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Existence and nonexistence of global solutions to
quasilinear parabolic equations with convection

Ryuichi SUZUKI
(Received October 8, 1996; Revised March 24, 1997)

Abstract. We consider nonnegative solutions to the Cauchy problem for the quasilinear
parabolic equations uz = Au™ +a-Vud +uP wherem > 1,p,g>1,a€ RN and a # 0.
In this paper we show: (a) if ¢ > m—1 and max{m, ¢} < p < min{m+2/N,m+2(q—m+
1)/(N+1)} orm+2/N > q>m+1/N and p = m+2/N, then all nontrivial solutions do
not exist globally in time; (b) if p > m + 2/N, then there are nontrivial global solutions.
Further, in case (b) we study the asymptotic behavior of the global solutions. We also
study the asymptotic behavior of the global solutions of uy = Au™ + a - Vud.

Key words: asymptotic behavior, blow-up, Cauchy problem, convection, critical exponent,
global solution, L™ — L estimate, quasilinear parabolic equation.

1. Introduction

In this paper we shall consider the Cauchy problem
Ou=Lu"+a Vul +uP (z,t) € RN x (0,T), (1.1)
u(z,0) = up(z) z e RN, (1.2)

where m > 1, p,g > 1, a € RN, a # 0,up(z) > 0 and ug(z) € BC(RN)
(bounded continuous functions). It is well known that if T > 0 is small
enough then a nonnegative continuous weak solution of exists

see [19], {26], . The definition of a weak solution of {1.1) (1.2) is given
(see [19], [26], [4]) k Jis g

in Section 2.

We use the following notation: LP (1 < p < 00) is the usual space of all
LP-functions in RN with norm || f|, = £l 1o RN)-

When a = 0, the following results are known to hold:

(I) If1 <p<m+2/N then all nontrivial nonnegative weak solutions

of blow up in finite time. Namely, limy7 ||u(t)|loc = 0o for some
T € (0,00).

(I) If p > m + 2/N, then global solutions of exist when

the initial data are sufficiently small.
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We note that in case (II) solutions of also blow up in finite
time when the initial data are large enough (see etc.).

Case (I) is called the blow-up case; (II) is called the global existence
case. The cut off number

Py, =m+2/N (1.3)

is called the critical exponent.

In case p # pi,, these results are due to Fujita [9] for m = 1 and
Galaktionov et al. for m > 1. In case p = p},, these results are due to
Hayakawa and Weissler for m = 1 and Galaktionov [10], Kawanago
and Mochizuki-Suzuki independently for m > 1. We note that
similar results were obtained in the exterior domain case. Namely, when
N > 2 Mochizuki-Suzuki showed that p}, is the critical exponent and
when N > 3 Suzuki [29] showed that p = p}, is in the blow-up case.

Especially, when p > m+2/N (= p},), Kawanago obtained a precise
L*>°-decay estimates of global solutions u(t) = u(z,t) of with

a = 0 as follows: If ||ug||p, is sufficiently small, then
[u(t)]oo < KtH P = = N/IN(m=1+2pol - for ¢ >

where K is some constant and

by = NP —m) (1.4)
2
Furthermore, he obtained that if ug(z) € L'(RN) then the solution wu(t)
converges to the heat kernel (when m = 1) and the Barenblatt solution
(when m > 1) with the convergence rate ¢t~ V/{N(m=1)+2},
Our aim in this paper is to extend these results to case a # 0.
In the blow-up case, we get the following theorem. Put

2(q — 1
p:%q:min{m—kﬁ,er (qNT;_ )} (1.5)
Theorem 1 Letg>m —1. If
max{m, q} < p < pp, 4 (1.6)

then all nonnegative nontrivial weak solutions u(z,t) of (1.1) (1.2) do not
exist globally in time. Furthermore, if 2¢ > m + 1 and up(z) € L'(RN),
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then

i oo — 1.7
i u(6) oo = o0 (1.7)

for some T € (0, 00).

The methods of the proof of are the same as those of Aguirre-
Escobedo .

In the global existence case, we obtain the following L°°-estimates for

the solution of (1.2).

Theorem 2 Let p > m + 2/N. Assume that ug € LPO(RN) with py =
N(p —m)/2(> 1). Then there exists some constant 6y = 6o(N,m,p) > 0
such that if ||uollp, < o then (1.1) (1.2) has a weak solution u(zx,t) with
T = oo satisfying

[u(t)]|oo < K1t~V P~ = K¢~ NAN=L+20} - gr ¢ 50, (1.8)
where K1 = K1(N, m,p, ).

Further, we assume that ug € L'(RN).

Theorem 3 Let p > m + 2/N. Assume that ug € L*(RN) n LPo(RN).
Then there exists some constant 6; = 61(N, m,p) such that if ||uollp, < 61
then (1.1) (1.2) has a weak solution u(t) = u(z,t) with T = oo satisfying

u(t)]|e < K2 min {t—N/{N(m—1)+2po}’t—N/{N(m—1)+2}}
for t>0 (1.9)

and

sup [lu(t)|l1 < K (1.10)
t>0

where Ko = Ko(N,m, p, ||uoll1,61) and K3 = K3(N,p,m,||uol/1,61) < 0.
Moreover, if ¢ > m + 1/N, then the weak solution u(t) of (1.1) (1.2) is
unique and satisfies that

¢NANM=1+2} |42 8) — Vin(a,t, Msg)| = 0 as t — oo (1.11)

uniformly on the set {x € RN;|z| < pt!/INm=D+2}y (b > 0) where
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Vim(x,t, L) is a unique weak solution of

= Ay™ 1) € RN x (0,
=Y (@.1) (0, 00) (1.12)
v(z,0) = Lé(z) z € RN
with Dirac’s §-function 6(z) and a positive constant L, and
o0
Mo :/ up(x) d:c—}—/ / uP dzdt (< o00). (1.13)
RN 0 JRN

We note that (1.8), (1.9) and also hold for the equation with
convection term a- Vuf replaced by more general K(z)- Vu? where K (z) =
(k1(z), ..., kn(z)) with ki(z) € CHRN) N L®RN) (0<i < N) and V-
K(z) =0in RN,

Our proof of and 3 is based on the energy estimates due
to Kawanago which treats the case a = 0. He showed these theorems
with a = 0 using L>® — L’ estimates for solutions which are obtained by
virtue of L™ — L? estimates for solutions of a semilinear equation. But, it
seems that his methods can not be directly applied to equation with
a # 0. Therefore, we need the other L= — L estimates for solutions to
prove and 3. And in order to get these estimates we directly
apply the Moser’s iteration method to equation [1.1Y.

and 2 show that when m + 2/N > ¢ > m + 1/N (which is
called the weak convection case), the number pj, . (= m +2/N) is a critical
exponent. In case p = py, ., we get the following theorem.

Theorem 4 If p>q>m+1/N andp = p}, ,(= m+2/N), then all non-
negative nontrivial weak solutions u(z,t) of (1.1) (1.2) do not exist globally
in time. Furthermore, if up(z) € L*(RN), then

i = 00. 1.14
lim [[u(t) oo = o0 (1.14)

for some T € (0,00).

The methods of the proof are the same as those of the proof of R. Suzuki
and Mochizuki-Mukai [23] in the critical case. Namely, we use the L!-
estimate and some transformation for the solutions. See also J. Aguirre-

M. Escobedo [1].

We note that in case p > py, . solutions u(z,t) of do not
exist globally in time either when the initial data are large enough (see [21]
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and [16]).

Here we must mention the interesting work of J. Aguirre-M. Escobedo
[1] concerning with the blow-up or global existence of solutions of
when m = 1. Roughly speaking, they showed that if p > ¢, then pj
is the critical exponent and p = p*l"q belongs to the blow-up case. Therefore
it seems that our results are not complete in the strong convection case
g < m+ 1/N. Because, we can not see whether p belongs to the blow-
up case or global existence case when m — 1 < ¢ < m + 1/N and Prg
(=m+2(gq—m+1)/(N+1)) <p<m+2/N. However, in case m = 1
and ¢ > 1 4+ 1/N, our results refine their results. Because, their sufficient
condition on the existence of global solution need the smallness of ||ug||,
and ||uol|;; and we further obtain a precise L°°-decay estimate of global
solutions.

Finally, we note that the methods of the proof of can be
applied to the following problem:

vy =Av" +a- Vi, (1.15)
v(z,0) = vo(x), (1.16)

where m > 1, ¢ > 1, vo(z) > 0 and vo(x) € BC(RN). We obtain the
following theorem which is used in the proof of Theorem 4.

Theorem 5 Let vg(z) € L*(RN). Then there exists a weak solution of
(1.15) (1.16) satisfying

M:/ v(a:,t)da::/ wo(z)de t>0 (1.17)
RN RN
and

[0(t)]|oo < Kqt N/ INM=1+2] " for ¢ >0 (1.18)

where K4 = K4(m,N,M). Moreover, if ¢ > m + 1/N, then the weak
solution v(t) of (1.15) (1.16) is unique and satisfies that

ENANGR=1D4+2} (0 ) V(2,8 M) — 0 as t — oo (1.19)

uniformly on set {z € RN | |z| < bt/ ANM=1D+2}Y (p > 0) where Vp,(,t, L)
is as in Theorem 3.

