Higher Specht polynomials for the complex reflection group $G(r, p, n)$

(To Professor Takeshi Hirai on his sixtieth birthday)
H. Morita and H.-F. Yamada
(Received December 16, 1996; Revised December 12, 1997)

Abstract

A basis of the quotient ring P / J_{+}is given, where P is the ring of polynomials and J_{+}is the ideal generated by the fundamental invariants under the action of the complex reflection group $G(r, p, n)$.

Key words: complex reflection groups, coinvariant rings, Clifford theory, tableaux.

1. Introduction

This note is concerned with a certain graded module over the imprimitive complex reflection group $G(r, p, n)$ [ST]. The group $G(r, p, n)(r, p, n$ $\geq 1, p \mid r)$ consists of the monomial matrices whose nonzero entries are of the form $\zeta^{j}(0 \leq j<r)$ and such that the d-th power of the product of all nonzero entries is equal to 1 , where we denote by ζ a primitive r-th root of 1 , and $d=r / p$. In some special cases, $G(r, p, n)$ is isomorphic to the Weyl group:

$$
\begin{aligned}
& G(1,1, n)=W\left(A_{n-1}\right), \\
& G(2,1, n)=W\left(B_{n}\right)=W\left(C_{n}\right), \\
& G(2,2, n)=W\left(D_{n}\right), \\
& G(6,6,2)=W\left(G_{2}\right) .
\end{aligned}
$$

Also it is naturally identified as a normal subgroup of the wreath product

$$
G(r, n)=(\mathbf{Z} / r \mathbf{Z}) \backslash S_{n}=\left\{\left(\zeta^{i_{1}}, \ldots, \zeta^{i_{n}} ; \sigma\right) \mid i_{k} \in \mathbf{N}, \sigma \in S_{n}\right\}
$$

whose product is given by

$$
\left(\zeta^{i_{1}}, \ldots, \zeta^{i_{n}} ; \sigma\right)\left(\zeta^{j_{1}}, \ldots, \zeta^{j_{n}} ; \tau\right)=\left(\zeta^{i_{1}+j_{\sigma}-1}(1), \ldots, \zeta^{i_{n}+j_{\sigma}-1(n)} ; \sigma \tau\right) .
$$

Let $P=\mathbf{C}\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring of n indeterminates, on which the group $G(r, n)$ acts as follows:

$$
\left(\left(\zeta^{i_{1}}, \ldots, \zeta^{i_{n}} ; \sigma\right) f\right)\left(x_{1}, \ldots, x_{n}\right)=f\left(\zeta^{i_{\sigma(1)}} x_{\sigma(1)}, \ldots, \zeta^{i_{\sigma(n)}} x_{\sigma(n)}\right)
$$

It is known that the fundamental invariants under this action are given by the elementary symmetric functions $e_{j}\left(x_{1}^{r}, \ldots, x_{n}^{r}\right), 1 \leq j \leq n$. Let J_{+}^{\prime} be the ideal of P generated by these fundamental invariants and $R^{\prime}=P / J_{+}^{\prime}$ be the quotient ring, which is sometimes called the coinvariant algebra. It is also known that the $G(r, n)$-module R^{\prime} is isomorphic to the group ring $\mathbf{C} G(r, n)$, which affords the left regular representation. A description of all the irreducible components of R^{\prime} has been known in [ATY], in terms of what we call higher Specht polynomials. (See also [TY] for the case $r=1$.) The irreducible representations of $G(r, n)$ are parameterized by the r-tuples of Young diagrams $\left(\lambda^{0}, \ldots, \lambda^{r-1}\right)$ with $\left|\lambda^{0}\right|+\cdots+\left|\lambda^{r-1}\right|=n$. In [ATY] (and $[\mathrm{TY}]$) combinatorics of Young diagrams is used to determine a basis for each irreducible component of R^{\prime}.

Now we consider the restriction of the above action of $G(r, n)$ on P to the subgroup $G(r, p, n)$. The fundamental invariants are $e_{j}\left(x_{1}^{r}, \ldots, x_{n}^{r}\right)$ $(1 \leq j \leq n-1)$ and $e_{n}\left(x_{1}^{d}, \ldots, x_{n}^{d}\right)$. Denote by J_{+}the ideal generated by these polynomials and let $R=P / J_{+}$. The representation of $G(r, p, n)$ on R is again isomorphic to the left regular representation. Our problem is to describe the irreducible components of R as well as their bases. The key to our description is the Clifford theory [S] for a finite group G and its normal subgroup H.

