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Higher Specht polynomials for the complex
reflection group G(r, p, n)
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Abstract. A basis of the quotient ring P/J+ is given, where P is the ring of polynomials
and J+is the ideal generated by the fundamental invariants under the action of the
complex reflection group G(r, p, n) .
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1. Introduction

This note is concerned with a certain graded module over the imprim-
itive complex reflection group G(r,p, n)[ST] . The group G(r, p, n)(r,p, n
\geq 1 , p|r) consists of the monomial matrices whose nonzero entries are of
the form \zeta^{j}(0\leq j<r) and such that the d-th power of the product of all
nonzero entries is equal to 1, where we denote by \zeta a primitive r-th root of
1, and d=r/p. In some special cases, G(r,p, n) is isomorphic to the Weyl
group:

G(1,1, n)=W(A_{n-1}) ,

G(2,1, n)=W(B_{n})=W(C_{n}) ,

G(2,2, n)=W(D_{n}) ,

G(6,6,2)=W(G_{2}) .

Also it is naturally identified as a normal subgroup of the wreath product

G(r, n)=(Z/rZ)lS_{n}=\{(\zeta^{i_{1}} , . . . , (^{i_{n}} ; \sigma)|ik\in N, \sigma\in S_{n}\} ,

whose product is given by

( (^{i_{1}},
\ldots , (^{i_{n}} ; \sigma)(\zeta^{j_{1}} , . , (^{j_{n}} ; \tau)=(\zeta^{i_{1}+j_{\sigma(1)}}-1 , , (^{i_{n}+j_{\sigma^{-1}(n) _{;} _{\sigma\tau)}}} .
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Let P=C[x_{1}, . , x_{n}] be the polynomial ring of n indeterminates, on which
the group G(r, n) acts as follows:

((\zeta^{i_{1}}, \ldots, \zeta^{i_{n}} _{;} _{\sigma)f)(x_{1}}, \ldots, x_{n})=f(\zeta^{i_{\sigma(1)}}x_{\sigma(1)}, \ldots, \zeta^{i_{\sigma(\mathfrak{n})}}x_{\sigma(n)}) .

It is known that the fundamental invariants under this action are given by
the elementary symmetric functions e_{j}

(x_{1}^{r}, \ldots , x_{n}^{r}) , 1\leq j\leq n . Let J_{+}’ be
the ideal of P generated by these fundamental invariants and R’=P/J_{+}’

be the quotient ring, which is sometimes called the coinvariant algebra. It
is also known that the G(r, n) -module R’ is isomorphic to the group ring
CG(r, n) , which affords the left regular representation. A description of
all the irreducible components of R’ has been known in [ATY], in terms of
what we call higher Specht polynomials. (See also [TY] for the case r=1 .)
The irreducible representations of G(r, n) are parameterized by the r-tuples
of Young diagrams (\lambda^{0}, \ldots, \lambda^{r-1}) with |\lambda^{0}|+ +|\lambda^{r-1}|=n . In [ATY]
(and [TY]) combinatorics of Young diagrams is used to determine a basis
for each irreducible component of R’ .

Now we consider the restriction of the above action of G(r, n) on P
to the subgroup G(r,p, n) . The fundamental invariants are e_{j}(x_{1}^{r}, \ldots, x_{n}^{r})

(1\leq j\leq n-1) and e_{n}(x_{1}^{d}, \ldots, x_{n}^{d}) . Denote by J_{+} the ideal generated by
these polynomials and let R=P/J_{+} . The representation of G(r,p, n) on
R is again isomorphic to the left regular representation. Our problem is to
describe the irreducible components of R as well as their bases. The key to
our description is the Clifford theory [S] for a finite group G and its normal
subgroup H .