When m = 1, these results were obtained by Escobedo-Zuazua @I
In their results, the convergence in is uniform convergence in RN.
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Furthermore, they showed that if ¢ = 1+ 1/N, then the L!-valued solution
of (1.15) (I.16)] with m = 1 converges to the self-similar solution of
with convergence rate ¢t~N/{N(m-1)+2} But, we can not extend this result
to case m > 1. We note that in case m =1 and 1 < ¢ < 1+1/N, Escobedo-
Vazquez-Zuazua obtained the interesting results which show that the
solution u(t) of [1.15) (1.16) converges to some self-similar solution of the
reduced equation u; = A'u +a - Vul as t — oo where A’ is the (N — 1)-
dimensional Laplacian in the hyperplane orthogonal to a.

Remark 1.1. In case ¢ = 1, noting the suitable linear change of variables
we can transform equation {(1.1) or [1.15) into [1.1) or [1.15) with a = 0
respectively and so we obtain the similar results to those with a = 0.

Now, we state some related papers to those problems. There are several
papers in one dimension case. When m = 1, Friedman-Lacey studied
the blow-up conditions and the asymptotic behavior of blow-up solutions for
in bounded intervals. Levine et al. also studied the stability and
instability for the solutions of in bounded intervals. For quasilinear
equation, R. Suzuki and Imai-Mochizuki-Suzuki studied the blow-
up condition and existence of single point blow-up solutions in bounded
intervals or R. In larger dimension case N > 1, we do not know the paper
which treat with a # 0 but Aguirre-Escobedo [1]. For equation
Hui studied the uniqueness and existence of solutions and discussed the
asymptotic behaviour of solutions as ¢ — oco.

We refer to the review article for a lot of literature on blow-up
theorems for problems related to [1.1).

The rest of the paper is organized as follows. In the next Section 2, we
define a weak solution of and prepare the fundamental propositions
and several preliminary lemmas. In Section 3, we consider the blow-up
cases and prove [Theorem 2. In section 4, we give the L® — L! estimates
for the solutions of in order to show which is proved
in Section 5. Also, in Section 5, we prepare the several lemmas in order to
obtain the L> — L* estimates for the solution when ug(z) € LYRN) and
in section 6 we show these estimates. In Section 7, using them we prove
and [Theorem §. In Section 8 we consider the critical case and
prove [Theorem 4. Finally, in Appendix we show the comparison theorem
for the solutions.
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2. Definition and preliminary

We begin with the definition of weak solutions of (1.2).

Definition 2.1 By a weak solution of equation (1.1) in RN x [0,T), we
mean a function u(z,t) in RN x [0,T) such that

(i) wu(z,t) > 0in RN x [0,T) and € BC(RN x [0,7]) (bounded con-
tinuous) for each 0 < 7 < T.

(ii) For any 0 < 7 < T and nonnegative ¢(z,t) € C(RN x [0,T)),

/RN u(z, 7)p(z, 7) dr — / N u(z,0)p(z,0) dz

R

:/0 /RN{uatcp—l—umAcp—uqa-ch—i-upcp}d:cdt. (2.1)

A supersolution [or subsolution] is similarly defined with equality of
(2.1) replaced by > [or <].

The following comparison theorem holds.

Proposition 2.2 (comparison theorem) Assume 2q > m + 1. Let v and
u be weak solutions of (1.1) in RN x [0,T), and suppose that v(z,0) and
u(z,0) belong to L*(RN). If v(z,0) > u(z,0) in RN, then we have v > u
in the whole RN x [0, T).

Proof.  This proposition immediately follows from [Corollary 9.2, since in
equation [1.1) condition 2¢ > m + 1 is equivalent to condition (A1) of this
corollary. []

Next we construct a weak solution of as follows: First, we

assume
uo(z) < Ce™ /™ for some C > 0. (2.2)
Let

max{uo(z), e /™ in x
uon(T) = { tuo(@), J € B (2.3)

e~ /m in z¢ B,
and uy,(z,t) be the classical solution of the initial boundary value problem
u=Au"+a-Vul+uP (z,t) € B, x (0,T) (2.4)
u(z,0) =ugn(zr) =€ B, (2.5)
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w(z,t) =e ™™ |z|=n, t>0, (2.6)
where

Bgr = {z € RN | |z| < R}.
Let

y(t; M) = (M~~1) — (p— 1))~/ (2.7)
and

1
T(M) = p—_—-IM-@-l). (2.8)

Then, we obtain the local existence theorem for solutions by the follow-
ing two propositions.

Proposition 2.3 If T = T(|luonlls), then there exists a unique solution
un(z,t) of (2.4) (2.5) (2.6) satisfying

[un (2, D) |loo < y(t; luopnlles) for t €10,T). (2.9)
Proof.  The proof is obvious. See Kawanago [17]. ]

Proposition 2.4 (existence I) (Ref. [26], [14]) Assume (2.2) and assume
that for some subsequence {n'} C {n},

sup ||un/ (t)||oo < C"  for large n'. (2.10)
[0,T]

Then, there exists a weak solution u(x,t) of such that for some

subsequence {n"} C {n'}

U (z,t) = u(z,t) as n’ — o (2.11)
uniformly in RN x [0, T,

v lbtm=1/2 _ g, (t+m-1)/2

Uy as n — oo (2.12)

weakly in L} (RN x [0,T)) for each £ > 1 and

A

uniformly in [0,T] for each £ > 1. Here we extended u, to 0 in BS x [0, T].

U (2, 1) dz — / N u(z,t) dz  asn” — oo (2.13)
R

n!’
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Furthermore, u(z,t) satisfies that

u(z,t) < C"e7lel/m in RN x [0, 7] (2.14)

for some constant C" > 0,

u(z,t) is uniformly continuous in RN x [0, T] with the

for each £ > 1 and

for each £ > 1.

2.15
modulo of continuity depending only on supp 1) [|[u(t)|lco, (2.15)
/N u(z,t)* dz is continuous in t € [0,T) (2.16)
R
T
/ / (VuEtm=0/212 oy
o JRN
T
< lim inf/ / VulSTm D22 gy (2.17)
n'—o0 0 W
It is enough to show that
un(z,t) < C"e” /™ in B, x [0,T] (2.18)

where C” > 0 is a constant depending only on C and C’. Because, if (2.18)
holds, then by the methods of [26], the equicontinuity of the solution of

(see DiBenedetto [4]) and the next lemma we can prove this proposition

Put v = u]'. Then v is a solution of the problem

(v, = moMm=D/m Ay 4+ qula=D/mg . Ty 4+ moP—1D/my

(z,t) € By x [0,T)
4 (2.19)
v(z,0) =ug), € By,

Lv(z,t) =€ |z| =n.

We note that

v(z,0) < Le ! for x € By, (2.20)

where L = C™.

i(z,t) = LeCte Mol (2.21)
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where

C = m (M=D/m 4 |a|ghga=D/m i 4 M®=n/m) (2.22)
with M = {C’}™. Then, by the simple calculation we get

moM= DM AG 4 qula=D/"mg . 75 4+ moP-D/mg

92 N-190
— (m—1)/m o)
m{'v (87‘2 + r 87’) ©

+ ,U(q—l)/miw_a_e—?" + v(p_l)/me_r} X Leét
m |z| Or

S é’LeétG_T = 1715
with r = |z| and
o(z,t) = Lee™ on lz| = n. (2.23)

Hence, using the comparison theorem for the classical solution of a semilin-
ear equation we have

v(z,t) < o(z,t) in B, x[0,T],
and so we obtain (2.18). The proof is complete. []

This solution u,(z,t) of (2.5) satisfies the following usual
energy inequality which is used in the proof of the previous proposition and
after this section.

Lemma 2.5 For each ¢ > 1,

R R
B, (m+£—-1)? /B,

<0 uPttldy (2.24)

Proof. By the comparison theorem we see that u, > e ™™ and so g% <0
on |z| = n where n denotes the outer unit normal to the boundary. Hence,
multiplying the both sides by u’ and integrating by parts over B, we get

(2.24). O
Next, we consider the Cauchy problem in the case
up(x) € L®(RN). (2.25)



Existence and nonezistence of global solutions with convection 157

Let {ugn(z)} be a sequence of continuous functions in RN such that

0 < ugn(z) < C(n)e /M i RN (2.26)
for some C(n) > 0 and

ug n(z) — up(xz) as n— o0 (2.27)
locally uniformly in RN.

Proposition 2.6 (existence II) Assume (2.25). Let u,(z,t) be a classical
solution of (1.1) (1.2) with ug(x) replaced by uon(x) where ugn(x) satisfies
(2.26) and (2.27). If (2.10) holds for some subsequence {n'} C {n}, then
there exists a weak solution u(x,t) of (1.1) (1.2) such that for some subse-
quence {n"} C {n'},

Upn(z,t) — u(z,t) asn’ — oo (2.28)

locally uniformly in RN x [0, 7).

Proof.  The proof is the same as that of [Proposition 2.4, []

Finally, we state some versions of the Gagliardo-Nirenberg inequality.
They are the essential inequality in the proof of and 3. First,
we recall the Gagliardo-Nirenberg inequality (c.f. Ladyzenskaja et al. [19],

Ohara [25]):

Lemma 2.7 For any f € C(RN),
I£1lz < CFIFI IV A1 (2.29)

where

rl 7~

T N1 _o 14,1

C is a constant independent of r, 7 and 0, and:
(1) for N >2,0<r <max{l,r} <7 <2N/(N —2);
(2) for N=2,0<r <max{l,r} <7 < o0;
(3) for N=1,0<r <max{l,r} <7 <oo.

