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Some operators on Lorentz spaces

Enji SATO
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Abstract. It is shown that the spaces A(p,q) and M(p,q) defined by Chen and Lai [1]

coincide for 1 < p < 2 and 1 < ¢ < 0o. Also the Banach algebraic properties of Lorentz-
improving operators are investigated.
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1. Introduction

Let G be a locally compact abelian group (LCA group), dz = dm the
Haar measure of G, and I the dual group. Also the space of bounded regular
Borel measures on G will be denoted by M(G), and LP(G) the LP space
with the norm || - ||, on G.

In this paper, we study the properties of some bounded linear operators
on Lorentz spaces L(p,q) (= L(p,q)(G)) (1 <p, q < 00).

First we recall some definitions and basic properties of Lorentz spaces.

Definition 1.1 Let f be a complex-valued measurable function on G
which is finite m a.e. The distribution function of f is defined by

ms(y) =m{z € G||f(x)| >y} (y=0)
The non-increasing rearrangement of f is the function f* defined by
f7(t) =inf{y > 0| mys(y) <t} (¢>0).

The Lorentz space L(p, q) is defined as the set of equivalence classes of
functions f as above such that || f||;, < oo, where

00 1/q
a @ @rg) i 1<p g<oo
Ifllz, = P Yo '
sup tl/pf*(t) if 1<p<o0, gq=o00.
t€(0,00)

Since f* and f have the same distribution function, it follows that
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| fll5p = IIfllp, so the Lorentz space L(p,p) is equal to LP.
The function || - ||7, is a quasi-norm, but is not in general a norm. For
this reason it is useful to define the function f** by

=1 [ Fods @0,

and then set

00 1/q
([T @mrwr) ™ it 1<p, a<o0
”f“(p,q) = 0
sup /P f**(¢) if 1<p<o0, q=o00.

t€(0,00)

If 1 <p,qg<ooorp=gqe{l,o00}, then L(p,q) is a Banach space with the
norm || - ||(pq)- Also we can prove the inequalities

®/2)Y N £ g < 1fllpg) < 2/ (2 — 1) (®/0) 2| £,

where (p/q)1/9 = 1if ¢ = co. Also we remark that any element of M (G) can
be considered a bounded linear operator on L(p, q) by convolution (cf. [2]).

Now in §2, we study the problem posed by Chen and Lai [1; p. 255, Re-
mark|. They define the spaces A(p,q) and M(p,q) concerning with Lorentz
space.

Definition 1.2 Let 1 <p<ooand 1< ¢ < co0. Put

Alp.g) = {f € LY(@) | f € L(p,q)(D)},
M(p,q) = {p € M(G) | i € L(p,q)(I")},

where f (resp. i) is the Fourier transform (resp. the Fourier-Stieltjes trans-
form) of f € LY(G) (resp. p € M(G)). For every f € A(p,q) (vesp. p €
M (G)) we supply a norm by

£l Apa) = max{|| £11, | Fll(p)}
(resp. ”/L”M(p,q) = max{”u”a ”ﬁ”(p,q)})’

where ||| is the total variation norm of p.
Then Chen and Lai [1]| proposed the following problem:
If 1<p<q<2, is M(p,q) equalto A(p,q)?

In this section, we show the equality.
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In §3, we study the algebra which concerns with Lorentz-improving mea-
sures. The measures, which act by convolution map LP to LP*¢ for some
e =¢€(p) >0and 1 < p < oo, are called LP-improving measures and have
been investigated in a number of recent papers (cf. [4] and the papers cited
therein). Also Grinnell and Hare [2] developed the study of LP-improving
measures, and characterized the class of Lorentz-improving measures on
the Lorentz spaces. We will give a definition of Lorentz-improving oper-
ators which generalizes Lorentz-improving measures, and investigate the
properties of Lorentz-improving operators.

In this paper, for 1 < p < oo we denote p’ by 1/p+ 1/p' = 1, T(G) by
all trigonometric polynomials, and C; (j = 1,2,...) by appropriate positive
constants.

2. Chen and Lai’s problem

Throughout this section, let G be a nondiscrete LCA group. Chen
and Lai [1] gives a problem with respect to some operators concerning with
Lorentz spaces. In this section, we consider this problem.