2. Higher Specht polynomials for G(r, n)

Here we recall the results of [ATY] on an irreducible decomposition of
the graded G(r, n) -module

R’=P/J_{+}’ ,

where P=C[x_{1}, \ldots, x_{n}] and J_{+}’= (e_{1} (x_{1}^{r}, \ldots, x_{n}^{r}), \ldots, e_{n}(x_{1}^{r}, \ldots, x_{n}^{r})) . As
is well-known the irreducible representations of G(r, n) are parameterized
by the set \mathcal{P}_{r,n} of the r-tuples of Young diagrams \lambda= ( \lambda^{0} ,\ldots,^{\lambda^{r-1})} with
|\lambda^{0}|+ +|\lambda^{r-1}|=n . By filling each cell with a positive integer in such
a way that every k (1\leq k\leq n) occurs once, we obtain an r-tableau T=
(T^{0}, . , T^{r-1}) of shape \lambda=(\lambda^{0}, \ldots, \lambda^{r-1}) . If the number k occurs in the
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\lambda= ( ) \in \mathcal{P}_{3,7}

S= ( ) \in STab(\mbox{\boldmath $\lambda$})

i(S)=( )

Fig. 1.

component T^{l/} , we may write k\in T^{IJ} The set of the r-tableaux of shape
\lambda is denoted by Tab(A). An r-tableau T=(T^{0}, . . ’ T^{r-1}) is said to be
standard if the numbers are increasing along each column and each row of
T^{lJ}(0\leq\nu<r) . The set of the standard r-tableaux of shape \lambda is denoted
by STab (\lambda) .

Let S= (S^{0}, . , S^{r-1})\in STab(\lambda) . We associate a word w(S) in thc
following way. First we read each column of the component S^{0} from the
bottom to the top starting from the left. We continue this procedure for
the components S^{1} and so on. For the word w(S) we define the index
i(w(S)) inductively as follows. The number 1 in the word w(S) has index
i(1)=0. If the number k has index i(k)=p and the number k+1 is
sitting to the left (resp. right) of k , then k+1 has index p+1 (resp. p).
Finally, assigning the indices to the corresponding cells, we get a shape
\lambda= (\lambda^{0}, . . , \lambda^{r-1}) , with each cell filled with a nonnegative integer, which is
denoted by i(S)=(i(S)^{0}, . , i(S)^{r-1}) . An example of standard 3-tableaux
and the indices is given in Figure 1.

Let T= (T^{0}, . . ’ T^{r-1}) be an r-tableau of shape \lambda . For each component
T^{\nu}(0\leq u<r) , the Young symmetrizer e_{T^{\nu}} of T^{lJ} is defined by
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e_{T^{\nu}}=\underline{1}

\alpha_{T^{\nu}}\sum_{\sigma\in R(T^{\nu}),\tau\in C(T^{\nu})}
sgn (\tau)\tau\sigma ,

where R(T^{\nu}) and C(T^{\nu}) are the row stabilizer and the column stabilizer of
T^{\nu} . respectively, and \alpha_{T^{\nu}} is the product of hook lengths for the shape \lambda^{\iota/} .

To state the definition of higher Specht polynomials, we regard a tableau T

on a Young diagram \lambda as a map

T : {cells of \lambda } – z_{\geq 0} ,

which assigns to a cell \xi of \lambda the number T(\xi) written in the cell \xi in T For
S\in STab(\lambda) and T\in Tab(\lambda) , define the higher Specht polynomial \triangle s,\tau(x)

by

\triangle s,\tau(x)=,\prod_{\iota=0}^{r-1}\{e_{T^{\nu}}(x_{T^{\nu}}^{ri(S)^{\nu}})\prod_{k\in T^{\nu}}x_{k}^{I^{y\}}} ,

where

x_{T^{\nu}}^{ri(S)^{\nu}}= \prod_{\xi\in\lambda^{\nu}}x_{T^{\nu}(\xi)}^{ri(S)^{\nu}(\xi)}
.

The following is a fundamental result of [ATY] on the higher Specht
polynomials for G(r, n) .

Theorem 1
1. The subspace V_{S}( \lambda)=\sum_{T\in Tab(\lambda)}C\triangle s,\tau(x) of P affords an irreducible

representation of the complex reflection group G(r, n) .
2. The set \{\triangle s,\tau(x)|T\in STab(\lambda)\} gives a basis for V_{S}(\lambda) .
3. For S_{1}\in STab(\lambda) and S_{2}\in STab(\mu) , the representations afforded by

V_{S_{1}}(\lambda) and V_{S_{2}}(\mu) are isomorphic if and only if S_{1} and S_{2} have the
same shape, i.e., \lambda=\mu . The isomorphism is given by

\triangle s_{1},\tau(x) – \triangle s_{2},\tau(x)(T\in STab(\lambda)) .

