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On the Schur indices of certain irreducible characters
of finite Chevalley groups
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Abstract. Let G be a finite Chevalley group of split type. We shall give some sufficient
conditions subject for that G has irreducible characters of the Schur index equal to 2
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Introduction

Let F_{q} be a finite field with q elements of characteristic p . Let G be a
connectecd, reductive algebraic group defined over F_{q} , and let F : Garrow G

be the corresponding Frobenius endomorphism of G . In the following, if
H denotes an F-stable subgroup of G, then the group of F-fixed points
of H will be denoted by H . Let B be an F-stable Borel subgroup of G,
and let U be the unipotent radical of B . Then U is F-stable and U is
a Sylow p-subgroups of G . According to a theorem of Gel’fand-Graev-
Yokonuma-Steinberg, if \lambda is a linear character of U in “general position”,
then the character \lambda^{G} of G induced by \lambda is multiplicity-free (see Steinberg
[13, Theorem 49, p. 258] and Carter [2, Theorem 8.1.3] ) . In [5], R. Gow has
initiated to study the rationality-properties of the characters \lambda^{G} where \lambda

runs over certain linear characters of U and, using the results obtained there,
he obtained some informations about the Schur indices of some irreducible
characters of G (also cf. A. Helversen-Pasoto [7]). He has treated the case
that G=GL_{n} , SL_{n} and Sp_{2n} . In [10], we have obtained some results
about the rationality of the \lambda^{G} when G is a general reductive group. Our
intension here is to get more precise results when G is a simple algebraic
group. The twisted cases are treated in [12]. So, in this paper, we shall treat
the untwisted cases. We shall obtain some sufficient conditions subject for
that the Schur index of any irreducible character of G is equal to one and
some sufficient conditions subject for that G has irreducible characters of
the Schur index equal to 2.

1991 Mathematics Subject Classification : 20G05 .
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We note that the results of this paper have been announced in [11].

1. Linear characters of U

Let K be an algebraic closure of F_{q} . Let G be an simple algebraic group
over K We assume that G is defined and split over F_{q} . Let F : Garrow G be
the corresponding Frobenius endomorphism of G . We shall fix an F-stable
Borel subgroup B of G and an F-stable maximal torus T of G contained in
B . Let U be the unipotent radical of B . Let R, R^{+} and \triangle be respectively
the set of roots of G with respect to T, the set of positive roots determined
by B and the set of corresponding simple roots. For a root \alpha , let U_{\alpha} be
the root subgroup of G associated with \alpha . Let X=Hom(T, K^{\cross}) be the
character module of T . Then F acts on X by (F\chi)(t)=\chi(F(t)) for \chi\in X ,
t\in T As T splits over F_{q} , we have F(t)=t^{q} , t\in T , so we have F\chi=q\chi ,
\chi\in X .

Let U . =\langle U_{\alpha}|\alpha\in R^{+}-\triangle\rangle . Then U. is an F-stable normal subgroup
of U and contains the derived group of Ur It is known that if p is not a
bad prime for G, then U. coincides with the commutator subgroup of U .
We have U/U. = \prod_{\alpha\in\Delta}U_{\alpha}=\prod_{\alpha\in\triangle}F_{q} (we note that each U_{\alpha} is F-stable
since G splits over F_{q} ).

Let \Lambda be the set of all linear characters \lambda of U such that \lambda| U. =1 ,
and let \Lambda_{0} be the set of all \lambda in \Lambda such that \lambda|U_{\alpha}\neq 1 for all \alpha\in\triangle .

Lemma 1 (Gel’fand-Graev [4], Yokonuma [15], Steinberg [13]) If \lambda\in

\Lambda_{0} , then \lambda^{G} is multiplicity-free.

For a subset J of \triangle , put T_{J}= \bigcap_{\alpha\in J} Ker \alpha (we put T_{\phi}=T). Then,
for any such J , T_{J} is an F-stable subgroup of T .

Lemma 2 (cf. Yokonuma [15], Steinberg [13, Exercise on p. 263]) If \lambda\in

\Lambda_{0} , then there is a set S of subsets J of \triangle such that S contains \triangle and \phi

and that ( \lambda^{G}, \lambda^{G})_{G}=\sum_{J\in S}|T_{J}| .

This is proved in [12]. The next lemma is also proved in [12].

Lemma 3 ([12, Proposition 1]) Let c be the order of the centre Z of
G. Then if \lambda\in\Lambda_{0} , there is a positive integer r such that (\lambda^{G}, \lambda^{G})_{G}=

r(q-1)+c .