1
0

Proof.  When r > 1, the inequality is well known. When 0 < r < 1, using
the Holder inequality we can get it easily (see and ) L]

Inequality is reduced to the following two inequalities:
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Lemma 2.8 (see (4.12) and (4.13) in Kawanago [17]) For any u €
Cs°(RN), the following two inequalities hold:
[ e < Al T (2.30
RN

where Ay > 0 is a constant and £ > max{0,py —p + 1};
N(m—1)+2€]/£[3(2—N)+N(m+£f—1
[u(®)lly < Cllu()|[ENm=1+2/43=N)+Nm+t-1)

% ||Vu(m+g_l)/2HEN(E_ﬁ)/e[ﬁ(z_NHN(m—M_1)] (2.31)

where C > 0 is a constant and 0 < 8 < /.

Proof. If we put f = u(™H=V/2 r = N(p—m)/(m+0— 1),7 = (p+€—
Df(m+€—1) or f = ulm=D/2 p = 98/ (m + £ — 1), 7 = 20/(m + £ — 1)
in [2.29), then or (2.31) follows respectively. []

Lemma 2.9 For any f € C(RN x [0,T]) and £ >p— 1,

/OT/RN ffdxdt]l/k SCLES%%/ f”dx+/ / Wflzda:dt]

(2.32)

wherer =2({—p+1)/({+m—p), 7 =2(r/N+1), k=14+2/N and C is
some constant independent of T.

Proof.  For any f € C°(RN x [0, T]), inequality [2.29) leads to
0
L i [T (=07 o7
st < oy [Tsie-on v g a
~ ~ T ~
< (FCY sup | FI4=0F [ v | at. (2:33)
[0,T] 0

Let s > 1. By the Holder inequality we get

T i 1/s
{/ Ilflliédt}
0
_<r0)"/3{ sup £ + / IV £z } (2:34)
' o1

where s’ is the conjugate number of s.
Now, we choose numbers r = 2({ —p+1)/({ —p+m) € (0,2), 7 =
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2(1+7/N) and s = k =1+ 2/N in (2.34). Then, since r, 7 and s satisfy
the above conditions (1) (2) (3), and 6 = 2/7, we have

T .
[ | sz
0

Thus, noting 7 < 2(1 + 2/N) we get (2.32). The proof is complete. ]

1/k

T | .1 T
< (FC)* L Zsup || fIIF+— [ (VSfl3dty.
k' (o1 k Jo

Remark 2.10 When r = 1, similar result was obtained by D. Lortz-
R. Meyer-Spasche- E. W. Stredunlinsky in a bounded domain.

3. Blow-up cases I

In this section we prove [Theorem 1. The methods of the proof are
similar to those of Aguirre-Escobedo [1] and Mochizuki-Suzuki [24].

First of all, there is no loss of generality if we make a linear change of
variables to transform equation into

0
Ou = ANu™ + agx—luq + uP (3.1)

with @ € R/{0}. As usual we let z = (z1,2') with 2’ € RN~1,

We fix a positive function s(z) € C2(RN) with s, Vs and As € L'(RY)
such that

0

s(0)=1, As(z)> —s(x) and a—wls(m) < Ks(z) (3.2)

for some constant K > 0. Explicit examples were given in [1].
Put

se(x) = s(eltzy, ex’) (3.3)

where v = 0if ¢ > m+ 1/N and v = {1 — (¢ — m)N}/(¢ — m + 1) if
m—1<q<m+1/N. Let u(z,t) be a weak solution of [3.1] [1.2) and set

J(t) = /R (e, 1)s.(z) dz /R se()de (3.4)

for each t > 0. Then we establish the following blow-up theorem.

Proposition 3.1 Assume p > max{m,q} (> 1). If up is large enough to
satisfy

J(0) > coe*o (3.5)
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for small € € (0,1) where

(3.6)

2 1
kozmin{ +7}

p—m’' p—gq

and
¢o = max {21/(p—m), (2‘a|K)1/(p“‘I)} 7

then the corresponding weak solution u of (3.1) (1.2) is not global in time.
Here, we defined 2/(p — m) = oo and 2Y/P=™) = 0 when p = m, and
(1+7)/(p—q) = 0o and (2|a|K)"/P~9) = 0 when p = q.

Proof. The methods of the proof are similar to those of the proof in
Mochizuki-Suzuki and Imai-Mochizuki .

Let u(xz,t) be a weak solution of and let p(z) € C?(RN)
satisfy

[ 01+ 1961 + 1801} da < oo,

Then, by a limit procedure we have from with a - Vu? replaced by

9 .q
gz ud,

/Nu(:c T)p(x )da:~/ u(z,0)p(z) dx

/ / N { u" Ay — uqaaigo + uP } dzdt.
R I

We choose ¢(x) = s.(z). Then, since

Ase(z) > —e%s.(z) and <la|Ke' s, (z)

aéx—lsg(:v)

for 0 < e < 1, we have
/ u(z, 7)se(z) dx —/ u(z,0)se(z) dr
RN

/ / N —e2u™ — e |a| Kud + up} Se(z) dzdt. (3.7)
R
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We define function I'1 (£) and I'5(€) as follows: When p > m,

4

2\ 1/(p—m)
—e2¢™ + %Ep for £€> <2ms )
I'1(§) = 4
_ 2\ p/(p—m) 2\ 1/(p—m)
P m(2ms) for 0§§<<2m5>
L 2m P D

and when p=m > 1

1(€) = (1/2 - *)€P for £ >0.

When p > g,
' 1 14| q| K\ 1/(P—9)
—e'*a| K€ + S€F for €2 (u)
2 D
) =< P-4 (2qel+71a{K>q/(p—q)

: ’ 14 1/(p—q)

R pP—q

for 0< € < (M)

\

and when p = ¢ > 1,
Dy(€) = (1/2 — £]a] K)€P for £ > 0.

Then, if we set I' =11 + I's, we get
/ u(z, 7)se(z) dx — / u(z,0)se(z) dz
RN RN
> / / [(u)s. () dadt. (3.8)
o JRN

Since I'; and T'y are convex functions, I" is also a convex function when
e > 0 is small enough. Since I'; or Iy is a positive increasing function in £ >
(262)1/(P=m) or € > (2e'47]a| K)Y/ (=9 respectively, I’ = 1+ '3 is a positive
increasing function in & > m(e) = max{(2e%)/P~™) (2e1+7|a|K)V/ (P9}
for small ¢ > 0. We note that cope*® > m(e) for small ¢ > 0. Hence, as
in the proof of Theorem 1.1 of Imai-Mochizuki (see also the proof of
Lemma 5.2), if J(0) > coe*® then it follows from (3.8), and Jensen’s
inequality that

I 230+ [ TU)d



162 R. Suzuki

from which we have

v [0 dg
— < 00,
~ Ju) T(§) = Ju) & — 2§ — el ]a| K &1

as long as u(z,t) exists. This leads to contradiction if the solution is global.

[]

The next lemma follows from the above proposition immediately.

Lemma 3.2 Assume p > max{m,q} (> 1). Let u(z,t) be a global weak
solution of (3.1) (1.2) in time. Then, we have

/ (e, t)s(e" e ea')de < C(N)R N (3.9)
R

foranyt >0 and 1> ¢ > 0, where C(N) is a positive constant depending
only on N, and kg is as in Proposition 3.1.

Proof.  Since

— 1+ / — —N—~
/RNSEd:c—-/RNs(e a:l,&:x)d:c—/RNs(y)dyxe ,

the blow-up condition (3.5) is reduced to
/ uo(z)s(et 'z, ex’) dx > coekO_N_'Y/ s(y) dy.
RN RN

Thus, if C(N) = co g~ s(y) dy, every global weak solution u of (1.1)
must satisfy the inverse inequality . []

Proof of Theorem 1.  Let u(x,t) be a global solution of (1.2). Asis

mentioned-above, without of loss of generality we can assume that u(z,t)

is a global solution of (1.2).

We note that if m — 1 < ¢ < p and m < p then

2 1
kO:min{ , +7}>N+’}/
p—m p—4gq
is equivalent to
< . { +2 +2(q—m—|—1)}
=min<{m+ —,m .
PS Pmg N’ N+1

Therefore, when max{m, ¢} < p < p},, , namely ko > N +, letting e | 0 in
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(3.9), by Fatou’s lemma we get
/ u(z,t)de =0 for any t >0, (3.10)
RN

which leads to u(z,t) = 0. If 2¢ > m + 1 and up(z) € L'(RN) then
solutions u(z,t) of are unique by [Proposition 2.2, and holds
for the maximum existence time T of u, since otherwise u(z, t) exists beyond
the time T" by the local existence theorem for the solutions. The proof is
complete. []

4. L™ — L* estimates for solutions I.

In this section we show the L*°-estimates for the solutions of
which play a very important role in the proof of and [Theorem
3. We shall show the following L>® — L¢ estimates:

Proposition 4.1 Assume p > m + 2/N and assume (2.2) for the initial
data ug. Let u(x,t) be a weak solution of (1.1) (1.2) which is constructed
wn Proposition 2.4. Suppose that

sup/ uP?(z,t)dz = h < 0o (4.1)
0.7 /RY

and £ > o = po+p—1 (> p) wherepy (> 1) isasin (1.4). Let0< p<7< T
and € > 0 satisfy

peP~l < 1. (4.2)
Then
[u(7)]loo (4.3)

T 1/(l—a
<0y [p—N/ZE—(p—l)(N/2+1){p—1/ /RN L dxdt+€£—po}] /(t=e)
T—p

where C; = C1(N, m,p, h,t).