Now Chen and Lai [1; Theorem 3.6 (i)] show the following:

Theorem 2.1 If 1 <q<p<2, then M(p,q) = A(p,q).

But they say that we do not know what happens for the case 1 < p <
q <2 ([1; p. 255 Remark]). We prove the following result for this problem.

Theorem 2.2 If 1<p<2and1<q< oo, then M(p,q) = A(p,q).

It is easy to see that the [Theorem 2.2 follows from Theorems and
2.8. Then we will show those theorems.

To proof of Theorems and 2.8, we prepare some lemmas.

Lemma 2.3 For 1 < p, q < oo, there exists { fo} C L'(G) an approzimate
identity of L(p,q) such that fo is a nonnegative function with ||fol|l1 = 1,
supp fa a compact set, fa — 1 (@ = o0) on any compact set of ', and
Jwe fa(z)dz — 0 (o = 00) for any neighborhood of unit W.

Proof. By Hewitt and Ross [5], there exists a net {f,} C L!(G) such that
fa is a nonnegative function with || f,|l1 = 1, supp fa a compact set, fo — 1
(a = 00) on any compact set of I', and [ fo(z)dz — 0 (@ — o0) for
any neighborhood of unit W. Then it is easy to show that f, is in L(p, q).
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(cf. [8]) Also in the same way as [1; Lemma 3.3], we can show that {fa} is
an approximate identity of L(p,q). We omit the details. O]

Lemma 2.4 For 1 <p, q < oo, we define
F={fe€LYG) |suppf is a compact set}.
Then F is dense in L(p,q) (= L(p, q)(G)).

Proof. 1t is easy to see F C L(p,q). Let {f,} be in Lemma 2.3, and
f € C.(G). Then by [Lemma. 2.3, we have

f*foa€F, and ||f—f*fa||(p,q) — 0 (a = o00).
So we can show that F is dense in L(p, q). ]
It is easy to see the next lemma (cf. [1]).
Lemma 2.5 For 1< p, q < oo, we define
F={f1feFy}
Then F is dense in L(p,q)(T).
The next definition was suggested by Saeki and Thome [10].

Definition 2.6 Let y be in M(G). p is called in A(p,q)"™ if there exists
a net {yia} C A(p,q) such that {so} is bounded in A(p,q), and o — p (as
@ — 00) in the w*-topology (i.e. c(M(G),Co(Q))).

Now we can show the following:
Theorem 2.7 If 1< p, ¢ < oo, then A(p,q)~ = M(p,q).

Proof.  Let p is an A(p,q)~. By the definition, there exists a net {u,} C
A(p, q) such that po — p in o(M(G),Co(G)) and ltallapq) < C1. Let F
be in Lemma 2.4. For f € F, we can show

/ fdpo = / F(=7)ia(7)dy,

where dv is the Haar measure of I'. By the assumption and the duality
(cf. [6]), it follows that

|/fdua

= U f(v)ﬁa(—v)dvl
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INA

”f”(p’,q’)”ﬂa”(P,Q)
< C2||f”(p’,q’)’

and | [ fdu| < Cg”f”(p/,q/) (f € F). On the other hand, let F be in Lemmal
2.5. Since F is dense in L(p/,¢')(T"), by the duality [5] it follows that fi €

L(p,q)(T), ||ill(p,q) < C3, and p € M(p,q).
Conversely, let u be in M(p, q), and {f} in Lemma 2.3. Putting pu, =

fus 1, 1t follows that [psalls < 6], o = Ja and [iall gy < Calill -
Moreover, for f € F (F in Lemma 2.4) it follows that

[ fdia= [ F=nfatridy -

[ Femitdy = [ fdu (o 0)
by Lemma 2.3 So we have

[ fdua— [ fdu (@ 0) (FEP).

Also let g be in Cyp(G). Then for any ¢ > 0, there exists f € F with
|f — gllo < €. In fact, F is a subalgebra of Cy(G), closed under complex
conjugation, and separetes points of G. Therefore, F is dense in Cy(G) by
the Stone-Weierstrass theorem.