Let \lambda\in\Lambda_{0} . Let \eta_{1} , \ldots , \eta_{c} be all the irreducible characters of the centre
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Z . For 1\leqq i\leqq c , put \Gamma_{\lambda,i}=Ind_{UZ}^{G}(\lambda\eta_{i}) . Then it is easy to see that
\lambda^{G}=\Gamma_{\lambda,1}+\cdot\cdot+\Gamma_{\lambda,c} and that (by using Lemma 3)

(\Gamma_{\lambda,i}, \Gamma_{\lambda,j})_{G}=\delta_{ij} c1 ( \lambda^{G}, \lambda^{G})_{G}=\delta_{ij}\{\frac{r(q-1)}{c}+1\}

(1\leqq i, j\leqq c) .

( \delta_{ij} denotes Kronecker’s delta.)
Our purpose is to study the rationality properties of the \lambda^{G} , \lambda\in\Lambda .

For that purpose we study the rationality of the \lambda^{B} . If p=2, then U/U.
is an elementary abelian 2-group, so that all the \lambda^{B} are realizable in Q .
Therefore in the rest of this paper, we shall assume that p\neq 2 .

Let \zeta_{p} be a fixed primitive p-th root of unity, and let \pi be the Galois
group of Q(\zeta_{p}) over Q . Then \pi acts on \hat{F}_{q}=Hom(F_{q}, C^{\cross}) naturally. Let
\chi\in\hat{F}_{q} , \chi\neq 1 . For a\in F_{q} , we define \chi_{a}\in\hat{F}_{q} by \chi_{a}(x)=\chi(ax) , x\in F_{q} .
Then we have \hat{F}_{q}=\{\chi_{a}|a\in F_{q}\} and \{\chi^{\sigma}|\sigma\in\pi\}=\{\chi_{a}|a\in F_{p}^{\cross}\} .

B acts on \Lambda by \lambda^{b}(u)=\lambda(bub^{-1}) , b\in B , \lambda\in\Lambda;B fixes \Lambda_{0} . Fix a
character \lambda in \Lambda_{0} , and set L= { b\in B|\lambda^{b}=\lambda^{\tau(b)} for some \tau(b)\in\pi }. Put
M=L\cap T Then we have L=MU (semidirect product) and we see easily
that

M= {t\in T| for some x\in F_{p}^{\cross} : \alpha(t)=x for all \alpha\in\triangle }.

This shows that L is independent of the choice of \lambda in \Lambda_{0} and the mapping
barrow\tau(b) is a homomorphism of L into \pi with kernel ZU (Z is the centre
of G). Let f be an element of T such that \langle\tau(f)\rangle=\tau(L) and put \sigma=\tau(f) .

Let \lambda be any character in \Lambda such that \lambda\neq 1 . Let \eta_{1} , . . , \eta_{c} be as
before all the irreducible characters of Z(c=|Z|) . For 1\leqq i\leqq c , put
\mu_{i}=Ind_{ZU}^{L}(\eta_{i}\lambda) . Then we see easily that \mu_{1} , . , \mu_{c} are mutually different
irreducible characters of L and we have \lambda^{L}=\mu_{1}+\cdot\cdot+\mu_{c} .

Now, if \chi is an ordinary character of a finite group and k is a field
of characteristic 0, tnen k(\chi) denotes the field generated over k by the
values of \chi . Then we see easily that Q(\lambda^{L})=Q(\zeta_{p})^{\langle\sigma\rangle} and, for 1\leqq i\leqq c ,
Q(\mu_{i})=Q(\lambda^{L})(\eta_{i}) . Put k=Q(\lambda^{L}) and k_{i}=Q(\mu_{i})(1\leqq i\leqq c) . For
1\leqq i\leqq c , let A_{i} be the simple direct summand of the group algebra k_{i}[L]

of L over k_{i} associated with \mu_{i} . Let h= (M : Z) . Then f^{h} is an element of
Z . For 1\leqq i\leqq c , put \theta_{i}=\eta_{i}(f^{h}) . Then we see that, for 1\leqq i\leqq c , A_{i} is
isomorphic over k_{i} to the cyclic algebra (\theta_{i}, k_{i}(\zeta_{p}) , \sigma_{i}) over k_{i} , where \sigma_{i} is a
certain extension of \sigma to k_{i}(\zeta_{p}) over k_{i} (see Yamada [14, Proposition 3.5]).
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2. Calculation of the group M
Let X denote as before the character module Hom(T, K^{\cross}) of T Let

P(R) and Q(R) denote respectively the weight-lattice of R and the root-
lattice of R . Then P(R)\supset X\supset Q(R) . We say that G is adjoint if X=
Q(R) . By [9], we see that if G is adjoint, then \tau induces an isomorphism of
M with \pi and f can be chosen so that \langle f\rangle=M