2. Higher Specht polynomials for $G(r, n)$

Here we recall the results of [ATY] on an irreducible decomposition of the graded $G(r, n)$-module

$$
R^{\prime}=P / J_{+}^{\prime}
$$

where $P=\mathbf{C}\left[x_{1}, \ldots, x_{n}\right]$ and $J_{+}^{\prime}=\left(e_{1}\left(x_{1}^{r}, \ldots, x_{n}^{r}\right), \ldots, e_{n}\left(x_{1}^{r}, \ldots, x_{n}^{r}\right)\right)$. As is well-known the irreducible representations of $G(r, n)$ are parameterized by the set $\mathcal{P}_{r, n}$ of the r-tuples of Young diagrams $\lambda=\left(\lambda^{0}, \ldots, \lambda^{r-1}\right)$ with $\left|\lambda^{0}\right|+\cdots+\left|\lambda^{r-1}\right|=n$. By filling each cell with a positive integer in such a way that every $k(1 \leq k \leq n)$ occurs once, we obtain an r-tableau $T=$ $\left(T^{0}, \ldots, T^{r-1}\right)$ of shape $\lambda=\left(\lambda^{0}, \ldots, \lambda^{r-1}\right)$. If the number k occurs in the

Fig. 1.
component T^{ν}, we may write $k \in T^{\nu}$. The set of the r-tableaux of shape λ is denoted by $\operatorname{Tab}(\lambda)$. An r-tableau $T=\left(T^{0}, \ldots, T^{r-1}\right)$ is said to be standard if the numbers are increasing along each column and each row of $T^{\nu}(0 \leq \nu<r)$. The set of the standard r-tableaux of shape λ is denoted by $\operatorname{STab}(\lambda)$.

Let $S=\left(S^{0}, \ldots, S^{r-1}\right) \in \operatorname{STab}(\lambda)$. We associate a word $w(S)$ in the following way. First we read each column of the component S^{0} from the bottom to the top starting from the left. We continue this procedure for the components S^{1} and so on. For the word $w(S)$ we define the index $i(w(S))$ inductively as follows. The number 1 in the word $w(S)$ has index $i(1)=0$. If the number k has index $i(k)=p$ and the number $k+1$ is sitting to the left (resp. right) of k, then $k+1$ has index $p+1$ (resp. p). Finally, assigning the indices to the corresponding cells, we get a shape $\lambda=\left(\lambda^{0}, \ldots, \lambda^{r-1}\right)$, with each cell filled with a nonnegative integer, which is denoted by $i(S)=\left(i(S)^{0}, \ldots, i(S)^{r-1}\right)$. An example of standard 3 -tableaux and the indices is given in Figure 1.

Let $T=\left(T^{0}, \ldots, T^{r-1}\right)$ be an r-tableau of shape λ. For each component $T^{\nu}(0 \leq \nu<r)$, the Young symmetrizer $e_{T^{\nu}}$ of T^{ν} is defined by

$$
e_{T^{\nu}}=\frac{1}{\alpha_{T^{\nu}}} \sum_{\sigma \in R\left(T^{\nu}\right), \tau \in C\left(T^{\nu}\right)} \operatorname{sgn}(\tau) \tau \sigma,
$$

where $R\left(T^{\nu}\right)$ and $C\left(T^{\nu}\right)$ are the row stabilizer and the column stabilizer of T^{ν}, respectively, and $\alpha_{T^{\nu}}$ is the product of hook lengths for the shape λ^{ν}. To state the definition of higher Specht polynomials, we regard a tableau T on a Young diagram λ as a map

$$
T:\{\text { cells of } \lambda\} \longrightarrow \mathbf{Z}_{\geq 0}
$$

which assigns to a cell ξ of λ the number $T(\xi)$ written in the cell ξ in T. For $S \in \operatorname{STab}(\lambda)$ and $T \in \operatorname{Tab}(\lambda)$, define the higher Specht polynomial $\Delta_{S, T}(x)$ by

$$
\Delta_{S, T}(x)=\prod_{\nu=0}^{r-1}\left\{e_{T^{\nu}}\left(x_{T^{\nu}}^{r i(S)^{\nu}}\right) \prod_{k \in T^{\nu}} x_{k}^{\nu}\right\}
$$

where

$$
x_{T^{\nu}}^{r i(S)^{\nu}}=\prod_{\xi \in \lambda^{\nu}} x_{T^{\nu}(\xi)}^{r i(S)^{\nu}(\xi)}
$$