Now by the above results, it follows that

[ i~ [ gdu| < lg = el
+| [ fdua = [ sdul 417 = gleeli
and
/gd,ua — /gd,u (@ — o0).

Therefore p is in A(p, q)™. O
Theorem 2.8 If 1<p<2and 1< q< oo, then A(p,q)~ = A(p,q).

Proof.  Let p be in A(p,q)~. Then there exist a net {uo} C A(p,q) and
C5 > 0 such that “ﬁa“(p,q) < C5 and Mo — [ (a — OO) in O’(M(G),Co(G))
Then in the same way as the first paragraph of the proof of [[heorem 2.7
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it follows that
[ 1] < Col s (€ 7).

Here, by Hausdorff-Young’s inequality (cf. [2]) and Calderon-Hunt’s inter-
polation theorem (cf. [8]), we can show that

1l gy < Crllfllpgry  (f € F),

and

/ fdu’ < Cillfllpgy (f € F).

On the other hand, F is dense in L(p,q') by Lemma 2.4. So by the
duality of L(p,¢') (cf. [6]) and [Lemma 2.3, it follows that there exists g €
L(p’, q)(G) such that

[ fau= [ fada(f € F), w=gde, and ye 1}

3. Lorentz-improving operators

Throughout this section, let G be an infinite compact abelian group.
In this section, we define Lorentz-improving operators, and characterize

them. Also we give some equivalent conditions of A2(2, g)-set. Following
Grinnell-Hare , we will show it.

Definition 3.1 An operator T is called a Lorentz-improving operator (LI
operator) if there exist p, ¢, 7 (1<p<o0,1<g<r< 00), and ¢ € I*°(T)
such that Tf = of (f € T(G)) and T has a bounded extension from
L(p,r) with the norm | - l(p,r) to L(p,q) with the norm || - l(p,)- Then

we put T = ¢. Also we denote by My(r,q) the set of all T above, and
Mp(r, Q)A ={T € 1°(0) | T € Mp(r, q)}-

Here, we remark that M, (r, q) is a commutative Banach algebra without
unit by Yap [12].

Remark 3.2 There exists an LI operator which is not in M(G). (cf. [4])
Definition 3.3 ([2]) Let 1<p<o0,1<g<o0,and E CT. E is called
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A3(2, g)-set if there is some r > ¢ such that

{f€L(pg) | f=00nE}={f€Lpr)| f=0onEY}.

For 1 < q < 2, we define

A2(2,¢; B) = supp{l|fll2q) | f € L2, [Ifll2 <1, =0 o0n E}.

Then we have the following:

Theorem 3.4 The following are equivalent:

(i) T is an LI operator;

(ii) There exist 1 < q <2 and a > 1 such that for any € > 0 and E(¢) =
{y €T [IT(7)| > €}, E(e) is Aa(2, q)-set with Ay(2,q; E(e)) = O(e):;

(iii) There exist 1 < q¢ < 2 and a natural number n such that T" :
L(2,q') — L? is an LI operator.

The proof of [Theorem 3.4] is similar to [2; Theorem 3.4]. We omit the
details.

Theorem 3.5 (cf. [11]) Let E C T, and 1 < q < 2. The following are

equivalent:

(i) FE is Ay(2,q)-set;

(ii) There exists a positive constant C such that for any g € L(2,q') there
exists h € L? such that h = 0 on E€, §|g = h|g, and |||z < Cllgll (2,43

(ili) &g € Ma(r,q)" for somer (¢ <1 < 00), where £g is the characteristic
function of F;

(iv) Ma(r,q@)E = I°(E) for some r (¢ < r < o0);

(v) There existr (g < <00) and T € My(r,q) such that

inf{|T(y)| | v € E} > 0.

Proof. By [2; Theorem 3.3], (i) is equivalent to (ii).

(ii = iii) We define T = £g, and have ||T'f||; < Collfll(2,¢y- By g>1
and the duality, ||T'f]|(2,4 < Collf||2. Hence, we may put r = 2.

(ili = iv) Since My(r,q)| g C I°°(E) by the definition, it is sufficient
that we show the converse.