Let Y=Hom(K^{\cross}, T) be the cocharacter module of T written ad-
ditively. Then the pairing \langle\chi, \lambda\rangle=\deg(\chi 0\lambda) defines a perfect pairing

\langle ., \rangle : X\cross Y -arrow Z . Suppose that dim T=\ell . Let \{\chi_{1}, , \chi\ell\} be a basis of
X over Z and let \{\lambda_{1}, \ldots, \lambda_{\ell}\} be the basis of Y dual to it, i.e., \langle\chi_{i}, \lambda_{j}\rangle=\delta_{ij} .
Then each element t of T can be written uniquely as

t=h(x_{1}, . . , x_{\ell})=\lambda_{1}(x_{1})\cdot\cdot\lambda_{\ell}(x_{\ell}) (x_{1}, \ldots , x_{\ell}\in K^{\cross}) .

Recall that we have F\chi_{i}=q\chi_{i} , 1\leqq i\leqq\ell .

Lemma 4 Assume that \triangle=\{\alpha_{1}, \ldots, \alpha_{\ell}\} and, for 1\leqq i\leqq\ell , let \alpha_{i}=

\sum_{j=1}^{\ell}s_{ij}\chi_{j}(s_{ij}\in Z) . Then, for t\in T , t=h(x_{1}, \ldots, x_{\ell}) , t /ies in M if and
only if x_{j^{q}}=x_{j} for 1\leqq j\leqq\ell and \prod_{j=1}^{\ell}x_{j^{s_{1j}}}=\cdot . = \prod_{j=1}^{\ell}x_{j^{s_{\ell j}}}=x for
some x\in F_{p}^{\cross}

Proof. Let t=h(x_{1}, \ldots, x_{\ell}) be an element of T. Then, as F(t)=t^{q} , it
is easy to see that F(h(x_{1}, \ldots, x_{\ell}))=h(x_{1}^{q}, \ldots, x\ell^{q}) . Therefore F(t)=t if
and only if x_{i^{q}}=x_{i} for 1\leqq i\leqq\ell . Next, we have

\alpha_{i}(t)=\alpha_{i}(\prod_{j=1}^{\ell}\lambda_{j}(x_{j}))

= \prod_{j=1}^{\ell}x_{j}^{\langle\alpha_{i},\lambda_{j}\rangle}

= \prod_{j=1}^{\ell}x_{j^{s_{ij}}} .

Therefore the assertion in the lemma follows. \square

In the following, \eta is a fixed primitive element of F_{q} and \nu=\eta^{(q-1)/(p-1)} ,
a primitive element of F_{p} . If m is an integer, then we denote by ord_{2}m the
exponent of the 2-part of m . Put d= (X : Q(R)) .

Lemma 5 (cf. Gow [5, 6]) Assume that G is of type (A_{\ell}) , \ell\geqq 1 . Then
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Z\simeq Z/(d, q-1)Z and we have: (i) if 2 |\ell(\ell+1)/d or ord_{2}d>ord_{2}(p-1) ,
then \tau(M)=\pi and f can be chosen so that M=\langle f\rangle\cross Z and f^{p-1}=1 .
Assume that 2 { \ell(\ell+1)/d and ord_{2}d\leqq ord_{2}(p-1) . Then: (ii) if q is
square, then \tau(M)=\pi and f can be chosen so that f^{p-1}=\epsilon , where \epsilon is
the unique element of Z of order 2; (iii) if q is non-square and ord_{2}d=

ord_{2}(p-1) , then (\pi : \tau(M))=2 and f can be chosen so that M=\langle f\rangle\cross Z

and f^{(p-1)/2}=1 ; (iv) if q is non-square and ord_{2}d<ord_{2}(p-1) , then
(\pi : \tau(M))=2 and f can be chosen so that f^{(p-1)/2}=\epsilon .

Proof We use the notation of Bourbaki [1]. By [1, P1.I, (VIII)], we have
P(R)=\langle\alpha_{1}, . , \alpha_{\ell-1},\overline{\omega}\rangle_{Z} , where

\overline{\omega}=\epsilon_{1}-\frac{1}{\ell+1} ( \epsilon_{1}+ \cdot \tau+\epsilon_{\ell+1})=\frac{1}{\ell+1}\sum_{i=1}^{\ell}(\ell-i+1)\alpha_{i} ,

so that P(R)/Q(R)=\langle\overline{\omega}+Q(R)\rangle=Z/(\ell+1)Z . Therefore, as a basis \{\chi_{i}\}