The following is a fundamental result of [ATY] on the higher Specht polynomials for $G(r, n)$.

Theorem 1

1. The subspace $V_{S}(\lambda)=\sum_{T \in \operatorname{Tab}(\lambda)} \mathbf{C} \Delta_{S, T}(x)$ of P affords an irreducible representation of the complex reflection group $G(r, n)$.
2. The set $\left\{\Delta_{S, T}(x) \mid T \in \operatorname{STab}(\lambda)\right\}$ gives a basis for $V_{S}(\lambda)$.
3. For $S_{1} \in \operatorname{STab}(\lambda)$ and $S_{2} \in \operatorname{STab}(\mu)$, the representations afforded by $V_{S_{1}}(\lambda)$ and $V_{S_{2}}(\mu)$ are isomorphic if and only if S_{1} and S_{2} have the same shape, i.e., $\lambda=\mu$. The isomorphism is given by

$$
\Delta_{S_{1}, T}(x) \mapsto \Delta_{S_{2}, T}(x)(T \in \operatorname{STab}(\lambda)) .
$$

4. The coinvariant algebra $R^{\prime}=P / J_{+}^{\prime}$ admits an irreducible decomposition

$$
R^{\prime}=\bigoplus_{\lambda \in \mathcal{P}_{r, n}} \bigoplus_{S \in \operatorname{STab}(\lambda)}\left(V_{S}(\lambda) \bmod J_{+}^{\prime}\right)
$$

as a $G(r, n)$-module.

3. Review of the Clifford theory

We briefly review the Clifford theory following [S , pp. 380-381]. Let H be a normal subgroup of a finite group G such that the quotient group G / H is cyclic. We have in mind the case $G=G(r, n)$ and $H=G(r, p, n)$. Let C denote the group of 1-dimensional representations, or characters, $\left(\delta, \mathbf{C}_{\delta}\right)$ of G such that $H \subset \operatorname{Ker} \delta$. In other words, C is the group of the characters of G / H, which is isomorphic to G / H. Two irreducible representations (ϕ, V) and (ψ, W) of G are said to be associates if there exists $\delta \in C$ such that $\psi=\delta \otimes \phi$. For a fixed irreducible representation (ϕ, V) of G, let

$$
C_{\phi}=\{\delta \in C \mid \phi \cong \delta \otimes \phi\}
$$

be the stabilizer of ϕ and let $\left(\delta, \mathbf{C}_{\delta}\right)$ be a generator of C_{ϕ}. There exists a G-module isomorphism $V \longrightarrow \mathbf{C}_{\delta} \otimes V$. Composing this with the H module isomorphism $\mathbf{C}_{\delta} \otimes V \longrightarrow V, 1_{\delta} \otimes v \mapsto v$ (where 1_{δ} is a fixed basis element of \mathbf{C}_{δ}), we obtain an H-module isomorphism $A: V \longrightarrow V$ satisfying $A(\phi(g) v)=\delta(g) \phi(g) A(v)$ for all $g \in G$ and $v \in V$. If $\left|C_{\phi}\right|=e$, then A^{e} commutes with G and, by Schur's lemma, A^{e} is a nonzero scalar. By normalizing the constant, we assume that $A^{e}=\mathbf{1}_{V}$ and call such A the associator of (ϕ, V). Choose an associator A for (ϕ, V) and let

$$
V=\bigoplus_{\ell=0}^{e-1} E^{(\ell)}
$$

denote the eigenspace decomposition of V with respect to A, where $E^{(\ell)}$ is the eigenspace with eigenvalue $e^{\frac{2 \pi i \ell}{e}}$. Since $H \subset \operatorname{Ker} \delta$, each $E^{(\ell)}$ is an H-module. Moreover the $E^{(\ell)}$'s are inequivalent irreducible H-modules of the same dimension $(\operatorname{dim} V) / e$. The Frobenius reciprocity tells us that $\operatorname{Ind}_{H}^{G} E^{(\ell)}$ is the multiplicity free direct sum of all the associates of (ϕ, V). From these results, we can conclude that the irreducible representations of H are parameterized by the pairs $(\mathcal{O}, \varepsilon)$ consisting of a C-orbit \mathcal{O} through an irreducible representation of G and a character $\varepsilon \in C$ that stabilizes \mathcal{O}.