Similar results were obtained by D. Lortz, R. Meyer-Spasche and
E.W. Stredulinskly for a linear equation in a bounded domain in virtue
of Moser’s iteration methods. Our methods of the proof are similar to their
ones. However, their methods can not be applied to our quasilinear equation
directly. We must develop them.
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In the proof of [Theorem 2 and [Theorem 3|, we use this proposition in

the following versions.

Proposition 4.2 Let u(z,t) be as in Proposition 4.1. Suppose for some
‘> q,

|lu(t)||, is nonincreasing in t € [0,T. (4.4)

Then

fu()llos < C2 {% ( /RN u(7/2) dz + (7/2)—<€—po)/<p—1>) }1/ (=)

(4.5)

for 0 <7 < T, where Cy = Co(N, m,p, h,£).
Proof. Put p=¢~P~1 = 7/2 in Proposition 4.1. Then, since

/Tip /RN u dedt = /;2 [RN ut dedt < -;—/RN ut(1/2) da
by (4.4), is reduced to (4.5). O
Proposition 4.3 Let u(x,t) be as in Proposition 4.2. Then

-5 5+l
)l < G { [ (= 1)) (46)

for any T > 2, where C3 = C3(N,m,p, h, [[u(1)|l,, £).

Proof. Put p=1and e = {fqn uf(r — 1) dz}/ ) fu(1) /) (< 1)
in [Proposition 4.1. Since

/ / u dzdt < / u'(r — 1) dz,
r—1 JRN RN
we obtain [4.6). O]

We will prove [Proposition 4.1] in a series of lemmas. We first show the

following lemma.

Lemma 4.4 Assume p > m + 2/N and assume (2.2) for the initial data
ug. Let u(x,t) be a weak solution of (1.1) (1.2) which is constructed in
Proposition 2.4 and satisfies (4.1). Let £ > a =po+p—1. Put I = [1,7+s]
and I' =[r—o,7+s]withT >7>0>0and T —7 > s >0. Then, for
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any € > 0 satisfying

oeP1 < 1, (4.7)

k
{//' MMMHm1®ﬁ+ sto MpHWWlF/
RN

e—Pt1
< Cu(f+1)5 {AULNudu%+S+UE} (4.8)

where k =1+ 2/N and Cy = C4(N, m,p, h).

We need the following lemma to prove the above lemma.

Lemma 4.5 Let uy(z,t) be a classical solution of (2.4) (2.5) (2.6) and let
@(t) > 0 in [t1,t2] be a Cl-function with p(ty) = 0. Then, for £ > £y > p,

to
p(ta) / ub P (ty) dz + v / o(t) / ViR dedt
B

B, t1

to to
< / go'/ w P dedt + (£ —p+ 1) / ©(t) / ul dzdt
t1 B, t1 n
(4.9)

where

VO:min{inf m(g‘p+1)(€"‘p),1}.
>4 (£ +m — p)?

Proof.  Multiplying (2.24) with £ replaced by £ — p + 1 by ¢(t) and inte-
grating by part over (t1,t2), we obtain (4.9). []

Proof of [Lemma 4.4 Let u,(z,t) be a classical solution of (2.5) [2.6).
Choose t € I = [, 7 + s] such that

max/ ufl_pﬂ(t)dx:/ ulP(§) d.
n Bn

I

In the following, we shall choose suitable ¢(t), t; and t2 in (4.9).
First, put t; =7 — 0, to = and
t—7+o0

t) = - .
©(t) PR
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Then, since 0 < ¢/(t) = 1/(t—7+0) < 1/0, ¢ <1 and [t;,ty] C I’ we have

max/ Ertl(t) de

// WP drdt 4 (0= p+ 1) // o dedt.  (4.10)

Next, we put t; =7 — 0, t = 7+ s and
1 tel=|r1+s]
S0—{ 2t-7)241 T-0<t< T
Since 0 < ¢’ <2/0, ¢ <1 and [t1,ts] = I’ we have

VO/ yvu (E+m=p)/2|2 dodt

// wS P dedt + (0 —p+1) // ul dxdt. (4.11)
I I

Therefore, combining (4.10) and (4.11) we get

max/ Eptly )da:-l—z/o// (VulHm=p)/2? qrdt

// ub P dedt + 20 —p 41 // ul dzdt.  (4.12)

Hence, letting n — oo in (4.12), by [Proposition 2.4 we have

max/ u P (¢ )d33+1/0// (VuFm=P)/212 drdt

1
// w P dadt + 2(¢ — p+1// udazdt (4.13)
I’ RN l RN

We estimate the first term of the right side of (4.13) from above in the
following way: Set

Ge(t) = {x € RN | u(z,t) > ¢}

for each t > 0 and € > 0. It follows from and |I'| = s+ o that for each
t>po+p—1

oottt = ([ f o)

Sz—:_PH/ / u dxdt+€£_p°_p+1/ / uP? dzdt.
1 JG.() I JRN/G. (1)
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< g7PH ut dzdt + (s + o)he~Po7PHL, (4.14)
' JRN

Further, estimating the left side of (4.13) from below by inequality (2.32)
with f = ul*™~P)/2 we see that (4.13) is reduced to

N 1/k
1/0{// u(“m‘p)r/Qdazdt}
IJRN

< C{max/ uPHL(t) d:1:+u0// 1Vu(£+m_p)/2|2dxdt}
I JRrN 1JRN

< C{(3€_p+1(7—1 +2(—p+ 1))/ / N ut dadt
' JR

N 3(o + s)

(o)

hsf—PO—P“}, (4.15)

since vy < 1. Note
¢ -
yvz:k(f—p-l-l)%—m—l (since k =1+ 2/N)

and add CZt2he®~Po~PF1 to the both sides of (4.15). Then we obtain

1/k
1/0{// yFE—pt)+m—1 d:z:dt} / + c? + % pet—Po—p+1
I JRN

g

< C{(3s_p+1a_1 +2(0—p+ 1))/ / N u® dedt
"JR

+ 4(0 + 8) hs(—-po—p+1}
g

= C{(Be_p+10_1 +2(0—-p+ 1))/ / N ut dzdt
' JR

P )
ePo
h 4
<4C(B3ePtlo™l 4200 —p+ 1)){/ / ut dedt + M}
r JRN ebo
(4.16)

Furthermore, we estimate the left side of this inequality from below by using
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inequality

o+ s
o
— pl-1/k (0,&_})—1) _l/k(d + 3)(k—1)/k{ h(U + S)€(€—p+1)k—{—m—l}1/k

g gbo
(Here, we used relation ({ —p+ 1)k +m — 1

=l —po—p+Lk+po+p—1)
> hl—l/k{ h(o + S)S(E—p+l)k+m—1}1/k

gbo

het—Po—p+1

(for any & > 0 satisfying oe?~! < 1);

and we estimate the right side of inequality (4.16) from above by using
inequality

3Pl 4200 —p+1) < e P34 20eP7 (0 —p+ 1))
50+ 1) PHg1

(for any e > 0 satisfying oeP™* < 1).

VAN VA

Then, we have

1/k
Vg {// yk—pt1)+m—1 d:vdt}
I JRN

k
L Opl-1/k {h(a + 8)6(£—p+1)k+m—1}1/

gbo

< 200(£ +1)ePg {//Nu drdt + —2 T2 (0+8) }
"JR

(4.17)
Thus, if we put
20C
C, =
! min{vy, Chl-1/k}
and use the inequality (a + b)}/* < a!/* 4 /% we obtain [4.8). []

We can now use Moser’s iteration methods.

Lemma 4.6 Let u be as in Lemma 4.4. Suppose £ > o =pg+p— 1. Let
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0<p<7<T,0<s<T—7 ande >0 satisfy (4.2). Then

T+s
sup (), < Cofp 20Nz ot [0 ] ol o
T—p

[r,7+s]
2—1 1/(l—a)
4 5L Pt }} (4.18)
p

where Cs5 = C5(N, m,p, h,?).

Proof. Let £>a=mpg+p—1and {\,} be the sequence of real numbers
satisfying the following inductive formula:

{i?:é)\n—l —p+Dk+m-—1 (4.19)
Then

A =a+ (£ —a)k™! (4.20)
and

An > ¢ and  lim A, = oo. (4.21)

n—oo

We put £ = X, in [4.8). Then, since A, < ¢k™1, from (4.19) we have

1/k
{// w1 dedt + ﬂ&:)‘"“} /
I RN EPO
kn—l —p+1
< Cg— { / / u dedt + S—J“—‘Za*n} (4.22)
g 7 JRN ebo

where Cg = 2¢Cy. Let 0 < p < 7 < T and ¢ > 0 satisfy (4.2). We further
put in (4.22)

I=I 1 =[1—2""p, 7+ ]
and

I'=1,=[r- 27y 1+ 4]
Namely, we note

c=(r—2""p)—(t—2"""p)=2""p (4.23)
and so

oeP™l < peP7l <1 for n > 1.
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If we set
_ An $t27"p a,
then from and we get
{Jn—H}l/k < C’?,an (425)
where

Crp = Cge PTiplgn=lon,

We now use Moser’s iteration methods: Iterating [4.25), we have

{Jn41}*" < Cspdi (4.26)
where
Con = i
= Z{:Cl’(;e“p“,o*12}2?:1’6‘“"1) X (zk)z?zl(i—l)k‘(i‘l)
and
nango Csn = {2CGE—P+1p—1}N/2+1(2k)k/(k—1)2.
Since

T+s 1/kE"
sup (@™ = tim { [ [ s drae)

[r,7+s] n—0o0

< lim inf Jiikl ,

n—00

if n — oo in then we have

sup [[u(t)]|%5® < {2CsePt1p 1} N/241 (gp )b/ (k=1)? 5,

[, 7+s]

and so we get (4.18). ]

Proof of |Proposition 4.1 If s | 0 in [4.18), then by [Proposition 2.4 we get
(4.3). The proof is complete. ]
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5. Proof of Theorem 2

In this section, by using [Proposition 4.2, we prove [Theorem 2. For this
aim, we need the following key lemma which was established by Kawanago
for a classical solution. But, we must prove it for a weak solution
directly.

