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Separation and weak separation on Riemann surfaces

Junichiro NARITA
(Received June 11, 1997)

Abstract. We show some necessary and sufficient conditions for weak separation by

an algebra A of analytic functions on a Riemann surface R . One of these equivalent

conditions is the following. There exists a sequence of relatively compact open sets \{D_{n}\}

in R such that (i) \partial D_{n} is connected, (ii) \overline{D}_{1}\subset\overline{D}_{2}\subset\overline{D}_{3}\subset
\cdot\cdot , (ii) R=\cup\overline{D}_{n} , and

(iv) A separates the points of a neighborhood of \partial D_{n} .
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1. Introduction

Let R be a Riemann surface, and let A be an algebra of analytic func-
tions on R. We always assume that A contains constant functions. We say
that points p and q of R are separated by A if there is a function f in A

such that f(p)\neq f(q) , and when any pair of distinct points are separated
by A , we say that the algebra A separates the points of R. For functions f
and g in A such that g\not\equiv 0 , (f/g) is a meromorphic function and so we can
consider the value (f/g)(p) at any point p of R. According to Royden [4] we
say that points p and q of R are weakly separated by A if there are functions

f and g in A as above such that (f/g)(p)\neq(f/g)(q) , and when any pair of
distinct points are weakly separated by A , we say that the algebra A weakly
separates the points of R.

On the other hand, in Gamelin-Hayashi [2] it was defined that A weakly
separates the points of R if there is a discrete subset \Lambda of R such that A

separates the points of R\backslash \Lambda in case A is the algebra of bounded analytic
functions H^{\infty}(R) . These two definitions for weak separation coincides each
other.

In this paper we study some necessary and sufficient conditions for weak
separation, and show that separation on a rather narrow set means weak
separation on R. We also include a proof of equivalence of two definitions
for weak separation. It will be convenient since the proof is not given in [2].
For the moment we use the terminology “weak separation” in the sense of
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Royden.

2. Preparation

We want to use the Royden’s resolution \tilde{R} of R with respect to A and
the canonical map \varphi : R –

\tilde{R} , and also some lemmas which are used to
construct \tilde{R} in Royden [4]. Following lemmas and proposition are implicitly
included in Royden [3]. See also Bishop [1]. We include the proof for the
sake of convenience.

Lemma 1 If points p , q of R are weakly separated by A , then there are
neighborhoods U of p and V of q such that A separates any pair of points
(p’, q’) in U\cross V except (p, q) .

Proof. Let f and g be functions in A such that (f/g)(p)\neq(f/g)(q) . If
f(p)\neq f(q) or g(p)\neq g(q) then the conclusion easily follows, so we can
assume that f(p)=f(q) and g(p)=g(q) . Then (f/g)(p)\neq(f/g)(q) can
occur only when f(p)=f(q)=g(p)=g(q)=0. As g is not identically 0,
there exist neighborhoods U of p and V of q such that.q \neq 0 in (U\backslash \{p\})\cup

(V\backslash \{q\}) and (f/g)(U)\cap(f/g)(V)=\emptyset . Then any pair of points (p’, q’) in
(UxI^{\gamma})\backslash \{(p, q)\} are separated by functions f or g in A. \square

For a point p of R , let

M(p)=\{f/g : f, g\in A, g\not\equiv 0, (f/g)(p)=0\}

and let \nu(p) be the minimal order of meromorphic functions in M(p) at p.

Lemma 2 For a point p of R, let h be a function in M(p) with order
\iota/(p) at p . Then for any function f in A , there exists a neighborhood U of
p such that f is represented as

f= \sum_{n=0}^{\infty}c_{n}h^{n}

in U .

Proof. By some local coordinate (U, z) with z(p)=0 , h can be represented
as h=z^{t/(p)} and

f= \sum_{m=0}^{\infty}a_{m}z^{m}
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in U . We want to show that the set {m : a_{m}\neq 0 , m is not a multiple of
\mathfrak{l}J(p)\} is empty. If not, let s be the smallest number of this set, and let t be
the integer with tv(p)<s <(t+1)\nu(p) . Then

\frac{f-\sum_{k=0}^{t}a_{k_{lJ}(p)}h^{k}}{h^{t}}=\frac{f-\sum_{k=0}^{t}a_{k\nu(p)}z^{k_{lJ}(p)}}{z^{t\iota(p)}},=a_{s}z^{s-t_{\mathfrak{l}J}(p)}+\cdot .

is an element of M(p) and the order of this function at p is less than v(p) .
This is a contradiction. \square

Lemma 3 Suppose that A weakly separates the points of R. Then for
any point p of R, there exists a neighborhood U of p such that A separates
the points of U .