4. Higher Specht polynomials for $\boldsymbol{G}(\boldsymbol{r}, \boldsymbol{p}, \boldsymbol{n})$

We now apply the Clifford theory to the case $G=G(r, n)$ and $H=$ $G(r, p, n)$. Define the linear character δ of $G(r, n)$ by $\delta\left(\zeta^{i_{1}}, \ldots, \zeta^{i_{n}} ; \sigma\right)=$ $\zeta^{i_{1}+\cdots+i_{n}}$ so that our cyclic group is $C=\left\langle\delta^{d}\right\rangle \cong \mathbf{Z} / p \mathbf{Z}$. Define the shift
operator sh on $\mathcal{P}_{r, n}($ resp. on $\operatorname{Tab}(\lambda))$ by

$$
\begin{aligned}
& \operatorname{sh}\left(\lambda^{0}, \ldots, \lambda^{r-1}\right)=\left(\lambda^{r-1}, \lambda^{0}, \ldots, \lambda^{r-2}\right) \\
& \left(\text { resp. } \operatorname{sh}\left(T^{0}, \ldots, T^{r-1}\right)=\left(T^{r-1}, T^{0}, \ldots, T^{r-2}\right)\right) .
\end{aligned}
$$

By the realization of the irreducible representations of $G(r, n)$ described in Section 2, one sees that

$$
\mathbf{C}_{\delta} \otimes V_{S}(\lambda) \xrightarrow{\sim} V_{\operatorname{sh}(S)}(\operatorname{sh}(\lambda)): 1_{\delta} \otimes \Delta_{S, T}(x) \mapsto \Delta_{\operatorname{sh}(S), \operatorname{sh}(T)}(x),
$$

is a G-module isomorphism for any $S \in \operatorname{STab}(\lambda), \lambda \in \mathcal{P}_{r, n}$. Hence the C-orbits are characterized by $\mathcal{P}_{r, n} / \sim$, where we denote $\lambda \sim \mu$ if $\mu=\operatorname{sh}^{d j} \lambda$ for some $j=0,1, \ldots, p-1$. For convenience we will denote $\mathrm{Sh}=\mathrm{sh}^{d}$. For $\lambda \in \mathcal{P}_{r, n}$, let $b(\lambda)$ be the minimal j such that $\operatorname{Sh}^{j} \lambda=\lambda$, i.e., $b(\lambda)=\mid\{\mu \in$ $\left.\mathcal{P}_{r, n} \mid \lambda \sim \mu\right\} \mid$ and put $e(\lambda)=p / b(\lambda)$. The stabilizer C_{λ} of λ is a subgroup of C generated by $\delta^{b(\lambda) d}$, so that $\left|C_{\lambda}\right|=e(\lambda)$ and $\left|C / C_{\lambda}\right|=b(\lambda)$. The corresponding associator is denoted by A_{λ}. In other words, the associator A_{λ} is realized on $V_{S}(\lambda)$ by

$$
A_{\lambda}\left(\Delta_{S, T}(x)\right)=\Delta_{S, S h^{-b(\lambda)}(T)}(x) \quad(T \in \operatorname{Tab}(\lambda))
$$

For $h=1,2, \ldots, r$, let

$$
\operatorname{STab}(\lambda)_{h}=\left\{T=\left(T^{0}, \ldots, T^{r-1}\right) \in \operatorname{STab}(\lambda) \mid 1 \in T^{\nu}, 0 \leq \nu<h\right\} .
$$