Lemma 5.1 Assume p > m + 2/N and assume (2.2) for the initial data
ug. Let u(x,t) be a weak solution of (1.1) (1.2) which is constructed in
Proposition 2.4. Put

Bp:FmM—JVAAm+ﬂ—1frmFm (5.1)

where Ay is in Lemma 2.8. Then, for any co > £ > max{l,pg —p+ 1} with
po= N(p—m)/2, if |Juoll,, < min{By,, B} then

|lu(®)|l, (£ ||uollg) is nonincreasing in t > 0. (5.2)

Furthermore, if

A= sup |u(t)]g <oo for some constant (€ [1,4), (5.3)
te[0,7)
then
u(®)] < Cot~NEP/Nm1+28)  for ¢ ¢ [0, 7] (5.4

where Cg = Co(N, m,p, A, 3,£).

The methods of the proof are similar to those of the proof in Kawanago
and so we only state the outline of the proof. But, in order to show the
above lemma for a weak solution of directly, we need the next

lemma.

Lemma 5.2 Let g > 1 and let h(t) > 0 in [0,T] be a continuous function
satisfying

mg+c/3mwﬁghﬁ)ﬁwog7gng (5.5)

where C' > 0 is a constant. Then,

h(s) <{C(g—1)s} Y@V for 0<s<T (5.6)
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Proof. Let 0 < s < T be fixed. For 0 < 7 < s, we define

a(r) = h(s) + C / T h(t) dt. (5.7)
Suppose h(s) > 0. Then, since 0 < a(7) < h(7) by (5.5), we get
h(r)?
1< a1 (5.8)

Integrating the both sides over (0,s) and noting da(7) = —Ch(7)%dT = d§,

we have
S h(r)d /h(s) 1 ( 1)
= dr < — X | —=) d¢
/ a(T) o(0) &7 C
1 [ 1 1
< — —df = ——h(s _q+1,
C h(s) fq € C(q - 1) ( )
that is,

h(s) < [C(g - 1)s] M (@D,
When h(s) =0, (5.6) is obvious. The proof is complete. ]

Proof of Let u(z,t) be a weak solution of which is
constructed in [Proposition 2.4, We use Lemma 2.5. Integrating over
[T, s] and letting n — oo, we have for £ > 1,

s 4
/ ué dx mf / “vu(m+€ 1) /2”2 dt
RN - (m+l-

S
< 13/ / uPH_1 dxds. (5.9)
r JRN
By (2.30), we obtain

/Nufd:r
R

S (AmAEZ 1) —m m4£-1)/2|2
+/T ((m Fe—1)2 CA||ull5, ) |V )2|2dt < 0.

Put £ = po (> 1) in the above inequality. Since ||lu(t)||,,
[0, T, if |luoll,, < Bp, then [u(t)]|,, is nonincreasing in ¢t > 0. Therefore, if
lluollp, < min{Bp,, B¢} and £ > max{1l,po — p + 1}, then

S

(5.10)

T

1S continuous in

/RN uf dxlj + C/ |Vum+=1/2|2 4t < 0 (5.11)
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for some C > 0, and so we see that ||u(t)||, is nonincreasing in ¢ > 0.

Assume (5.3). Then, it follows from (2.31) and that

N(m—1)423

S 1+___—
fu)le+c [ {uone ™ " at
< lu(r)||f for 0<T<s<T. (5.12)
Applying to (5.12) we get

N(m—1)+28 }—N(f—ﬁ)/{N(m—l)Jr?ﬂ}
N(£—-pB) '

The proof is complete. ]

Juts) I < { €

Proposition 5.3 Let u(z,t) be as in Lemma 5.1. Then, if |luol,, <
min{ By, B¢} = 8 for some £ > max{1,po +p — 1},

)] < Kit=Y®D for t€[0,T) (5.13)
where K1 = K1(N, m,p,d).

Proof.  Let u(z,t) be as in Lemma 5.1. Assume |uol,, < Bp,. Then, by
we have

Ju) ]y < luoll,, for ¢ € [0,7]. (5.14)

It follows from [Proposition 4.2 with h = ||ug||5% and with 3 = po
that if ||uo||,, < 6o = min{Bp,, B¢} for some £ > pg + p — 1 then

1l = 2 {(% /RN u'(t/2) de + (t/2)—<e—po>/<p—1>>}W‘“)

,N(g_pQ) _é—pQ 1/(£_a)
t t \ N(m—1)+2pg t p—1
: Cz{é (07 (2) +(3) )}

< Kit7V/®" for te[0,T). (5.15)

Here we used the relation

N o
Nm—1)+2py p-—1

and a=pg+p—1.

]
Proof of Theorem 2. We show in the case that ug satisfies
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(2.2). In the general case, using [Proposition 2.6 with adding the assumption
that ug , — ug in LP° we can also show (See the proof of Theorem
1.2 in Kawanago [17]).

Assume (2.2) and ||lug||,, < 6o where &y is as in [Proposition 5.3. Let

un(z,t) be a classical solution of (2.5) (2.6). Put T} = T(|luolls)/2

and

My = max{y(Ty; |Juoll.) , KaT7 PV 1 1) (5.16)

where y(t; M) and T (M) are defined by and respectively.
We shall show that for any subsequence {n'} C {n} and any T > 0,

there exists a subsequence {n”} C {n'} such that

sup ||up ()| < My for all n”. (5.17)
[0,T]

Let {n'} C {n} be fixed arbitrarily and set

T' = sup{T'; there exists a subsequence {n"} C {n'} such that

sup ||upr ()]0 < My for all n’}.
T

Y

Then, by [Proposition 2.3 and the fact ||up|o = ||uonllo for large n, we
have

T > Ty.

Suppose T” < co. Then for any T' < T” satisfying T' — T < T(M)/2, there
exists a subsequence {n”} C {n'} such that

sup ||uns (t)]lo < My for all n”. (5.19)
0,7

Hence, from [Proposition 2.3, we see that u,~(t) exists in [0, Ts] with Ty =
T + T(M,)/2 beyond T and satisfies

sup ||un (t)|loo < y(T(M1)/2; My) for all n”. (5.20)
[OaTQ]

It follows from [Proposition 2.4 and 5.3 that for some subsequence {7} C
{n/l}’

un(z,t) — u(z,t) as 71— oo (5.21)

uniformly in RN x [0, T3] and u(z,t) is a weak solution of satis-
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fying (5.13). Therefore, if n is large enough, then

lun(t)]lo < Kot Ve D 41 < Ky TP 1 <M,
for t € T3, T3]. (5.22)

This is a contradiction to the definition of 7’ and thus we get T' = oo namely
(5.17) for any T > 0.

Hence, using the diagonal methods, we can choose a subsequence {n"} C
{n'} satisfying that for any T" > 0,

Sup ||unr ()| o < My for large n”.
[0,T]

Therefore, by Proposition 2.4 and 5.3 we see that there exists a weak solution
u(z,t) of in RN x [0, 00) satisfying (1.8). The proof is complete.
Il

The rest of this section, we prepare for the proof of which
treats the case ug(z) € L'. The next lemma is proved by Kawanago

for a classical solution of with a = 0.

Lemma 5.4 Assumep > m+2/N and (2.2). Let u(zx,t) be a global weak
solution of (1.1) (1.2) which is constructed in Proposition 2.4 and the proof
of Theorem 2. Then, there erists a constant 83 = b2(N,p,m) such that if
[uoll,, < b2,

o0
| ety de < Cro < oo (5.23)
2
and
sup [[u(t)[|; < K3 (5.24)
t>0

where C1g = C10(N, p, m, ||uo||1,62) and K3 = K3(N,p,m, |luol;, b2)-

The methods of the proof are similar to those of the proof in Kawanago
if we use [Proposition 4.3, However, we must treat the weak solutions
directly and so we need the next lemma:

Lemma 5.5 Let g(t) > 0 in [0,T] and h(t) > 0 in [0,T] be continuous
functions. Then, if u satisfies that for some 0 < q <1

h(t) < h(0) + /T g(t)hi(t)dt for any 0 <71 <T, (5.25)
0
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——h(r)171 < / g(t)dt + Lh(O)l_q for 0<7<T.
l—gq 0 l1—gq

(5.26)

Proof. Put

a(t) = h(0) + /O (D) dt.
Suppose that there exists ¢ty € [0,T] such that
a(t) >0 for te (to,7] and afty) = 0.
By (5.25) we get
h(t) < aft)
and hence we have

ORI < ),

Integrating the both sides over (to, 7) and noting da(t) = g(t)h(t)9 dt = d¢,

we have
/ "L e / "L ey < / () dt
a(te) §7 to Oéq(t)g — Jio g '

Therefore, noting a(tg) = 0 we obtain for 7 € (to, T]

1 1 T
— h(r)V1Y < —— 1—q</
TS T e s | gl

< [ gttt + — (o)~
0 1—-gq

and
h(t) <a(r) <afty) =0 for 7€ ]0,t0).