4. The coinvariant algebra R’=P/J_{+}’ admits an irreducible decomposi-
tion

R’=\lambda\in P_{rn}S\in STab(\lambda)\oplus,\oplus
( V_{S}(\lambda) mod J_{+}’ )

as a G(r, n) -module.
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3. Review of the Clifford theory

We briefly review the Clifford theory following [S , pp. 380-381]. Let H
be a normal subgroup of a finite group G such that the quotient group G/H
is cyclic. We have in mind the case G=G(r, n) and H=G(r,p, n) . Let C
denote the group of 1-dimensional representations, or characters, (\delta, C_{\delta}) of
G such that H\subset Ker\delta . In other words, C is the group of the characters of
G/H . which is isomorphic to G/H . Two irreducible representations (\phi, V)

and (\psi, W) of G are said to be associates if there exists \delta\in C such that
\psi=\delta\otimes\phi . For a fixed irreducible representation (\phi, V) of G , let

C_{\phi}=\{\delta\in C|\phi\cong\delta\otimes\phi\}

be the stabilizer of \phi and let (\delta, C_{\delta}) be a generator of C_{\phi} . There exists
a G-module isomorphism V – C_{\delta}\otimes V Composing this with the H-
module isomorphism C_{\delta}\otimes V – V. 1 \delta\otimes v\vdash\Rightarrow v (where 1_{\delta} is a fixed basis
element of C_{\delta} ), we obtain an H-module isomorphism A : V – V satisfying
A(\phi(g)v)=\delta(g)\phi(g)A(v) for all g\in G and v\in V If |C_{\phi}|=e , then
A^{e} commutes with G and, by Schur’s lemma, A^{e} is a nonzero scalar. By
normalizing the constant, we assume that A^{e}=1_{V} and call such A the
associator of (\phi, V) . Choose an associator A for (\phi, V) and let

V=\oplus E^{(\ell)}\ell=0e-1

denote the eigenspace decomposition of V with respect to A , where E^{(\ell)}

is the eigenspace with eigenvalue e^{\frac{2\pi i\ell}{e}} Since H\subset Ker\delta , each E^{(\ell)} is an
H-module. Moreover the E^{(\ell)} ’s are inequivalent irreducible H-modules of
the same dimension (dim V) /e . The Frobenius reciprocity tells us that
Ind_{H}^{G}E^{(\ell)} is the multiplicity free direct sum of all the associates of (\phi, V) .
From these results, we can conclude that the irreducible representations of
H are parameterized by the pairs (0, \epsilon) consisting of a C-0rbit O through
an irreducible representation of G and a character \epsilon\in C that stabilizes O .

4. Higher Specht polynomials for G(r, p, n)

We now apply the Clifford theory to the case G=G(r, n) and H=
G(r, p, n) . Define the linear character \delta of G(r, n) by \delta(\zeta^{i_{1}} , . . . , \zeta^{i_{n}} ; \sigma)=

(^{i_{1}+\cdots+i_{n}} so that our cyclic group is C=\langle\delta^{d}\rangle\cong Z/pZ . Define the shift



510 H. Morita and H.-F. Yamada

operator sh on \mathcal{P}_{r,n} (resp. on Tab(A)) by

sh(\lambda_{7}^{0}. , \lambda^{r-1})=(\lambda^{r-1}, \lambda^{0}, \ldots, \lambda^{r-2})

(resp. sh( T^{0} , \ldots , T^{r-1})=(T^{r-1}, T^{0} , \ldots .’
T^{r-2}) ).

By the realization of the irreducible representations of G(r, n) described in
Section 2, one sees that

C_{\delta}\otimes V_{S}(\lambda)arrow\sim V_{sh(S)}(sh(\lambda)) : 1_{\delta}\otimes\triangle s,\tau(x)\vdasharrow\triangle_{sh(S),sh(T)}(x) ,

is a G-module isomorphism for any S\in STab(\lambda) , \lambda\in \mathcal{P}_{r,n} . Hence the
C-0rbits are characterized by \mathcal{P}_{r,n}/\sim , where we denote \lambda\sim\mu if \mu=sh^{dj}\lambda

for some j=0,1 , \ldots , p-1 . For convenience we will denote Sh=sh^{d} . For
\lambda\in \mathcal{P}_{r,n} , let b(\lambda) be the minimal j such that Sh^{j}\lambda=\lambda , i.e., b(\lambda)=|\{\mu\in

\mathcal{P}_{r,n}|\lambda\sim\mu\}| and put e(\lambda)=p/b(\lambda) . The stabilizer C_{\lambda} of \lambda is a subgroup
of C generated by \delta^{b(\lambda)d} , so that |C_{\lambda}|=e(\lambda) and |C/C_{\lambda}|=b(\lambda) . The
corresponding associator is denoted by A_{\lambda} . In other words, the associator
A_{\lambda} is realized on V_{S}(\lambda) by

A_{\lambda}(\triangle s,\tau(x))=\triangle_{S,Sh^{-b(\lambda)}(T)}(x) (T\in Tab(\lambda)) .