ThusofX
,

\alpha_{i}=\chi_{i}for1\leqq i\leqq\ell-1and\alpha\ell=d\chi\ell-\sum_{i1}(\ell-i+1)\chi_{i}.Itwecantake:\chi_{i}=\alpha_{i}for1\leqq i\leqq\ell-1and\chi\ell=\frac{1}{l_{=}}\sum_{-1}i\ell(=1\ell-i+1)\alpha_{i}

.

follows from Lemma 4 that, for t=h(x_{1}, . . ’ x_{\ell})\in T , we have t\in M if and
only if x_{1} , \ldots , x_{\ell}\in F_{q}^{\cross} and, for some x\in F_{p}^{\cross} , x_{1}= =x_{\ell-1}=x and
x^{-\ell}x^{-(\ell-1)}\cdots x^{-2}x\ell^{d}=x , i.e.,

x\ell^{d}=x^{\ell(\ell+1)/2}- (1)

First, as Z= \bigcap_{\alpha\in\Delta} Ker \alpha(Z is the centre of G ; we see easily that Z is
equal to the group of F_{q} irrational points of Z), we have Z=\{h(1, . . ’ 1, y)|

y\in F_{q}^{\cross} , y^{d}=1\}=Z/(d, q-1)Z .
Next, we note that we have \tau(M)=\pi if and only if the equation (1)

has a solution in F_{q}^{\cross} for x=\nu , and when \tau(M)=\pi f can be chosen so
that M=\langle f\rangle\cross Z and f^{p-1}=1 if and only if that solution can be found
in F_{p}^{\cross} We also note that when \tau(M)\neq\pi we have (\pi : \tau(M))=2 if and
only if the equation (1) has a solution in F_{q}^{\cross} for x=\nu^{2} , and if this is the
case, then f can be chosen so that M=\langle f\rangle\cross Z and f^{(p-1)/2}=1 if and
only if that solution can be found in (F_{p}^{\cross})^{2} .

Now the group (F_{p}^{\cross})^{d}=\{y^{d}|y\in F_{p}^{\cross}\} is the cyclic subgroup of F_{p}^{\cross}

of order a=(p-1)/(d,p-1) and the element \nu^{\ell(\ell+1)/2} of F_{p}^{\cross} has the order
b=(p-1)/(\ell(\ell+1)/2,p-1) . Therefore, for x=lJ, the equation (1) has a
solution in F_{p}^{\cross} if and only if b|a , i.e., (d,p-1)|(\ell(\ell+1)/2,p-1) . But,
as d|\ell(\ell+1) , the latter condition is satisfied if and only if d|\ell(\ell+1)/2



44 Z. Ohmori

(i.e. 2 |\ell(\ell+1)/d ) or ord_{2}d>ord_{2}(p-1) (Case (i)).
Suppose therefore that 2 { \ell(\ell+1)/d and ord_{2}d\leqq ord_{2}(p-1) . If q is

square, then y=\eta^{((q-1)/2(p-1))\ell(\ell+1)/d} is a solution of the equation (1) for
x=\nu in F_{q}^{\cross} and y^{p-1}=-1 (Case (ii)). Assume that q is non-square.
Then (q-1)/(p-1) is odd and (d, q-1) ( (((q-1)/(p-1))\ell(\ell+1)/2, q-1) .
This means that the equation (1) has no solutions in F_{q}^{\cross} for x=\nu . But,
for x=\nu^{2} , the equation (1) has a solution in F_{p}^{\cross} , e.g., y=\nu^{\ell(\ell+1)/d} (cf.
y^{(p-1)/2}=-1) . As (F_{p}^{\cross})^{2d} is a cyclic group of order ((p-1)/2)/(d, (p-1)/2)
and \nu^{2\cdot\ell(\ell+1)/2} is of order ((p-1)/2)/(\ell(\ell+1)/2, (p-1)/2) , the equation
(1) has a solution in (F_{p}^{\cross})^{2} for x=\nu^{2} if and only if (d, (p-1)/2)|(\ell(\ell+

1)/2 , (p-1)/2) , i.e. , ord_{2}d>ord_{2}(p-1)/2 , i.e., ord_{2}d=ord_{2}(p-1) (Cases
(iii), (iv) ) .

This proves Lemma 5. \square

We note that the case G=SL_{\ell+1} of Lemma 5 was treated by Gow
([5, 6]).