Note that, if $T \in \operatorname{STab}(\lambda)_{d b(\lambda)}$, then the standard r-tableaux

$$
T, \mathrm{Sh}^{b(\lambda)}(T), \mathrm{Sh}^{2 b(\lambda)}(T), \ldots, \mathrm{Sh}^{(e(\lambda)-1) b(\lambda)}(T)
$$

are all distinct. Let $\lambda=\left(\lambda^{0}, \ldots, \lambda^{r-1}\right)$ be an element of $\mathcal{P}_{r, n}$. Fix $S \in$ $\operatorname{STab}(\lambda)$ and $\ell=0,1, \ldots, e(\lambda)-1$. For each $T \in \operatorname{STab}(\lambda)$, we define a polynomial

$$
\Delta_{S, T}^{(\ell)}(x):=\sum_{m=0}^{e(\lambda)-1} \zeta^{\ell m d b(\lambda)} \Delta_{S, \mathrm{Sh}^{m b(\lambda)}(T)}(x)
$$

as an element of $R^{\prime}=P / J_{+}^{\prime}$. Since $\Delta_{S, T_{1}}^{(\ell)}(x)$ coincides with $\Delta_{S, T_{2}}^{(\ell)}(x)$ up to constant if T_{1} and T_{2} are in the same $\left\langle\operatorname{Sh}^{b(\lambda)}\right\rangle$-orbit in $\operatorname{STab}(\lambda)$, we only have to consider the polynomials associated with $T \in \operatorname{STab}(\lambda)_{d b}(\lambda)$.

Let $\mathcal{D}_{S}(T)(S, T \in \operatorname{STab}(\lambda))$ denote the set $\left\{\Delta_{S, \mathrm{Sh}^{m b(\lambda)} T}(x) \mid m=\right.$ $0, \ldots, e(\lambda)-1\}$. Then, for each $S \in \operatorname{STab}(\lambda)$, we have a partition of the
polynomials $\Delta_{S, T}(x), T \in \operatorname{Stab}(\lambda)$ as follows:

$$
\left\{\Delta_{S, T}(x) \mid T \in \operatorname{STab}(\lambda)\right\}=\coprod_{T \in \operatorname{STab}(\lambda)_{d b(\lambda)}} \mathcal{D}_{S}(T) .
$$

Since $\left\{\Delta_{S, T}(x) \mid T \in \operatorname{STab}(\lambda)\right\}$ is linearly independent over \mathbf{C}, the polynomials $\left\{\Delta_{S, T}^{(\ell)}(x) \mid T \in \operatorname{STab}(\lambda)_{d b(\lambda)}\right\}$ is also linearly independent for fixed S and ℓ.

Lemma 2 Let S and T be standard r-tableaux of shape λ and $\ell=$ $0,1, \ldots, e(\lambda)-1$. Then the polynomial $\Delta_{S, T}(x)$ is a nonzero element in $R=P / J_{+}$if and only if $S \in \operatorname{STab}(\lambda)_{d}$.

Proof. Suppose that $S \in \operatorname{STab}(\lambda) \backslash \operatorname{STab}(\lambda)_{d}$. Then the number 0 does not appear in $i(S)^{0}, \ldots, i(S)^{d-1}$. Hence the partial product $\prod_{\nu=0}^{d-1}$ $\left\{e_{T^{\nu}}\left(x_{T^{\nu}}^{r i(S)^{\nu}}\right) \Pi_{k \in T^{\nu}} x_{k}^{\nu}\right\}$ of $\Delta_{S, T}(x)$ has the factor $\prod_{\nu=0}^{d-1}\left(\prod_{k \in T^{\nu}} x_{k}^{r}\right)$. On the other hand, the remaining product $\prod_{\nu=d}^{r-1}\left\{e_{T^{\nu}}\left(x_{T^{\nu}}^{r i(S)^{\nu}}\right) \prod_{k \in T^{\nu}} x_{k}^{\nu}\right\}$ has the factor $\prod_{\nu=d}^{r-1}\left(\prod_{k \in T^{\nu}} x_{k}^{d}\right)$. Since $d \mid r, \Delta_{S, T}(x)$ is divisible by $\left(x_{1} \cdots x_{n}\right)^{d}$ in P, i.e., $V_{S}(\lambda) \subset J_{+}$.