For h=1,2 , . . , r , let

STab(\lambda)_{h}=\{T=(T^{0}, . _{ T^{r-1})},\in STab(\lambda)|1\in T_{\backslash }^{\nu}O\leq\nu<h\} .

Note that, if T\in STab(\lambda)_{db(\lambda)} , then the standard r-tableaux

T, Sh^{b(\lambda)}(T) , Sh^{2b(\lambda)}(T) , . . ’
Sh^{(e(\lambda)-1)b(\lambda)}(T)

are all distinct. Let \lambda= (\lambda^{0}, \ldots, \lambda^{r-1}) be an element of \mathcal{P}_{r,n} . Fix S\in

STab(A) and \ell=0,1 , \ldots , e(\lambda) –1. For each T\in STab(\lambda) , we define a
polynomial

\triangle_{S,T}((\ell)x):=\sum_{m=0}^{e(\lambda)-1}\zeta^{\ell mdb(\lambda)}\triangle_{S,Sh^{mb(\lambda)}(T)}(x) ,

as an element of R’=P/J_{+}’ . Since \triangle_{S,T_{1}}(\ell)(x) coincides with \triangle_{S,T_{2}}(\ell)(x) up

to constant if T_{1} and T_{2} are in the same \langle Sh^{b(\lambda)}\rangle -0rbit in STab(A), we only
have to consider the polynomials associated with T\in STab(\lambda)_{db(\lambda)} .

Let D_{S}(T) ( S, T\in STab(A)) denote the set \{\triangle_{S,Sh^{mb(\lambda)}T}(x)|m=

0 , \ldots , e(\lambda) –1}. Then, for each S\in STab(\lambda) , we have a partition of the
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polynomials \triangle s,\tau(x) , T\in Stab(\lambda) as follows:

\{\triangle s,\tau(x)|T\in STab(\lambda)\}=\prod_{T\in STab(\lambda)_{db(\lambda)}}D_{S}(T)
.

Since \{\triangle s,\tau(x)|T\in STab(\lambda)\} is linearly independent over C , the polyn0-
mials \{\triangle_{S,T}(\ell)(x)|T\in STab(\lambda)_{db(\lambda)}\} is also linearly independent for fixed S
and \ell .

Lemma 2 Let S and T be standard r -tableaux of shape \lambda and \ell=

0,1 , . . , e(\lambda) –1. Then the polynomial \triangle s,\tau(x) is a nonzero element in
R=P/J_{+} if and only if S\in STab(\lambda)_{d} .

Proof. Suppose that S\in STab(\lambda)\backslash STab(\lambda)_{d} . Then the number 0 does
not appear in i(S)^{0} , \ldots , i(S)^{d-1} . Hence the partial product \prod_{\nu=0}^{d-1}

\{e_{T^{\nu}}(x_{T^{\nu}}^{ri(S)^{\nu}})\prod_{k\in T^{\nu}}x_{k}^{\nu}\} of \triangle s,\tau(x) has the factor \prod_{\nu=0(\prod_{k\in T^{\nu}}x_{k}^{r})}^{d-1} . On the
other hand, the remaining product \prod_{\nu=d}^{r-1}\{e_{T^{\nu}}(x_{T^{\nu}}^{ri(S)^{\nu}})\prod_{k\in T^{\nu}}x_{k}^{\nu}\} has the
factor \prod_{\nu=d}^{r-1}(\prod_{k\in T^{\nu}}x_{k}^{d}) . Since d|r , \triangle s,\tau(x) is divisible by (x_{1} \cdot x_{n})^{d} in
P , i.e., V_{S}(\lambda)\subset J_{+} .