Thus we obtain (5.26).
Similarly, we also get (5.26) in case that a(0) = h(0) > 0. The proof is
complete. (]

Proof of (see Kawanago [17]) Assume (2.2) and let u(z,t) be
a global weak solution of which is constructed in [Proposition 2.4
and the proof of [Theorem 2.
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First, we prove (5.23). We choose a small 7 > 0 such that py —n >
max{1l,pg — p + 1}. We use (5.2) with £ = pg —n. Then, if [jugll,, <
min{Bp,, Bpy—n},

SUP [[u(®)llpy— < l[0llpo—y < max{[luolly, lluollp, (5.27)

Further, it follows from [Proposition 4.3 and (5.4) with 8 = py — n that if
|uoll,, < Be for some £ > pg — 7 then

{1_8——p1()(%+1)}2—1@
()]l < C?’{/N"‘E(t‘ 1)dw}
R

= C(t-1)"Y for t>2, (5.28)
where
N1~ (po—mn)/t) { p—1 4
t = 1-— N2+1}—. 5.29
N(m —1)+2(po —n) f—po( D 02
Let n; € (0,7). Then, we can choose large ¢ such that
N
o> :
N(m —1) +2(po — m)
Hence, we have from (5.28),
lu(t)lloo < C(t — 1)~ NANIP=DF2Eo=mE - for ¢ > 2,
in order to obtain
i N(m-1 2(po —
/ lu() 2=t dt < o1 Y0 ); Po=m) o s
2 m

Next, we show [5.24). It follows from with £ =1 that

t
/ u(t)dm:/ u(2)d:c+// uP dzdt
RN RN 2 JRN
t
g/ u(2)dx+/ |\u(t)||gglf wdzdt for t>2
RN 2 RN

which leads to

/RN u(t) dw < /RN w(2) dz exp (/:O Mol dt) < o
for t>2. (5.32)
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On the other hand, we use (5.4) with £ = 2Np and 8 = pg. Then, if
[uollp, < min{Bpo, Banp}, we have by the Holder inequality,

/ ud:v / / uP dxdt
RN

2Np(p—1)/(2Np-1 2N-1)/(2Np-1
< [ g e e/ CN gy

(
<c / BN oy [PFON /NP gy (5.33)

It follows from with h(t) = ||u(t)|; and ¢ = p(2N —1)/(2Np —
1)(< 1) that

2Np — 1)/(2Np—1
e e
t —(@Bp+m)N 2N _ _

<c / FRER dit 4 2 /2N (5.34)

p—=
= NP po-vyenp-ny L 2NP Ly 1)/ @Np-1),
po—1 p—-1
Combining this and (5.32) we get [(5.24). Thus, if set 62 =
min{ By, Bp,—n, Be, Banp}, then we obtain Lemma 5.4l L]

Let un(z,t) be a approximate solution of (2.5) for above
u(z,t) in Lemma 5.4. Then, if we put

onl(2,t) = exp <— /2 P dt) X tin, (5.35)
vn(,t) satisfies the following differential inequality:
oni < exp( 1 / lunll2 1dt> X Ay

+ exp ((q _1) /2 |22 dt) X -V, (5.36)

As prove (2.24) and (4.9), we have for any £ > m,

/ Uﬁ~m+1(8)d$+Vg/ / |Vui/?|? dedt
B, T B,
S/ v (1) de for 2< 1< s (5.37)
By
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where

4m(l —m+1)(¢ —m)
12 '

If n — oo, we get the following lemma.

Vy =

Lemma 5.6 Let u(z,t) be as in Lemma 5.4 with ||ugl|p, < 62. Put

t
v = exp (—/ lu(t)||P? dt) X U. (5.38)
2
Then v(z,t) satisfies that

sup (), < K (5.39)
t>2

where K3 is as in Lemma 5.4, and for any £ > g > m

v (s) da + vy |Vv'/?|? dedt
RN r JRN

< / N vg—m"'l(T)dx for 2<7<s (5.40)
R
where

vo = inf vy.
0 A f4

Hence, we see that

lv@®)]l, (1 <£€<o0) is nonincreasing in t > 2. (5.41)

Proof. and (5.40) are obvious by and (5.37). (5.40) is
reduced to (5.41) when 1 < ¢ < co. Noting (2.14) we can also show (5.41)
in case £ = oo. []

In the following section, we shall estimate this v(z, t).

6. L>® — L! Estimates for solutions II

In this section, we shall show the following L*°-estimates for v(z,t)

which is very important to study the asymptotic behavior of the solution
u(z,t) in case ug(z) € L'(RN).

Proposition 6.1 Let v(z,t) in RN x [0,00) be a nonnegative continuous
function satisfying (5.39), (5.40), (5.41) and (2.14) with u replaced by v.
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Let £ > m. Then, for any t > 4 and € > 0 satisfying
t1/2€1/N+(m-—1)/2 S 1, (6.1)

lo(@®)[S, < Cu (te™1)=N/? ( [/ + Kgse_l) (6.2)
R
where Cll = Cn(N, m, K3,€).

The methods of the proof are similar to those of the proof of
4.1. That is, we use Moser’s iteration methods (Ref. Kawanago [18]). First
we show the next lemma.

Lemma 6.2 Let v(z,t) in RN x [0,00) be a nonnegative continuous func-
tion satisfying (5.39), (5.40), (5.41) and (2.14) with u replaced by v. Let
¢ > {y for some £y > m. Then, when N =1,

Cto)(s = )2 u(s) 5 < [ of(r)do+ et (63)

and, when N > 1, for any 2 < 7 < s <t and € > 0 satisfying (6.1),

1/k
Cto)(s = )2 [ F(s)da o 22}
R

K3
< / v (1) de + e (6.4)
RN €

where k = F= and C(4y) = C(N,m, K3, £p).
Proof. We use the Gagliardo-Nirenberg inequality (see )
| fllznyv-n < IV PIAIL  for £ e C5oRYN) (6.5)

Where2N/(N—1):oowhenN:1. Let ¢ >fg>mandt>s>T1 2> 2.
Combining this inequality with f = v%/? and (5.40) and noting (5.41), we
have

0 ||U£/2( )HQN/

cats =) I o

[v* ||2N/(N——1) 3 0
/212
< 04/ RIETE dt < VO/T /RN |V o™ | dadt

< /RN o™ (1) di. (6.6)
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Hence, we obtain
(s = )2 (8)ll3w /-1y < —-W/?( )II%/RN v (1) da,
that is,

C(s— 7-)1/2||Ue/2(3)”§N/(N—1)

< { /RN o (7) d:c}l/z { /R ot dw}l/z (6.7)

for some constant C' > O.
Similarly to the proof of (4.14), we get by (5.39),

/RN v () de < ee_m/ v(T) da:+5“(m_l)/ vt (7) d

RN RN

g~ (m- 1){ - 1K3+/ d:c} (6.8)

Therefore, it follows from and the Schwarz inequality that

C(s = )22t 2(8) 5y v-1)

ot (1 )

K3€£ 1
< “r)d
< /RN v (1) dz + 5
which is equal to (6 3) when N = 1. When N > 1, in order to obtain [6.4)

we must add K3e’~1/2 to the both sides of [6.9). Then, putting k = <

(6.9)

we have

C(s— 7)1/25@2_—1) { (/RN oF(s) dm)l/i‘

K (% ,;e)”’?}
- —E&
ZCE%‘FmTl(s — 7')% €

1/2(m=1)/2)1,/4/2( 6} |2 Kae™
= C(s—7)"/% =) lanyv-n) + =5

S/RN vf (1) dz + — K3 ’. (6.10)

Zj=
(1

Let ¢ > 0 satisfy [6.1]. Then, since 5%+T_1(s — T)% < e U <



182 R. Suzuki

1, putting C(4) = Cmin{1,2’1C_1K§/N} and using the inequality (a +
b)1/k < al/* 4 b1/k we obtain [6.4). The proof is complete. []

Proof of |Proposition 6.1 In the case N =1, if we put s =t and 7 = ¢/2

in (6.3) we get [6.2).
Next, we consider the case N > 1. Let £ > m and trent T < 1. For
any t > 4, let {t,} be the sequence of numbers satisfying the recurrence

formula
{ . (6.11

tn=t/2""1 +t, 1 (n>1).
Then,
tn = {1— (12"}t (<t) (6.12)
and
tn Tt as n — oo. (6.13)

Put s =t, and 7 = t,,_1 in (6.4) “ with ¢ replaced by kn—1lg (> £). We note
that 2 < 7 < s <tand (s —7)/2 = (t, — tn_1)'/? = t1/2(y/2)~ (1) Then,
if we set

I = / R (t,) do + D2 R, (6.14)
RN
then we have
C ()t 2em=D/2(\ /)=t D g AR < g (6.15)

We now use Moser’s iteration methods. Iterating we have

Cn{‘]n}l/’;n < Jo (6.16)
where
— ln—l{ 1/2 m— 1)/2(\/—27)—(24—1)}%_(1'_1)
— {C(e)t1/2€(m—l)/22—l}E?zlg;-(i—l)(ﬁ)_z?zl(i_l)l‘;_(i_l)
and

lim ¢, = {C(£)t/2em=D/29= 1\ K/ (k=1) (| /5y —k/(R-1)?

n—oo
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Since by (2.14)