To prove that $V_{S}(\lambda)$ survives in $R=P / J_{+}$for $S \in \operatorname{STab}(\lambda)_{d}$, it is enough to see that $m(S)$ equals the multiplicity of the irreducible $G(r, p, n)$ module which is isomorphic to $V_{S}^{(\ell)}(\lambda)$, where

$$
\begin{aligned}
m(S):=\sum_{\mu} \sharp\left\{S^{\prime} \in \operatorname{STab}(\mu)_{d} \mid V_{S^{\prime}}^{\left(\ell^{\prime}\right)}(\mu)\right. & \cong V_{S}^{(\ell)}(\lambda), \\
\text { for some } \ell^{\prime} & =0,1, \ldots, e(\mu)-1\},
\end{aligned}
$$

and the sum is taken over the set $\left\{\mu \in \mathcal{P}_{r, n} \mid \mu \sim \lambda\right\}$. Indeed, it is easily seen that

$$
\begin{aligned}
m(S) & =\left|\operatorname{STab}(\lambda)_{d}\right| \times \sharp\left\{\mu \in \mathcal{P}_{r, n} \mid \mu \sim \lambda\right\} \\
& =\frac{|\operatorname{Stab}(\lambda)|}{p} \times b(\lambda) \\
& =\frac{|\operatorname{Stab}(\lambda)|}{e(\lambda)} \\
& =\frac{\operatorname{dim} V_{S}(\lambda)}{e(\lambda)} \\
& =\operatorname{dim} V_{S}^{(\ell)}(\lambda) .
\end{aligned}
$$

Since R is isomorphic to the regular representation of $G(r, p, n)$, the proof
completes.
We now have a family of polynomials

$$
\begin{aligned}
& \left\{\Delta_{S, T}^{(\ell)}(x) \in R \mid S \in \operatorname{STab}(\lambda)_{d}, T \in \operatorname{STab}(\lambda)_{d b(\lambda)}\right. \\
& \quad \ell=0,1, \ldots, e(\lambda)-1\}
\end{aligned}
$$

It is shown in Theorem 3 below that they are linearly independent. We call these polynomials the higher Specht polynomials for the complex reflection group $G(r, p, n)$.

Theorem 3 Let $\lambda=\left(\lambda^{0}, \ldots, \lambda^{r-1}\right) \in \mathcal{P}_{r, n}$, and for each $S \in \operatorname{STab}(\lambda)$ and $0 \leq \ell \leq e(\lambda)-1$, put $V_{S}^{(\ell)}=\bigoplus_{T \in \operatorname{STab}(\lambda)} \mathbf{C} \Delta_{S, T}^{(\ell)}(x)$ as a subspace of R^{\prime}.

1. We have the eigenspace decomposition $V_{S}(x)=\bigoplus_{\ell=0}^{e(\lambda)-1} V_{S}^{(\ell)}(x)$ for the associator A_{λ}.
2. The space $V_{S}^{(\ell)}(\lambda)$ affords an irreducible representation of $G(r, p, n)$.
3. The $G(r, p, n)$-module $R=P / J_{+}$admits an irreducible decomposition

$$
R=\bigoplus_{\lambda} \bigoplus_{S \in \operatorname{STab}(\lambda)_{d}} \bigoplus_{\ell=0}^{e(\lambda)-1} V_{S}^{(\ell)}(\lambda)
$$

where λ runs over a system of complete representatives of $\mathcal{P}_{r, n} / \sim$. Proof.

1. For a standard r-tableau $S \in \operatorname{STab}(\lambda)$, a subspace $V_{S}^{(\ell)}(\lambda)$ of $V_{S}(\lambda)$ is defined by

$$
V_{S}^{(\ell)}(\lambda):=\bigoplus_{T \in \operatorname{STab}(\lambda)_{d b(\lambda)}} \mathbf{C} \Delta_{S, T}^{(\ell)}(x)
$$

for each $\ell=0,1, \ldots, e(\lambda)-1$. Recall that the associator A_{λ} of $V_{S}(\lambda)$ is defined by $A_{\lambda}\left(\Delta_{S, T}(x)\right)=\Delta_{S, S^{-b(\lambda)} T}(x)$. Since $A_{\lambda}\left(\Delta_{S, T}^{(\ell)}(x)\right)=$ $\zeta^{\ell d b(\lambda)} \Delta_{S, T}^{(\ell)}(x)$, the subspaces $V_{S}^{(\ell)}(\lambda)$ are contained in distinct eigenspaces of A_{λ}. Hence we have

$$
\bigoplus_{\ell=0}^{e(\lambda)-1} V_{S}^{(\ell)}(\lambda) \subset V_{S}(\lambda)
$$