Lemma 6 Assume that G is non-adjoint and of type (B_{\ell}) , \ell\geqq 2(i.e .
G=Spin_{2\ell+1}) . Then Z\simeq Z/2Z. 4nd : (i) if 4 |\ell(\ell+1) , then \tau(M)=\pi

and f can be chosen so that M=\langle f\rangle\cross Z and f^{p-1}=1 . Assume that
4 { \ell(\ell+1) . Then: (ii) if q is square, we have \tau(M)=\pi and f^{p-1}=

\epsilon , where \epsilon is the generator of Z ; (iii) if q is non-square and p\equiv-1

(mod 4), we have (\pi : \tau(M))=2 and f can be chosen so that M=\langle f\rangle\cross Z

and f^{(p-1)/2}=1 ; (iv) if q is non-square and p\equiv 1 (mod 4), we have
(\pi : \tau(M))=2 and f^{(p-1)/2}=\epsilon .

Proof By [1, PL.2, (VIII)], we have P(R)=\langle\overline{\omega}, \alpha_{2}, \ldots, \alpha_{\ell}\rangle , where
\overline{\omega}=\frac{1}{2}\sum_{i=1}^{\ell}i\alpha_{i} . So P(R)/Q(R)=\langle\overline{\omega}+Q(R)\rangle=Z/2Z . As G is non-
adjoint, we have X=P(R) . Therefore, as a basis \{\chi_{i}\} of X , we can take:
\chi_{1}=\frac{1}{2}\sum_{i=1}^{\ell}i\alpha_{i} , \chi_{i}=\alpha_{i}(2\leqq i\leqq\ell) . So se have \alpha_{1}=2\chi_{1}-\sum_{i=2}^{\ell}i\chi_{i} ,
\alpha_{i}=\chi_{i}(2\leqq i\leqq\ell) . Therefore, by Lemma 4, we see that M consists
of those elements h(y, x, . , x) with x\in F_{p}^{\cross} and y\in F_{q}^{\cross} such that
y^{2}=x^{\ell(\ell+1)/2} . In particular, by solving the last equation for x=1 , we
get Z=\{h(\pm 1,1, . . ’ 1)\}\simeq Z/2Z . For x=\nu , a solution y of the equa-
tion y^{2}=x^{\ell(\ell+1)/2} can be found in F_{p}^{\cross} if and only if 2 |\ell(\ell+1)/2 , and
if this is the case, then y=\nu^{\ell(\ell+1)/4} is a solution of that equation (Case
(i) ) . Assume that 4 { \ell(\ell+1) . Then \ell(\ell+1)/2 is odd. Hence we see that,
for x=\nu , solutions y of that equation can be found in F_{q}^{\cross} if and only if
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(q-1)/(p-1) is even, i.e., q is square, and if this is the case, then y=\eta^{i}

with i=(\ell(\ell+1)/2) (q-1)/2(p-1) is a solution and y^{p-1}=-1 (Case
(ii) ) . Assume that q is non-square. Then, for x=\nu^{2} , we can find a solution
y of the equation y^{2}=x^{\ell(\ell+1)/2} in F_{p}^{\cross} , and we see that a solution y can be
found in (F_{p}^{\cross})^{2} if and only if (p-1)/2 is odd, i.e., p\equiv-1 (mod 4), and if
this is the case, then y=\nu^{(\ell(\ell+1)+p-1)} is a solution in (F_{p}^{\cross})^{2} (Cases (iii),
(iv); in case (iv), y=\nu^{\ell(\ell+1)/2} is a solution in F_{p}^{\cross} ).

This proves Lemma 6. \square

Lemma 7 (cf. Gow [5]) Assume that G is non-adjoint and of type (C_{\ell}) ,
\ell \geqq 2(i.e., G=Sp_{2\ell}) . Then Z\simeq Z/2Z and: (i) if q is square, we have
\tau(M)=\pi and f^{p-1}=\epsilon , where \xi j is the generator of Z ; (ii) if q is non-
square and p\equiv-1 (mod 4), we have (\pi : \tau(M))=2 and f can be chosen
so that M=\langle f\rangle\cross Z and f^{(p-1)/2}=1 ; (iii) if q is non-square and p\equiv 1

(mod 4), then (\pi : \tau(M))=2 and f^{(p-1)/2}=\epsilon .

Proo/. By [1, PL.3, (VIII)], we have P(R)=\langle\alpha_{1}, \ldots, \alpha_{\ell-1}, \overline{\omega}_{1}\rangle , where
\overline{\omega}_{1}=\sum_{i=1}^{\ell-1}\alpha_{i}+\frac{1}{2}\alpha_{\ell}\equiv\frac{1}{2}\alpha_{\ell} (mod Q(R) ), hence P(R)/Q(R)= \langle\frac{1}{2}\alpha_{\ell}+