. 1/k™ .
lv(®)||, = lim oF"(t) da < lim inf J}/*",
o0 RN n

n—oo n-—00

if n — oo in [6.16), then we have by k = N/(N — 1),
[C(0)t2em=1/29=1yN 5=V e < g,

and so we get [6.2). The proof is complete. L]

7. Proof of Theorem 3 and 5

In this section we prove and 5. We begin with the following
proposition:

Proposition 7.1 Let u(z,t) be a global weak solution of (1.1) (1.2) in
Lemma 5.4 satisfying |luol|,, < 62. Then,

[u(t)]loo < Oyt N/ IN(m=1)+2] for t>4 (7.1)

where 012 = Cu(N, m,p, ||u0||1, 62)

Proof.  Let u(z,t) be a global weak solution of [(1.1) (1.2) in Lemma 5.4
satisfying ||uo|l,, < b2. If we put v(z,t) = exp(— [3|ul|Bt dt)u then v(z,t)
satisfies (6.2) by Lemma 5.6 and [Proposition 6.1. By we note that
for some C' > 0 ||u(t)|lo < C|lv(t)|lo for t > 0. Hence, we see that u(z,t)
satisfies also. Putting ¢ = ¢~ N/IN(m=1)+2] iy, and using (5.4) with
B =1 (see [5.24)), we have (7.1). The proof is complete. ]

Proof of Theorem 3. (Ref. Kawanago [17], R. Suzuki and Friedman-
Kamin [7]) First, we show (1.9) and [1.10) of [Theorem 3| in the case that
uo(x) satisfies (2.2). In the general case, using [Proposition 2.6 with adding
the assumption that ug, — up in L* N LP°, we can show (1.9) and of
also.

Suppose (2.2) for the initial data ug(x) and let u(z,t) be a global weak
solution of which is constructed in with |Jugllp, <
81 = min{bo, 62} where & is in [Theorem 2. Then, (1.9) and follow
from [Theorem 2, Lemma 5.4 and Proposition 7.1 that and (1.8) hold.

Next, we shall show (1.11). Assume g > m + 1/N and set

up(x, t) = kNu(ke, EN™ D2 k> 0. (7.2)
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Then wy is a unique weak solution of

{ u = Au™ + k70 - Vul + kHuP in RN x (0,00), (7.3)

u(z,0) = kNug(kz) in RN x (0, 00).

where n = N(g—m)—1>0and g = N(p—m) — 2 > 0. Furthermore, by
(1.9) we have

lue(®lloe = KV (kN0
< ot~ NINMm=1)+2] g5 ¢ > 0. (7.4)

Thus, since ug(z,t) is uniformly bounded on RN x [r,00), 7 > 0, by Di
Benedetto [4], we see that u(z, t) is equicontinuous on every compact subset
in RN x (0,00). Therefore, there exist a subsequence {k'} C {k} and a
continuous function v(z,t) in RN x (0, 00) such that

up (z,t) — v(z,t) (7.5)

uniformly on every compact subset of RN x (0,00). In the following, by

using the uniqueness of the solution of (1.12) due to Pierre we shall
show

v(z,t) = Vin(z,t, M) (7.6)

where Vi, (z,t, M) is as in [Theorem 3.
Since uk(z,t) is a weak solution of (7.3), it satisfies the integral identity

/RN uk(z, T)p(z,T) dx
T T
:/ / {updrp + ul' Ay} dwdt—k—”/ / ujia - Vodrdt
0o JRN o JRN
T
+k_”/ / uﬁcpdxdt—}-kN/ uo(kz)p(z,0) dz
0o JRN RN

=514+ Sy + S3+ 54 (77)

for all p € C°(RN x [0, 0)).
We shall estimate each S; (i = 1,2, 3,4). First, we consider S;. We note

by [5:21),

/N ug(z,t)dz = / L ulz, N D2y de < K3 for >0, (7.8)
R R
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Hence, since by (7.4) we have

6
/0 /RN{ukapt +upl' Ap}drdt

5
gC’// {ug + ui'} dzdt
o JRN

6
m—1
SC/O {/RNukd:I:+sgpuk /RNukdm}dt

6
< CK3{5 n C/ t——N(m—l)/[N(m—l)-I—?] dt}
0

_ CK3<5 + N(m— ]-) +262/[N(m—1)+2]) s O (aS 6 l 0)’

2
(7.9)
we get
T
S1— / / N{vatgo + v Ap}drdt as k=Fk — oo. (7.10)
0 R
Next, we consider Sy. Similarly as above we get
|S2|
pN(m—-1)+2
< Ck™! / / uidxdt
0 RN
kN(m_1)+2T 1
< Cng‘l{C/ ¢~ N@=D/INm-D+2 gy 4 / nu||g;1dt}
1 0
( < Cng_l{CN(m —D+2 [T%EZ:‘i%ii kN(m—a)+2 _q)
N(m —q)+2
1
< + [ g dt} (if g #m+2/N)
0
1
0
\ (if ¢g=m+2/N)
—0 (ask — ) (7.11)

when ¢ > m + 1/N.

Next

, we consider S3. Since u(z, t) satisfies (1.10) and (2.1), if we choose

the suitable test function ¢(z,t) and use the limit procedure (see [29]) then
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we get

o0
/ / uP dxdt —1—/ uo(z)dx = lim u(z,T)dx < Ks.
0o JRN RN

T—oo JRN
(7.12)
Hence, it follows from the Lebesgue dominated theorem that
EN(m—1)+2p
Sy = / / u(z, )Pz /k, ¢ /N =D¥2) drdy
0 RN
— 4(0,0) / / WP dzdt as k — oo. (7.13)
o JRN
Similarly, we get
S4 — ¢(0,0) / N up(xz)dx as k — oo. (7.14)
R
Thus, if k = k; — oo in [7.7), we have
/ v(z, T)e(z,T) dz
RN
T
:/ / {ver + v Ap} dxdt
0 JRN
+ ¢(0,0) {/ uo dz +/ / uP d:cdt} (7.15)
RN 0o JRN

which shows that v(z,t) is a weak solution of (1.12) with L = M, which is
defined by (1.13). Therefore, since

T
/0 /RN{v—i—vm}da:dt < hm 1nf/ ] {ug + uy'} dzdt
1)+2T2/{N(m 1)+2])

< CK3 (T
2

(7.16)

by (7.9), the uniqueness theorem for solutions of (1.12) due to Pierre
(see also Lemma 2.2 of R. Suzuki [29]) implies and so (1.11) (see
Friedman-Kamin [7] and Kawanago ) The proof is complete. (]

Proof of Theorem 5.  The proof is the same as that of [Theorem 3. There-

fore, we only state the outline of the proof. We assume that the initial data
vo(z) satisfies (2.2) and we construct a weak solution v(z, t) of [1.15) [1.16)
similarly in [Proposition 2.4 (In this case v(z,t) exists globally in time).
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Then, we have for any ¢ > 1

RN s (m+4—

for 0 < 7 < s. Hence, according to the proof of Lemma 5.1, we get
the assertions of this lemma for v(x,t) without the assumption |[vo|l,, <
min{B,,, B;}. Furthermore we see that v(z,t) satisfies the assertions of
[Proposition 6.1], since v(z,t) satisfies the assumptions of this proposition.
Therefore, combining these lemma and proposition, we have

1) 3 et
1))2/ [VomH0D/2)2 g < 0 (7.17)

[v(t)]| o < Ct—N/INm=1+2 for ¢ >0 (7.18)

where C = C(m, N, ||vo]|;) (see the proof of Proposition 7.1)). The rest of
the assertions of are also showed by using the similar methods
to those of Theorem 3. The proof is complete. N

8. Blow up cases 11

In this section, we prove in a series of lemmas. The methods
of the proof are the same as those of R. Suzuki .

Lemma 8.1 Assumep >q>m+1/N andp =p;,, (=m+2/N). Let
u(z,t) be a nonnegative global weak solution of (1.1) (1.2). Then, u(-,t) €
LYRN) and

/R u(z,t)de < C(N) forall £>0 (8.1)

where C(N) is as in Lemma 3.2.

Proof.  Let v and ko be as in [Lemma 3.2. We note ko =2/(p—m) =N
and v =0, when p > ¢ >m+1/N and p = p}, , (= m +2/N). Then since
ko — N —~ =0, it follows from that
/ N u(z,t)sc(z)de < C(N) forall t>0. (8.2)
R

Therefore if € | 0, by Fatou’s lemma we get (8.1). O]

Lemma 8.2 Let u(z,t) be as in Lemma 8.1. Then we have for any T > 0,

/T / u(z, tP dzdt < C(N). (8.3)
0o JRN
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Proof. By Lemma 8.1 we see that u™, uP, ud, € L*(RN x (0,T)) for any
T > 0. Therefore, from (2.1) of Definition 2.1 we have

T
/ / uP dzdt §/ u(z,T)dx < C(N)
0o JRN RN
(see (7.12)). The proof is complete. ]

Proof of Theorem 4. Assume that the Cauchy problem has a
global solution u. Suppose ug(x) # 0. Then, by we get ug(x) €
LY(RN). Putting uy(z,t) = kNu(kz, kN (™=D+2t) we see that it is a global
weak solution of (7.3) with v = N(p —m) — 2 = 0, when p = m + 2/N.
Furthermore, when ¢ > m + 1/N we see that |k~"a| < |a|, since n =
N(q—m) —1 > 0. Therefore, since holds with u = uy, for all k£ > 1,

we have

T
/ / ug(z,t)P dedt < C(N) for T > 0. (8.4)
0o JRN

Let v(x,t) be a weak solution of [(1.15) (1.16) with wvo(z) = ug(z).
Then, if we define v similarly as ug, we get by the comparison theorem
(Proposition 2.2),

vg(z,t) < ug(z,t) in RN x (0, 00). (8.5)