Proof. Let U and h be as in the proof of Lemma 2. Lemma 2 shows that
a pair of points in U are not weakly separated by A if these points are not
separated by h . Since h=z^{\iota/(p)} , it must be that lJ(p)=1 . Then h itself
separates the points of U .

Let h=f/g with f, g\in A . By replacing U with a smaller neighborhood
of p if necessary, we can assume that f\neq 0 and g\neq 0 in U\backslash \{p\} . Then any
pair of points in U are separated by functions f or g in A. \square

The Royden’s resolution \tilde{R} of R with respect to A and the cannonical
map \varphi : Rarrow\tilde{R} is defined in [4] in terms of the homomorphisms of algebras.
Here \tilde{R} is a Riemann surface and \varphi is an analytic map satisfying that
\varphi(p)=\varphi(q) for p, q\in R if and only if there exist non-constant analytic
maps \rho and \sigma from a neighborhood of p and q respectively into the complex
plane satisfying that \rho(p)=0 , \sigma(q)=0 , and every f in A takes a same
value on \rho^{-1}(z)\cup\sigma^{-1}(z) for any complex number z in the images of \rho or \sigma .

We use only this property of \tilde{R} and \varphi in the proof of following prop0-

sition, and so we may use this equivalence relation p\sim q to define a
Riemann surface R/\sim , which is enough for the purpose of this paper, al-
though \varphi(R)=R/\sim is a subsurface of the Royden’s resolution \tilde{R} in general.

Proposition 1 For p and q of R, \varphi(p)=\varphi(q) if and only if p and q are
not weakly separated by A. Especially, the map \varphi is injective on R if and
only if A weakly separates the points of R .

Proof. If \varphi(p)=\varphi(q) , then A does not separate \rho^{-1}(z) and \sigma^{-1}(z) for
any z and so by Lemma 1, A does not weakly separate p and q .

For the reverse implication, we assume p and q are not weakly separated
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by A . Let h_{p} , h_{q} be functions in M(p) , M(q) respectively as in the statement
of Lemma 2. Since p and q are not weakly separated, h_{q}(p)=h_{p}(p)=0 ,
h_{p}(q)=h_{q}(q)=0 , and (h_{p}/h_{q})(p)=(h_{p}/h_{q})(q) . First two equations imply
h_{q}\in M(p) , h_{p}\in M(q) and so (h_{p}/h_{q})(p)\neq 0 , (h_{p}/h_{q})(q)\neq\infty . Hence h_{p}

and h_{q} have the same order at q , and so we can take the same function
h=h_{p} in Lemma 2 for both p and g .

For any f\in A , there are neighborhoods U ofp and V of q such that f=
\sum_{n=0}^{\infty}a_{n}h^{n} in U and f= \sum_{n=0}^{\infty}b_{n}h^{n} in V If a_{n}=b_{n} for n=0,1 , \ldots , k-1 ,
then the function

\frac{f-\sum_{n_{-}^{-}0}^{k-1}a_{n}h^{n}}{h^{k}}

is a member of quotient field of A and takes values a_{k} at p and b_{k} at q .
So a_{k}=b_{k} and this shows that a_{n}=b_{n} for all n . Therefore, if we take
\rho=\sigma=h , f takes a same value on \rho^{-1}(z)\cup\sigma^{-1}(z)=h^{-1}(z) for any
complex number z in h(U\cup V) . \square

3. Main Theorem

For two sets U and E in R, We say that A is separating on U with
respect to E if every point in U is separated by A from any other point in
U\cup E .

Theorem 1 Let A be an algebra of analytic functions on a Riemann
surface R. Then the following four conditions are equivalent.