Q(R) \rangle\simeq Z/2Z.SinceG.isnon- adjoint,wehaveX=PR)\{\chi_{i}\}ofX,wecantake\cdot\chi_{i}=\alpha_{i}(1\leqq i\leqq\ell-1),\chi\ell=\frac{(1}{2}\alpha_{\ell}.\cdot So,asabasisThereforewe

have \alpha_{i}=\chi_{i}(1\leqq i\leqq\ell-1) , \alpha_{\ell}=2\chi_{\ell} . Hence, by Lemma 4, we see that
M consists of those elements h(x, \ldots, x, y) with x\in F_{p}^{\cross} and y\in F_{q}^{\cross} with
y^{2}=x . Clearly we have Z=\langle h(1, . . , 1, \pm 1)\rangle\simeq Z/2Z . We see easily that,
for x=\nu , the equation y^{2}=x has no solutions in F_{p}^{\cross} and has a solution in
F_{q}^{\cross} if and only if q is square. Thus case (i). Assume that q is non-square.
Then we see that, for x=\nu^{2} , the equation y^{2}=x has a solution in F_{p}^{\cross} and
has a solution in (F_{p}^{\cross})^{2} if and only if (p-1)/2 is odd, i.e., p\equiv-1 (mod 4).
Thus (ii) and (iii). (We can take: (i) y=\eta^{(q-1)/2(p-1)} ; (ii) y=\nu^{(p+1)/2} ;
(iii) y=\nu.)

This proves Lemma 7. \square

Lemma 8 Assume that G is non-adjoint and of type (D_{\ell}) , \ell\geqq 3 . Then
Z\simeq Z/(d, q-1)Z(d= (P(R) : X)) if 2 ( \ell , Z\simeq Z/2Z\cross Z/2Z if 2 |\ell

and d=4, and Z\simeq Z/2Z if 2 |\ell and d=2 . And the following holds:
(I) X=P(R)(G=Spin_{2\ell}) ; (i) either (a) if 4 |\ell(\ell-1) or (b) if

ord_{2}(\ell-1)=1 and p\equiv-1 (mod 4), then \tau(M)=\pi and f can be chosen
so that M=\langle f\rangle\cross Z and f^{p-1}=1 ; (ii) if q is square and either (a) if
ord_{2}\ell=1 or (b) if ord_{2}(\ell-1)=1 and p\equiv 1 (mod 4), then \tau(M)=\pi and
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f can be chosen so that |\langle f^{p-1}\rangle|=2 ; (iii) if q is non-square and either
(a) if ord_{2}(\ell-1)=1 and ord_{2}(p-1)=2 or (b) if ord_{2}\ell=1 and p\equiv-1

(mod 4), then (\pi : \tau(M))=2 and f can be chosen so that M=\langle f\rangle\cross Z and
f^{(p-1)/2}=1 ; (iv) if q is non-square and either (a) if ord_{2}(\ell-1)=1 and
ord_{2}(p-1)\geqq 3 or (b) if ord_{2}\ell=1 and p\equiv 1 (mod 4), then (\pi : \tau(M))=2

and f can be chosen such that |\langle f^{(p-1)/2}\rangle|=2 .
(II) G=SO_{2\ell}(d=2) : We have \tau(M)=\pi and f can be chosen so

that M=\langle f\rangle\cross Z and f^{p-1}=1 .
(III) G=HSpin_{2\ell}(2|\ell, d=2) : (i) if 4 |\ell , then \tau(M)=\pi and f

can be chosen so that M=\langle f\rangle\cross Z and f^{p-1}=1 ; (ii) if ord_{2}\ell=1 and q is
square, then \tau(M)=\pi and f^{p-1}=\epsilon , where \epsilon is the generator of Z ; (iii) if
ord_{2}\ell=1 , q is non-square and p\equiv-1 (mod 4), then (\pi : \tau(M))=2 and
f can be chosen so that M=\langle f\rangle\cross Z and f^{(p-1)/2}=1 ; (iv) if ord_{2}\ell=1 ,
q is non-square and p\equiv 1 (mod 4), then (\pi : \tau(M))=2 and f^{(p-1)/2}=\epsilon .

Proo/. First we assume that \ell is odd. Then, by [1, PL.4, (VIII)], we have
P(R)=\langle Q(R), \overline{\omega}_{\ell}\rangle , where

\overline{\omega}_{\ell}=\frac{1}{2}\{\alpha_{1}+2\alpha_{2}+ \cdot . +( \ell-2)\alpha_{\ell-2}+\frac{1}{2}(\ell-2)\alpha_{\ell-1}+\frac{1}{2}\ell\alpha\ell\}

\overline{\omega}_{\ell} is congruent modulo Q(R) to \overline{\omega} , where

\overline{\omega}=

/

\frac{1}{2} ( \alpha_{1}+\alpha_{3}+ , . + \alpha_{\ell-2}-\frac{1}{2}\alpha_{\ell-1}+\frac{1}{2}\alpha\ell) (4 |\ell-1) ,

\backslash \frac{1}{2}(\alpha_{1}+\alpha_{3}+)\cdot(+\alpha_{\ell-2}+\frac{1}{2}\alpha_{\ell-1}-\frac{1}{2}\alpha\ell) (4 |\ell+1) .