Here, we note by the proof of [1.19) (see also (7.5) and (7.6)),

v(z,t) = Vip(z,t, M) as k— oo

locally uniformly in RN x (0, 00) where M = [gn ug(x) dz (> 0). Therefore,
it follows from (8.4), (8.5) and Fatou’s lemma that

T T
/ Vin(z, ¢, M)? dzdt < lim inf / / WP dedt < C(N).
0 JRN k—00 o JRN

On the other hand, since V,,,(z,t, M) is the given concrete form (see
Friedman-Kamin |7} and Lemma 2.1 in R. Suzuki ), we see that if p =
Prmg (=m+2/N) and M > 0 then

T
/ Vin(z, t, M)P dzdt = oo.
o JRN

This is a contradiction and so ug(xz) = 0. Therefore, by the uniqueness
of solutions with L!-valued initial data (see [Proposition 2.2), we obtain
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u(z,t) = 0in (x,t) € RN x (0,00). As in the proof of Theorem 1], is
obvious by the comparison and existence theorems for solutions. The proof
is complete. ]

9. Appendix

In this appendix, for the convenience of readers we state the comparison
theorem for the weak solution of the Cauchy problem of equation

u = An(u) +a- Vh(u) + k(u) (z,t) € RN x (0,T) (9.1)

where a € RN, n(€), h(€),k(€) € CL([0,00)), 7'(£),k'(§) > 0 for £ > 0 and
n(0) = h(0) = k(0) = 0. We assume

(A1) (| < C(M)yn'(&) for 0K<ESM
for some positive constant C(M) > 0. We define a supersolution [or

subsolution| similarly as in Definition 2.1. We shall prove the following
proposition:

Proposition 9.1 Assume (Al). Letv [oru] be a supersolution [ or sub-
solution] of (9.1) in RN x [0,T) and suppose

sup ||v(-,t) —u(-, t)||; < oo forany T € (0,T). (9.2)
[0,7]

If v(z,0) > u(z,0) in RN, then we have v > u in the whole RN x (0,T).

Corollary 9.2 Assume (Al). Let v and u be weak solutions of (9.1) in
RN x [0,T) and suppose that v(z,0) and u(z,0) belong to L'(RN). If
v(z,0) > u(z,0) in RN, then we have v > u in the whole RN x (0,T).

Proof. By the above proposition, it is enough to show that if u(z,0) €
L'(RN) then there exists a nondecreasing function C(t) (< oo) such that

lu, il < COllu(z, 0l for ¢ € (0,T). (9.3)

Let s(z) be a positive bounded C?-function with s, Vs and As ¢
LY(RN) satisfying

s(0)=1, |As(z) <s(z) and |a-Vs(z)| < Ks(z)
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for some constant K > 0 (Explicit examples were given in [1]). If we put
se(z) = s(ex)

for each € € (0,1), then
|Ase(z)| < e?se(x) and |a- Vsc(z)| < aKsE(:L') (9.4)

Now, we consider s.(z) as a test function ¢(z,t) in (see Section
3). Then, we have from (9.4),

/RN u(z, 7)se(x) dx

S/R u(z,0)s:(z da:—l—// (e%n(u

+ eKh(u) + k(u))se(x )da:dt for 7> 0. (9.5)

Hence, if we set

9(t) = sup {(n(u) + Kh(u) + k(u))/u} (< o0) (9.6)

RN x[0,1]

for each t € (0,T'), then for any € € (0.1) and 7 € [0,¢] we obtain

/RN u(z, 7)se(x) dx

</ u(x,0)s:(z) dx + g(t / / u(z,t) dxdt
RN RN
for 7 € [0, 1] (9.7)

which leads to

/RN u(z,7)se(z) dr < eg(t)f/ u(z,0)se(z) dr

RN
for 7€ [0,t]. (9.8)
Put 7 =t and
C(t) = eIM, (9.9)
and let € | 0 in (9.8). Then, noting u(x,0) € L'(RN) we get (9.3). The
proof is complete. L]

Remark 9.3 When N = 1, [Proposition 9.1] was proved by Gillding
under weaker conditions. They do not need condition (9.2). Our methods
of the proof are different from ones of and similar to ones of [2] and [3].
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Proof of [Proposition 9.1 Since v [or u] is a supersolution [or subsolution |
of [9.1), for any test function ¢ > 0, € C*(RN x [0,T)) we have

/RN(U(T) —v(7))p(T) dx — //QT (u— v) (@ + 7A@ — ha - V) dzdt
< [ (0@, 0) = (@, 0)p(0) dz + //QT(U —v)kdzdt  (9.10)

where Q, = RN x [0,7) and

flw) = flv) .
f(x,t)={ u— v if w7 (9.11)
0 otherwise.
Here we note that
7, l~z, ke L>*(Q;) foreach 0<7<T, (9.12)
i, k>0 in Qr (9.13)
and
|h| < C(1)/7 for (z,t) € Q; (9.14)

for some constant C(7) > 0. Let x € CP(RN) and 0 < x < 1. Let R > 0
be so large that supp x C Bg/p. Furthermore, define sequences of smooth
positive functions {n,} and {h,} as follows (see Aronson-Crandall-Peletier

2)) -

1 . 1
- < M < |7l Lo ) g (9.15)
L 0 in L*(Qrr) as n— oo, (9.16)
Vn
hn — h in L*(Q,r) as n— oo (9.17)
and
|hn| < C(T)v/mn in Qr R, (9.18)

where Q- r = Bgr x [0, 7).
Finally, we define a sequence of smooth functions {¢,} by a smooth



192 R. Suzuki

solution of

Pt + MmAop — hpa -V, = Ap, in QT,R
¢n=0 on 9Bg x[0,7) (9.19)

on(z,7) =x on Bg.
We need the following lemma. ]

Lemma 9.1 If A is large enough, then
(i) 0<n < in Qrp;
(i) [ o, o m(Dpp)? dzdt < C;

(iii) SUPg<t<r fBR IVon|?(t)dz < C,
where C 1s a constant depending only on x.

Proof. (i) is obvious by the comparison theorem.
Next we prove (ii) and (iii). Multiply the both sides of equation (9.19)
by A¢, and integrate by parts over Br X (t,7). Then

1 T T
—/ Veon 2(2) da;+/ / nn(Agon)Qd:cdt+/\/ / Vo ? dedt
2 Bgr t Bpr t Br
T 1
S/ hna-VgonAcpd:Edt—l——/ IVx|? de. (9.20)
Bg 2 JBr

Since we have
1 1
|hna - Vo Apl| < Enn(A@n)2 + 50(7')2,0‘2|V90n|2

by (9.18), we get
2/ ‘Vﬂon t)dz + - / / M ( A@n) dxdt
+O=CEPlel2) [ [ Vgl dut
t Br
1
< —/ [Vx|? dz
2 /Bg

which leads to (ii) and (iii). ]

Proof of [Proposition 9.1 (continue) Set ¢(x,t) = Er(z)pn(x,t) as a test
function in (9.10), where {g(r) = &(|z|/R) and £(r) € C*°(R) satisfies that
0<&(ry<lforr>0,&r)=0forr>1and {(r)=1for 0 <r <1/2
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Then
| ulr) = vir)xde
< }\//QT (u — v)pnlr dzdt

+f /Q (= )Er{( = m)2pn — (b~ hn)a- Vipn} dod

+ [ [ (= 0)2iVen  Ven +ipntsen ~ ha: Véngn} dude

+ [ (u@.0) = v(a,0)nen(0) de

+ / (0w v)Renpn dadt. (9.21)
We note, by Lemma 9.4,

167 = 1) enll i gony + 1B = hn)a Veul
<G = 10)Vll 2 0, IV APl 2, o

+ lalllh = hall 2@, ) IVnll 200, )

— 0 (as n — 00).

Hence, if n — oo in (9.21) we obtain by the Schwarz’s inequality,
[ (u(r) = v(m)xds
R

§/RN[u(a:,O)—v(a:,O)]+da:+(/\+K)//<2T[u—v]+d:ndt

C C

+ EHU’ - U“LQ(QT)HVQPTIHLQ(QT’R) + E“u - UHLl(QT)(]‘ + 1/R)
(9.22)

where K = supg, k and [u]* = max{u,0}. Here we used (9.12),

1€l oo
VEr(2) < =5 (9.23)
and
"Noo/R+2(N = 1)[I€']|

AR (@)] < 1€" Moo/ R + 2( NE oo (9.24)

R



194 R. Suzuki

Note u — v € L1(Q,) N L®(Q,). Then, if R — oo, we get
/ (u(r) —v(1))x dzx (9.25)
RN
< / [u(2,0) - v(z,0)]" dz + (A + K) // fu — o]+ dzdt
R T
for any x € C°(RN) satisfying 0 < x < 1, and hence we have
/ u(t) — v(8)]* da (9.26)
RN
t
< / [u(z,0) — v(z,0)]* dz + (A + K) / / u — ot dzdt
for t € [0, 7], which leads to

/ [u(r) — o(7)]* de < O+ / [u(z,0) - v(z,0)]* dz.  (9.27)
RN

RN
Thus, when u(z,0) < v(z,0), we have [u(r) — v(7)]" = 0, that is,
u(z,7) < v(z,7) for 7 € [0, T). The proof is complete. []
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