(a) A weakly separates the points of R.
(b) There exists a discrete subset \Lambda of R such that A separates the points

of R\backslash \Lambda .
(c) There exists a sequence of compact sets \{K_{n}\} in R such that (i)

K_{1}\subset K_{2}\subset K_{3}\subset ., (ii) R=\cup K_{n} , and (iii) A is separating on a

neighborhood of \partial K_{n} with respect to K_{n} .
(d) There exists a sequence of relatively compact open sets \{D_{n}\} in R

such that (i) \partial D_{n} is connected, (ii) \overline{D}_{1}\subset\overline{D}_{2}\subset\overline{D}_{3}\subset \cdot\cdot , (iii)
R=\cup\overline{D}_{n} , and (iv) A separates the points of a neighborhood of \partial D_{n} .

Proof (a)\Rightarrow(b) : Let

\Gamma= { (p , q)\in R\cross R:p\neq q , p and q are not separated by A }.

By Lemma 1 and Lemma 3, \Gamma is a discrete subset of R\cross R . Let \{R_{n}\} be
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an exhaustion of R by relatively compact subregions R_{n} of R. For p\in R ,
let \chi(p)=\min\{n : p\in R_{n}\} and we set

\Lambda=\{p\in R : there exists a q\in R

such that (p, q)\in\Gamma and \chi(q)\leq\chi(p)\} .

First, we show that A separates the points of R\backslash \Lambda . If not, there exists a
pair of points p, q\in R\backslash \Lambda which are not separated by A , so (p, q)\in\Gamma Then
either p or q is a member of \Lambda according to \chi(q)\leq\chi(p) or \chi(p)\leq\chi(q) .
This is a contradiction.

Next, we show that \Lambda is a discrete subset of R. If not, there exists a
sequence \{p_{m}\} of points in \Lambda such that \{p_{m}\} converges to a point p in R.
Then all points of \{p_{m}\} are contained in an R_{n} . By the definition of \Lambda , for
each p_{m} there exists a point q_{m}\in R such that (p_{m}, q_{m})\in\Gamma and q_{m} is also
contained in R_{n} . Since R_{n} is relatively compact, there is a subsequence of
\{(p_{m}, q_{m})\} which converges to a point in R\cross R . This contradicts the fact
that \Gamma is a discrete subset of R\cross R .

(b) \Rightarrow(d) : We can take an exhaustion \{R_{n}\} of R such that \partial R_{n}

consists of finite number of smooth Jordan closed curves and \partial R_{n}\cap\Lambda=\emptyset

for all n . We can also join every component of \partial R_{n} by finite number of
disjoint smooth Jordan arcs in R_{n} without passing \Lambda . Let L_{n} be the union
of these Jordan arcs. Then D_{n}=R_{n}\backslash L_{n} satisfies the conditions of (d).

(c)\Rightarrow(a) : We use the Royden’s resolution \tilde{R} of R with respect to A

and the canonical map \varphi : Rarrow\tilde{R} . It suffices to show that \varphi is injective on
each K_{n} .

First we show that there exists a neighborhood V of \varphi(\partial K_{n}) such that
for w\in V , the number of points in \varphi^{-1}(w)\cap K_{n} is 1 or 0. Let U be
a neighborhood of \partial K_{n} such that A is separating on U with respect to
K_{n} . Since \varphi is an open mapping, \varphi(U) is a neighborhood of \varphi(\partial K_{n}) . Let
w\in\varphi(U) and p\in U be such as \varphi(p)=w . If there exists another point
q\in K_{n} , \varphi(q)=w , then p and q are not separated by A which contradicts
the assumption. Hence V=\varphi(U) suffices our request.

Now we show that \varphi is injective on int K_{n} by reduction to absurdity.
So we assume that there exist points a , b\in intK_{n} such that a\neq b and
\varphi(a)=\varphi(b) . If \varphi(a)\in\varphi(S) where S= \{p\in K_{n} : \frac{d\varphi}{d\zeta}(p)=0\} (the set
of singular points of the map \varphi ), we can take c\not\in\varphi(S) near \varphi(a) and
\tilde{a}\in\varphi^{-1}(c)\cap intK_{n} near a and \tilde{b}\in\varphi^{-1}(c)\cap intK_{n} near b so that \tilde{a}\neq\tilde{b} .
Hence we can assume that \varphi(a)\not\in\varphi(S) .
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We can join \varphi(a) with a point x\in V by a Jordan arc \gamma in \tilde{R}\backslash (\varphi(S)\cup