Therefore we have P(R)=\langle\alpha_{1}, \ldots, \alpha_{\ell-1},\overline{\omega}\rangle .
The case X=P(R) : As a basis \{\chi_{i}\} of X , we can take: \chi_{i}=\alpha_{i}

(1\leqq i\leqq\ell-1) , \chi_{\ell}=\overline{\omega} . So we have \alpha_{i}=\chi_{i} for 1\leqq i\leqq\ell-1 and

\alpha_{\ell}=\{

4\chi\ell-2(\chi_{1}+\chi_{3}+ +\chi_{\ell-2})+\chi_{\ell-1} (4 |\ell-1) ,
-4\chi_{\ell}+2(\chi_{1}+\chi_{3}+, . +\chi_{\ell-2})+\chi_{\ell-1} (4 |\ell+1) .

Therefore we see that M consists of those elements h(x, \ldots, x, y) with x\in

F_{p}^{\cross} and y\in F_{q}^{\cross} such that

y^{4}=x^{\ell-1} . (2)

By solving the equation (2) for x=1 , we see that Z=\{h(1 , . . , 1, y|
y^{4}=1 , y\in F_{q}^{\cross}\}\simeq Z/(4, q-1)Z . Let us calculate the group M\tau We see
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easily that the equation (2) has a solution y in F_{p}^{\cross} for x=\nu if and only if
(a) 4 |\ell-1 or (b) 4 |\ell+1 and (p-1)/2 is odd, and that in case (a) (resp.
in case (b) ) y=\nu^{(\ell-1)/4} (resp. y=\nu^{(\ell-p)/4} ) is a solution of the equation
(2) for x=\nu (Case (i)). Assume that 4 ( \ell-1 and p\equiv 1 (mod 4). Then
we see that the equation (2) has a solution y in F_{q}^{\cross} for x=\nu if and only if
q is square, and if this is the case y=\eta^{i} with i= \frac{q-1}{2(p-1)} \frac{\ell-1}{2} is a solution
and y^{p-1}=-1 . Assume that q is non-square (4 { \ell-1 and p\equiv 1 (mod 4)).
Then we see that the equation (2) for x=\nu^{2} has a solution y in F_{p}^{\cross} and
y can be found in (F_{q}^{\cross})^{2} if and only if ord_{2}(p-1)=2 . If ord_{2}(p-1)=2 ,
then we may take y=\nu^{i} with i= \frac{\ell-1}{2}+\frac{p-1}{4} (then y^{(p-1)/2}=1 ), and if
ord_{2}(p-1)\geqq 3 , then we may take y=\nu^{(\ell-1)/2} (then y^{(p-1)/2}=-1 ).

as a
Thecased=2(SO_{2\ell}).\cdot Weh.aveX=\langle\alpha_{1},\ldots,\alpha_{\ell-1},\frac{1}{2}(\alpha\ell_{-}-\alpha\ell)\rangle.Sobasis\{\chi_{i}\}ofX,wecantake\cdot\chi_{i}=\alpha_{i}(1\leqq i\leqq\ell-1),\chi\ell=\frac{11}{2}(\alpha_{\ell-1}-\alpha_{\ell})’

.
Hence we have \alpha_{i}=\chi_{i} for 1\leqq i\leqq\ell-1 and \alpha_{\ell}=-2\chi\ell+\chi_{\ell-1} . Therefore
we see that M consists of those elements h(x, , x, y) with x\in F_{p}^{\cross} and
y\in F_{q}^{\cross} such that y^{2}=1 , and that Z=\{h(1, . . , 1, \pm 1) \}\simeq Z/2Z . Clearly
we can take f=h(\nu, . . , \nu, 1) .

Next we assume that \ell is even. Then we have P(R)=\langle Q(R), \overline{\omega}_{\ell-1}, \overline{\omega}_{\ell}\rangle)

where \overline{\omega}_{\ell} is as above and

\overline{\omega}_{\ell-1}=\frac{1}{2}\{\alpha_{1}+2\alpha_{2}+ \cdot . +( \ell-2)\alpha_{\ell-2}+\frac{1}{2}\ell\alpha_{\ell-1}+\frac{1}{2}(\ell-2)\alpha\ell\} .