To prove that V_{S}(\lambda) survives in R=P/J_{+} for S\in STab(A) \} it is
enough to see that m(S) equals the multiplicity of the irreducible G(r, p, n)-
module which is isomorphic to V_{S}^{(\ell)}(\lambda) , where

m(S):= \sum_{\mu}\#\{S’\in STab (\mu)_{d}|V_{S}^{(\ell’)},(\mu)\cong V_{S}^{(l)}(\lambda) ,

for some \ell’=0,1 , . , e(\mu)-1\} ,

and the sum is taken over the set \{\mu\in \mathcal{P}_{r,n}|\mu\sim\lambda\} . Indeed, it is easily
seen that

m(S)=|STab(\lambda)_{d}|\cross\#\{\mu\in \mathcal{P}_{r,n}|\mu\sim\lambda\}

= \frac{|Stab(\lambda)|}{p}xb(\lambda)

=\underline{|Stab(\lambda)|}

e(\lambda)

\dim V_{S}(\lambda)

e(\lambda)

=\dim V_{S}^{(\ell)}(\lambda) .

Since R is isomorphic to the regular representation of G(r,p, n) , the proof
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completes. \square

We now have a family of polynomials

\{\triangle_{S,T}((\ell)x)\in R|S\in STab(\lambda)_{d} , T\in STab(\lambda)_{db(\lambda)} ,
\ell=0,1 , \ldots , e(\lambda)-1\} .

It is shown in Theorem 3 below that they are linearly independent. We call
these polynomials the higher Specht polynomials for the complex reflection
group G(r,p, n) .

Theorem 3 Let \lambda= (\lambda^{0}, \ldots , \lambda^{r-1})\in \mathcal{P}_{r,n} , and for each S\in STab(\lambda)

and 0\leq\ell\leq e(\lambda) –1, put V_{S}^{(\ell)}=\oplus_{T\in STab(\lambda)}C\triangle_{S,T}(\ell)(x) as a subspace of
R’ .

1. We have the eigenspace decomposition V_{S}(x)=\oplus_{\ell=0}^{e(\lambda)-1}V_{S}^{(\ell)}(x) for
the associator A_{\lambda} .

2. The space V_{S}^{(\ell)}(\lambda) affords an irreducible representation of G(r,p, n) .
3. The G(r,p, n) -module R=P/J_{+} admits an irreducible decomposition

R=\oplus_{\lambda S\in ST}\oplus_{ab(\lambda)_{d}}\ell=0

e(\lambda)-1\oplus V_{S}^{(\ell)}(\lambda)

,

where \lambda runs over a system of complete representatives of \mathcal{P}_{r,n}/\sim .

Proof
1. For a standard r-tableau S\in STab(\lambda) , a subspace V_{S}^{(\ell)}(\lambda) of V_{S}(\lambda)

is defined by

V_{S}^{(\ell)}(\lambda):=\oplus C\triangle_{S,T}((\ell)x)T\in STab(\lambda)_{db(\lambda)} ’

for each \ell=0,1 , \ldots , e(\lambda) –1. Recall that the associator A_{\lambda} of V_{S}(\lambda)

is defined by A_{\lambda}(\triangle s,\tau(x)) = \triangle_{S,Sh^{-b(\lambda)}T}(x) . Since A_{\lambda}(\triangle_{S,T}(\ell)(x)) =

\zeta^{\ell db(\lambda)}\triangle_{S,T}((\ell)x) , the subspaces V_{S}^{(\ell)}(\lambda) are contained in distinct eigenspaces
of A_{\lambda} . Hence we have

e(\lambda)-1\oplus V_{S}^{(\ell)}(\lambda)\ell=0\subset V_{S}(\lambda) .
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Since the dimension of V_{S}^{(\ell)}(\lambda) is

| STab(\lambda)_{db(\lambda)}|=\frac{1}{e(\lambda)}|STab(\lambda)|=\frac{1}{e(\lambda)} dim V_{S}(\lambda)

for each \ell=0,1 , \ldots , e(\lambda)-1 , the dimensions of the both side of the above
inclusion coincide. Therefore we have the direct sum decomposition

e(\lambda)-1\oplus V_{S}^{(\ell)}(\lambda)\ell=0=V_{S}(\lambda) .

This also gives the eigenspace decomposition of V_{S}(\lambda) with respect to the
associator A_{\lambda} .

2. This follows directly from 1 and the Clifford theory in Section 3.
3. Let \pi be the G(r, n) -module epimorphism

\pi : R’=P/J_{+}’ -arrow R=P/J_{+}; f mod J_{+}’\vdash\Rightarrow f mod J_{+} .