\varphi(\partial K_{n})) . In fact we can join \varphi(a) with any point y\in V\backslash \varphi(S) by an Jordan
arc \tilde{\gamma} in \tilde{R}\backslash \varphi(S) with the equation u : [0, 1] -

\tilde{R} , u(0)=\varphi(a) , u(1)=y.
If \tilde{\gamma}\cap\varphi(\partial K_{n})=\emptyset , we can take x=y and \gamma=\tilde{\gamma} . If \tilde{\gamma}\cap\varphi(\partial K_{n})\neq\emptyset , let
t_{0}= \min\{t : u(t)\in\varphi(\partial K_{n})\} and take t_{1} such that u(t_{1})\in V and t_{1}<t_{0} .
Then we can take x=u(t_{1}) and the subarc \gamma of \tilde{\gamma} for 0\leq t\leq t_{1} .

By usual lifting argument, we see that there exist arcs \gamma_{a} and \gamma_{b} in R
with initial points a and b respectively, such that \varphi(\gamma_{a})=\varphi(\gamma_{b})=\gamma and
\gamma_{a}\cap\gamma_{b}=\emptyset . Since \gamma_{a} and \gamma_{b} do not meet \partial K_{n} , these are contained in
int K_{n} . Accordingly \varphi^{-1}(x)\cap K_{n} contains at least two points \varphi^{-1}(x)\cap\gamma_{a}

and \varphi^{-1}(x)\cap\gamma_{b} . This contradicts x\in V and so we see that \varphi is injective
on int K_{n} . This with the assumptin of (c) shows that \varphi is injective on K_{n} .

(d)\Rightarrow(c) : We again use the Royden’s resolution \tilde{R} of R and \varphi : Rarrow

\tilde{R} . Let U be a neighborhood of \partial D_{n} such that A separates the points of U .
We can take an arcwise connected compact set B with \partial D_{n}\subset intB\subset B\subset

U . For example, we can cover \partial D_{n} by finite number of coordinate disks V_{m}

with \overline{V}_{m}\subset U and V_{m}\cap\partial D_{n}\neq\emptyset . Then\cup V_{m} is an open connected set and
we can take B=\overline{\cup V_{m}} as an arcwise connected compact set.

We want to show that A is separating on B with respect to D_{n} by
reduction to absurdity. If not, there exists a point p\in D_{n}\backslash B with \varphi(p)\in

\varphi(B) . Let E be a component of \varphi^{-1}(\varphi(B))\cap(D_{n}\cup B) containing p . As \varphi

is injective on U , \varphi(U\backslash B) does not meet \varphi(B) and so \varphi^{-1}(\varphi(B))\cap(D_{n}\cup B)

is contained in the union of mutually disjoint compact sets D_{n}\backslash U and B .
This shows that E\subset D_{n}\backslash U\subset D_{n}\backslash B .

Now we can use lifting argument to show that \varphi(E)=\varphi(B) . In fact,
for any point w in \varphi(B) , we can join \varphi(p) and w by an arc \gamma in \varphi(B) , and
we can take a maximal arc \gamma_{p} in R with initial point p such that \varphi(\gamma_{p})\subset\gamma .
If \varphi(\gamma_{p}) is a proper subset of \gamma , then the arc \gamma_{p} continues to the outside
of the set D_{n} , and \gamma_{p}\cap\partial D_{n}\neq\emptyset . Hence, the set E intersects with the set
B , a contradiction. Thus, \varphi(\gamma_{p})=\gamma . Then w\in\varphi(\gamma_{p})\subset\varphi(E) and so
\varphi(E)=\varphi(B) .

From E\subset D_{n} and \partial D_{n}\subset B , it follows that \varphi(\partial D_{n})\subset\varphi(B)=\varphi(E)\subset

\varphi(D_{n}) . For any function f in A , we can take an analytic function \tilde{f} on \tilde{R}

such that f=\tilde{f}\circ\varphi . Then f(\partial D_{n})=\tilde{f}(\varphi(\partial D_{n}))\subset\tilde{f}(\varphi(D_{n}))=f(D_{n}) and
by the maximal modulus principle, f must be a constant function. This
contradicts the assumption of (d), and we conclude that A is separating on
B with respect to D_{n} .
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Let K_{n}=\overline{D}_{n} . Since \partial K_{n}\subset\partial D_{n}\subset intB\subset B and K_{n}\cup intB\subset D_{n}\cup B ,
conditions of (c) are satisfied if we take int B as a neighborhood of \partial K_{n} .