Since the dimension of $V_{S}^{(\ell)}(\lambda)$ is

$$
\left|\operatorname{STab}(\lambda)_{d b(\lambda)}\right|=\frac{1}{e(\lambda)}|\operatorname{STab}(\lambda)|=\frac{1}{e(\lambda)} \operatorname{dim} V_{S}(\lambda)
$$

for each $\ell=0,1, \ldots, e(\lambda)-1$, the dimensions of the both side of the above inclusion coincide. Therefore we have the direct sum decomposition

$$
\bigoplus_{\ell=0}^{e(\lambda)-1} V_{S}^{(\ell)}(\lambda)=V_{S}(\lambda) .
$$

This also gives the eigenspace decomposition of $V_{S}(\lambda)$ with respect to the associator A_{λ}.
2. This follows directly from 1 and the Clifford theory in Section 3.
3. Let π be the $G(r, n)$-module epimorphism

$$
\pi: R^{\prime}=P / J_{+}^{\prime} \rightarrow R=P / J_{+} ; f \bmod J_{+}^{\prime} \mapsto f \bmod J_{+}
$$

By Lemma 2, we have $\pi\left(V_{S}(\lambda)\right)=0$ if $S \in \operatorname{STab}(\lambda) \backslash \operatorname{STab}(\lambda)_{d}$, and $\pi\left(V_{S}(\lambda)\right) \cong V_{S}(\lambda)$ if $S \in \operatorname{STab}(\lambda)_{d}$. This implies that $\left\{\Delta_{S, T}(x) \in R \mid\right.$ $\left.S \in \operatorname{STab}(\lambda)_{d}, T \in \operatorname{STab}(\lambda)\right\}$ are linearly independent in R. Hence the higher Specht polynomials

$$
\begin{aligned}
&\left\{\Delta_{S, T}^{(\ell)}(x) \in R \mid S \in \operatorname{STab}(\lambda)_{d}, T \in \operatorname{STab}(\lambda)_{d b(\lambda)}\right. \\
& \quad\ell=0,1, \ldots, e(\lambda)-1\}
\end{aligned}
$$

are also linearly independent. Therefore we have the direct sum decomposition

$$
\begin{aligned}
R=\pi\left(R^{\prime}\right) & =\pi\left(\bigoplus_{\lambda \in \mathcal{P}_{r, n}} \bigoplus_{S \in \operatorname{STab}(\lambda)} V_{S}(\lambda)\right) \\
& \cong \bigoplus_{\lambda \in \mathcal{P}_{r, n} / \sim} \bigoplus_{S \in \operatorname{STab}(\lambda)_{d}} V_{S}(\lambda) \\
& =\bigoplus_{\lambda \in \mathcal{P}_{r, n} / \sim} \bigoplus_{S \in \operatorname{STab}(\lambda)_{d}} \bigoplus_{\ell=0}^{e(\lambda)-1} V_{S}^{(\ell)}(\lambda) .
\end{aligned}
$$

This is an irreducible decomposition of the left regular representation R of $G(r, p, n)$.

5. Examples

In this section, we give some examples of higher Specht polynomials. First we consider $G(2,1,4)=W\left(B_{4}\right)$. Let $\lambda=(\square, \square), T_{1}=$ $\left(\begin{array}{ll}1 & 3 \\ 2 & ,\end{array}\right), T_{2}=\operatorname{sh}\left(T_{1}\right)=\left(\begin{array}{ll}3 & 1 \\ 4 & , \\ 2\end{array}\right)$ and $S=\left(\begin{array}{ll}1 & 2 \\ 4 & , \\ 3\end{array}\right)$, so that $i(S)=$ $\left(\begin{array}{ll}0 & 0 \\ 2 & , \\ 1\end{array}\right)$. The higher Specht polynomials associated with $\left(S, T_{1}\right)$ and $\left(S, T_{2}\right)$ are, respectively,

