraß
normal form explains the relation between the naive elliptic fibration, which
is nothing but the family of integral curves of the Euler equation, and the
family of spectral curves associated with the Manakov equation.

As can be observed easily, the free rigid body dynamics is trivial in the
case where (a : b : c : d) = (1 : 1 : 1 : 1), since the Hamiltonian vector field is
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null when (a : b : c : d) = (1 : 1 : 1 : 1). However, the asymptotic behavior of
the dynamical system has a large diversity when the parameter (a : b : c : d)
approaches this critical point (1 : 1 : 1 : 1). In fact, this diversity can
be understood from the elliptic fibration πT over the exceptional set E by
blowing up P3(C) with the centre (a : b : c : d) = (1 : 1 : 1 : 1). Moreover,
the fibration πT has essential importance, in the sense that the fibration
πcW : Ŵ → B̂ has been obtained from πT : T → E through the projection
τB : B → E. Thus, one can say that the flatness imposed in the condition
(A) stated at the end of Section 4 is realized by the limit fibration on the
space E parameterizing the asymptotic behavior.

The finally obtained fibration πcW : Ŵ → B̂ admits only the singular
fibres included in the Kodaira’s list of singular fibres for elliptic surfaces.
Such a condition is useful to determine the monodromy of the fibration. In
fact, the generic monodromy matrices near the singular fibres of types I2,
I4, and I∗0 are determined, up to conjugacy, to be

(
1 2
0 1

)
,

(
1 4
0 1

)
,

(−1 0
0 −1

)
,

respectively. These monodromy matrices also reflect the bifurcation phe-
nomena of the dynamical system of free rigid bodies around the critical
points.

These geometric descriptions of the asymptotic behavior of the free rigid
body dynamics will reveal deeper meaning of the branching phenomena of
this dynamics, together with the explicit description of the solution to the
dynamics, which should be left to further investigations.
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