Case1: q <2 <. For any ¢ € [*(FE), let ¥(y) be U(y) = £p(y)d(7).
Then by (iii) it follows that g € My(r,q)" C Ma(2,9)", and £€g € My(2,q)".
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So for any f € T(G), it follows that
HZ f(v)‘l’(v)éE(v)vHL(Q,q) < Cho HZ J?(’Y)‘I’W)“YHQ

< Cull¥l |3 Fin)estvn]),
< Cull#llooll £ 12
Then it follows that ¥ € My(r, q)".

Case 2: g <r < 2. By the assumption, T = {g € My(r,q)" = My(q', 7).
By the interpolation ([6], cf. [2]), there exists a natural number N such
that TV € My(¢,2). Let ¢ € [°°(E). Then it follows that

|2 emeemFon|, < Iolle |3 enfinn|,

= [#llooIT™ £1l2
< Croll@llooll fll2,47)-

Hence, for § = ¢¢g, S is in Ma(q',2) = My(2,q), and S € Ms(r,q). There-
fore, ¢ is in Ma(r,q)"|E.

(iv=v) It is clear.

(v = 1) First we give the next lemma.

Lemma (cf. [4]) Let T € My(p,2) (2 < p < 00), and for any € > 0 let
E(e)={y €T | |T(v)| > €}. Then E(e) is Ao(2,p')-set with Ay(2,p'; E(e)) =
O(E_l)) and §E(e) € MQ(p) 2)/\

The proof of this lemma is similar to [4; Theorem 1.5] by applying [2;
Theorem 3.3].

Now let ¢g = inf{|T(y)] | v € E} (> 0), and E(T,n) = {y e T |
IT(y)| > n/2} for any 5 > 0. Since T € Mj(r,q), we may assume r < oo.
Since ¢ > 1 and T' € M,(q/,r’), by [Theorem 3.4 there exists a natural
number N such that TV € My(¢’,2). Then since {y €T | |ﬁ(7)] > eV} =
{y €T | IT(7)| > e}, E(TN,&)) > E. By TN € My(¢,2) and
E(TVN,€l) is Ay(2,q)-set, and E is Ay(2, q)-set. O

Remark 3.6 For E C I' and 1 < g < 2, we can prove the same result as
[Lheorem 3.5 in the same method as [2; Theorem 3.3].

Next we study operating functions and spectra of the Banach algebra
M;(r,q) (1< g<r< o).
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Definition 3.7 Let ® be a complex-valued function on [—1,1]. ® is called
an operating function on Ms(r, q) if for any T' € Ms(r, q) with T'(T") C [-1, 1]
there exists S € My(r,q) with ®(T) = S.

Then the next result is proved:

Theorem 3.8 Let &y be a bounded function on [—1,1].
(i) Suppose 2 < g < r < oo (resp. 1 < g < r < 2). Let By =
(1/2 = 1/q)/(1/q = 1/r) (resp. Bo = (1/r —1/2)/(1/q — 1/r)), and

ng be the smallest integer such that ng > By. Then for any constants
a1,02,...,0p,

B(t) = aqt + -+ - + apgt™ + [t[0TL D (1)

operates on Ma(r,q).
(ii) Suppose 1 < g<2<r <oo. Let f; = min{(1/q —1/2)/(1/2 - 1/r),
(1/2—-1/r)/(1/q—1/2)}. Then for any constant o

B(t) = at + [t| (1)

operates on Ms(r,q).

The proof of [Theorem 3.8 is similar to [7; Theorem 1] by some interpo-
lations (cf. [2]). We omit the details.

In particular, we can characterize the operating function of Ms(2, q) by
[3; Proposition 2] and [Theorem 3.8

Corollary 3.9 Let ® be a complex-valued function on [—1,1], and 1 <
q < 2. Then ® is an operating function of Ms(2,q) if and only if

|@(8)] < Cualt]-

Corollary 3.10 Let T be in Ms(r,q) (1 < g <1 < 00).
Then sp(T, My(r,q)) = T(T'), where T(I") is the closure of T(I).

Proof.  Let ®((z) be a bounded function on the complex plane. By [7;
Remark] and Theorem 3.8, 2V ®((z) operates on My(r,q) for sufficiently
large natural number N. Then by [7; Theorem 2]

~

sp(T, My(r, q)) = T(T).
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