\square

The condition (i) “
\partial D_{n} is connected” of (d) in Theorem 1 can not be

removed, and also we can not remove “a neighborhood of” in the condition
(iv) of (d),

To show this we use a Riemann surface R which is known as Myrberg’s
example ([3]), and we take A as the algebra of bounded analytic functions
H^{\infty}(R) . Let a_{n} , b_{n} be two sequences of real numbers such that 0<a_{n+1}<
b_{n+1}<a_{n}<b_{n} (n=1,2, \ldots) and \lim_{narrow\infty}a_{n}=\lim_{narrow\infty}b_{n}=0 . We
define a Riemann surface R as a two sheeted unbounded covering surface
of punctured disk \triangle 0=\{0<|z|<1\} which has branch points over \{a_{n}\}

and \{b_{n}\} . Let \pi : R -arrow\triangle 0 be a projection, and let C_{r}=\{|z|=r\} . We
also assume that \pi^{-1}(C_{r}) is connected for a_{n}\leq r\leq b_{n}(n=1,2, \ldots) and
\pi^{-1}(C_{r}) has two components for b_{n+1}<r<a_{n}(n=1,2, \ldots) and for
b_{1}<r<1 . It is known that every bounded analytic function on R takes a
same value on \pi^{-1}(z) for z\in\triangle 0 , and so H^{\infty}(R) can not weakly separates
the points of R.

We can take connected open sets \{D_{n}\} in R such that \partial D_{n} has four com-
ponents and each component is a component of \pi^{-1}(C_{r}) for r=c_{n} , d_{n} , s_{n} , t_{7?}

respectively, where b_{n+1}<c_{n}<d_{n}<a_{n} and b_{1}<s_{n}<t_{n}<s_{n+1}<t_{n+1}<

1 (n=1,2, \ldots) , \lim_{narrow\infty}s_{n}=\lim_{narrow\infty}t_{n}=1 . Note that we must take
components of \pi^{-1}(C_{r}) on ‘(different sheets” of R for r=c_{n} and r=d_{n} ,
and also for r=s_{n} and r=t_{n} . The conditions (ii) and (iii) of (d) are
satisfied by the construction, and (iv) is satisfied since H^{\infty}(R) contains the
function z\circ\pi where z is the coordinate function on \triangle 0 . Now all conditions
of (d) are satisfied except (i).

For another example which shows necessity of “a neighborhood of” in
the condition (iv) of (d), we modify the Riemann surface R such as R

has branch points also over \{s_{n}\} and \{t_{n}\} . Again every bounded analytic
function on R takes a same value on \pi^{-1}(z) for z\in\triangle 0 . Let \Gamma_{n,1} bc
a subset of \pi^{-1}(C_{a_{n}}) which form a closed Jordan curve, and let \Gamma_{n,2} be
another closed Jordan curve on R such that \pi(\Gamma_{n,2}) is the circle whose
diameter is the segment [-b_{n}, a_{n}] and such that R\backslash (\Gamma_{n,1}\cup\Gamma_{n,2}) has no
relatively compact components. We take \Gamma_{n,3} and \Gamma_{n,4} in the same manner,
such as \Gamma_{n,3}\subset\pi^{-1}(C_{s_{n}}) and \pi(\Gamma_{n,4}) is the circle whose diameter is the
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segment [-t_{n}, s_{n}] . Now we can take connected open sets \{\tilde{D}_{n}\} in R such
that \partial\tilde{D}_{n} has two components \Gamma_{n,1}\cup\Gamma_{n,2} and \Gamma_{n,3}\cup\Gamma_{n,4} . We can join
these two components by a Jordan arc L_{n} in \tilde{D}_{n} where \pi(L_{n}) is a segment
[a_{n}, s_{n}] . Then D_{n}=\tilde{D}_{n}\backslash L_{n} satisfies all conditions of (d) if we remove “a
neighborhood of” in the condition (iv) of (d).
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