$$
\begin{aligned}
\Delta_{S, T_{1}}(x) & =\left\{\frac{1}{2}\left(\mathrm{id}-s_{1}\right) x_{2}^{4}\right\}\left\{\frac{1}{2}\left(\mathrm{id}-s_{3}\right) x_{4}^{2}\right\} x_{3} x_{4} \\
& =\frac{1}{4}\left(x_{2}^{4}-x_{1}^{4}\right)\left(x_{4}^{2}-x_{3}^{2}\right) x_{3} x_{4} \\
\Delta_{S, T_{2}}(x) & =\left\{\frac{1}{2}\left(\mathrm{id}-s_{3}\right) x_{4}^{4}\right\}\left\{\frac{1}{2}\left(\mathrm{id}-s_{1}\right) x_{2}^{2}\right\} x_{1} x_{2} \\
& =\frac{1}{4}\left(x_{2}^{2}-x_{1}^{2}\right)\left(x_{4}^{4}-x_{3}^{4}\right) x_{1} x_{2}
\end{aligned}
$$

Here $s_{1}=(12)$ and $s_{3}=(34)$ are transpositions and id stands for the identity. Next consider the case $G(2,2,4)=W\left(D_{4}\right)$, where $d=1$. For the above λ, we see that $b(\lambda)=1$ and $e(\lambda)=2$. Therefore the 6 -dimensional representation $V_{S}(\lambda)$ of $G(2,1,4)$ decomposes into 2 irreducible components $V_{S}^{(0)}(\lambda)$ and $V_{S}^{(1)}(\lambda)$ under $G(2,2,4)$, each of which is 3-dimensional. Accordingly the higher Specht polynomial associated with (S, T_{1}) decomposes to

$$
\Delta_{S, T_{1}}^{(0)}(x)=\Delta_{S, T_{1}}(x)+\Delta_{S, T_{2}}(x)
$$

and

$$
\Delta_{S, T_{1}}^{(1)}(x)=\Delta_{S, T_{1}}(x)-\Delta_{S, T_{2}}(x)
$$

If we take $S_{1}=\left(\begin{array}{ll}2 & 1 \\ 3 & , \\ 4\end{array}\right)$ so that $i\left(S_{1}\right)=\left(\begin{array}{ll}1 & 0 \\ 2 & , \\ 2\end{array}\right)$, then

$$
\begin{aligned}
\Delta_{S_{1}, T_{1}}(x) & =\left\{\frac{1}{2}\left(\mathrm{id}-s_{1}\right) x_{1}^{2} x_{2}^{4}\right\}\left\{\frac{1}{2}\left(\mathrm{id}-s_{3}\right) x_{4}^{4}\right\} x_{3} x_{4} \\
& =\frac{1}{4}\left(x_{1}^{2} x_{2}^{4}-x_{1}^{4} x_{2}^{2}\right)\left(x_{4}^{4}-x_{3}^{4}\right) x_{3} x_{4}
\end{aligned}
$$

$$
=\frac{1}{4}\left(x_{1} x_{3}^{3}-x_{1}^{3} x_{2}\right)\left(x_{4}^{4}-x_{3}^{4}\right) x_{1} x_{2} x_{3} x_{4},
$$

which does not survive in R.

References

[ATY] Ariki S., Terasoma T. and Yamada H.-F., Higher Specht polynomials. Hiroshima Math. J. 27 (1997), 177-188.
[S] Stembridge J.R., On the eigenvalues of representations of reflection groups and wreath products. Pacific J. Math. 140 (1989), 353-396.
[ST] Shephard G.C. and Todd J.A., Finite unitary reflection groups. Canadian J. Math. 6 (1954), 274-304.
[TY] Terasoma T. and Yamada H.-F., Higher Specht polynomials for the symmetric group. Proc. Japan Acad. 69 A (1993), 41-44.

H. Morita
Department of Mathematics
Hokkaido University
Sapporo 060-0810, Japan
E-mail: h-morita@math.sci.hokudai.ac.jp
H.-F. Yamada
Department of Mathematics
Hokkaido University
Sapporo 060-0810, Japan
E-mail: yamada@math.sci.hokudai.ac.jp