By Lemma 2, we have \pi(V_{S}(\lambda))=0 if S\in STab(A) \backslash STab(A)d, and
\pi(V_{S}(\lambda))\cong V_{S}(\lambda) if S\in STab(\lambda)_{d} . This implies that \{\triangle s,\tau(x)\in R|

S\in STab(\lambda)_{d} , T\in STab(\lambda)\} are linearly independent in R. Hence the
higher Specht polynomials

\{\triangle_{S,T}((\ell)x)\in R|S\in STab(\lambda)_{d} , T\in STab(\lambda)_{db(\lambda)} ,
\ell=0,1 , . , e(\lambda)-1\} ,

are also linearly independent. Therefore we have the direct sum decomp0-
sition

R=\pi(R’)=\pi(\lambda\in\oplus P_{r,n}S\in STab(\lambda)\oplus V_{S}(\lambda))

\cong \oplus \oplus V_{S}(\lambda)

\lambda\in \mathcal{P}_{r,n}/\sim S\in STab(\lambda)_{d}

e(\lambda)-1

=\lambda\in P_{r,n}/\sim\oplus S\in STab(\lambda)_{d}\oplus\oplus\ell=0V_{S}^{(\ell)}(\lambda)
.

This is an irreducible decomposition of the left regular representation R of
G(r,p, n) . \square
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5. Examples

In this section, we give some examples of higher Specht polynomi-

als. First we consider G(2,1,4)=W(B_{4}) . Let \lambda=(H, H) , T_{1}=

( 21 , 43 ), T_{2}=sh(T_{1})=(43 , 21) and S=(41 , 23) , so that i(S)=

(\begin{array}{ll}0 02 1\end{array}) . The higher Specht polynomials associated with (S, T_{1}) and

(S, T_{2}) are, respectively,

\triangle s,\tau_{1}(x)=\{\frac{1}{2}(id-s_{1})x_{2}^{4}\}\{\frac{1}{2}(id-s_{3})x_{4}^{2}\}x_{3}x_{4}

= \frac{1}{4}(x_{2}^{4}-x_{1}^{4})(x_{4}^{2}-x_{3}^{2})x_{3}x_{4} ,

\triangle s,\tau_{2}(x)=\{\frac{1}{2}(id-s_{3})x_{4}^{4}\}\{\frac{1}{2}(id-s_{1})x_{2}^{2}\}x_{1}x_{2}

= \frac{1}{4}(x_{2}^{2}-x_{1}^{2})(x_{4}^{4}-x_{3}^{4})x_{1}x_{2} .

Here s_{1}=(12) and s_{3}=(34) are transpositions and id stands for the iden-
tity. Next consider the case G(2,2,4)=W(D_{4}) , where d=1 . For the
above \lambda , we see that b(\lambda)=1 and e(\lambda)=2 . Therefore the 6-dimensi0nal
representation V_{S}(\lambda) of G(2,1,4) decomposes into 2 irreducible components
V_{S}^{(0)}(\lambda) and V_{S}^{(1)}(\lambda) under G(2,2, 4) , each of which is 3-dimensional. Ac-
cordingly the higher Specht polynomial associated with (S, T_{1}) decomposes
to

\triangle_{S,T_{1}}((0)x)=\triangle s,\tau_{1}(x)+\triangle s,\tau_{2}(x) ,

and

\triangle_{S,T_{1}})((1x)=\triangle s,\tau_{1}(x)-\triangle s,\tau_{2}(x) .

If we take S_{1}=( 32 , 41 ) so that i(S_{1})=(21 , 02) , then

\triangle s_{1},\tau_{1}(x)=\{\frac{1}{2}(id-s_{1})x_{1}^{2}x_{2}^{4}\}\{\frac{1}{2}(id-s_{3})x_{4}^{4}\}x_{3}x_{4}

= \frac{1}{4}(x_{1}^{2}x_{2}^{4}-x_{1}^{4}x_{2}^{2})(x_{4}^{4}-x_{3}^{4})x_{3}x_{4}
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= \frac{1}{4}(x_{1}x_{3}^{3}-x_{1}^{3}x_{2})(x_{4}^{4}-x_{3}^{4})x_{1}x_{2}x_{3}x_{4} ,

which does not survive in R.
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