Put:

\overline{\omega}’=\frac{1}{2} (\alpha_{1}+\alpha_{3}+, . 1+\alpha_{\ell-3}+\alpha_{\ell-1}) ,

\overline{\omega}’=\frac{1}{2}(\alpha_{1}+\alpha_{3}+)\cdot 1+\alpha_{\ell-3}+\alpha_{\ell}) .

Then \overline{\omega}_{\ell-1}\equiv\overline{\omega}’ , \overline{\omega}_{\ell}\equiv\overline{\omega}’ (mod Q(R) ) if 4|\ell , and \overline{\omega}_{\ell-1}\equiv\overline{\omega}’ , \overline{\omega}_{\ell}\equiv\overline{\omega}’

(mod Q(R) ) if ord_{2}\ell=1 . Therefore we have P(R)=\langle Q(R), \overline{\omega}’, \overline{\omega}’\rangle .
The case X=P(R)(Spin_{2\ell}) : Let \chi_{i}=\alpha_{i} for 1\leqq i\leqq\ell-2 , \chi_{\ell-1}=\overline{\omega}’

and \chi\ell=\overline{\omega}’ . Then \{\chi_{1}, \ldots, \chi\ell\} is a basis of X , and we have: \alpha_{i}=\chi_{i}

(1\leqq i\leqq\ell-2) , \alpha_{\ell-1}=2\chi_{\ell-1}-(\chi_{1}+\chi_{3}+, . +\chi_{\ell-3}) and \alpha_{\ell}=2\chi\ell-

(\chi_{1}+\chi_{3}+\cdot\cdot+\chi_{\ell-3}) . Therefore, by Lemma 4, we see that M consists
of those elements h(x, \ldots, x, y, z) with x\in F_{p}^{\cross} and y , z\in F_{q}^{\cross} such that
y^{2}=z^{2}=x^{\ell/2} . It is clear that Z=\{h(1, . . ., 1, \pm 1, \pm 1)\}\simeq Z/2Z\cross Z/2Z .
Let us calculate the group Mc First, it is easy to see that, for x=\nu , the
equations y^{2}=z^{2}=x^{\ell/2} have solutions y , z in F_{p}^{\cross} if and only if \ell/2 is
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even and if this is the case then y=z=\nu^{\ell/4} are solutions (Case (I), (i)).
Suppose therefore ord_{2}\ell=1 . Then we see that, for x=\nu , the equations
y^{2}=z^{2}=x^{\ell/2} have solutions y , z in F_{q}^{\cross} if and only if (q-1)/(p-1)
is even, i.e., q is square, and if this is the case then y=z=\eta^{i} with
i= \frac{1}{2}(\frac{q-1}{p-1} \frac{\ell}{2}+q-1) are solutions and y^{p-1}=z^{p-1}=-1 (Case (I), (ii)).
Assume that q is non-square (ord_{2}\ell=1) . Then we see that, for x=\nu^{2} , the
equations y^{2}=z^{2}=x^{\ell/2} have solutions y , z in F_{p}^{\cross} and that y , z can be
found in (F_{p}^{\cross})^{2} if and only if (p-1)/2 if odd. In fact, if p\equiv-1 (mod 4),
then taking y=z=\nu^{i} with i= \frac{\ell}{2}+\frac{p-1}{2} , we have y^{(p-1)/2}=z^{(p-1)/2}=1 ,
and if p\equiv 1 (mod 4), taking y=z=\nu^{\ell/2} , we have y^{(p-1)/2}=z^{(p-1)/2}=-1

(Cases (I), (iii), (iv)).
The case d=2 : Three cases occur: (\alpha)\overline{\omega}’+\overline{\omega}’\in X(SO_{2\ell}) , (\beta)

\overline{\omega}_{\ell-1}\in X(HSpin_{2\ell}) , (\gamma)\overline{\omega}_{\ell}\in X(HSpin_{2\ell}) .

Case (\alpha) : We have X= \langle\alpha_{1}, . , \alpha_{\ell-1}, \frac{1}{2}(\alpha_{\ell-1}+\alpha_{\ell})\rangle . So, as a basis \{\chi_{i}\}

of X , we can take: \chi_{i}=\alpha_{i}(1\leqq i\leqq\ell-1) , \chi_{\ell}=\frac{1}{2}(\alpha_{\ell-1}+\alpha_{\ell}) . Then we have
\alpha_{i}=\chi_{i} for 1\leqq i\leqq\ell-1 and \alpha_{\ell}=2\chi_{1}\ell-\chi_{\ell-1} . Therefore, by Lemma 4,
we see that M consists of those elements h(X_{ },\ldots, x, y) with x\in F_{p}^{\cross} and
y\in F_{q}^{\cross} such that y^{2}=x^{2} . Thus we have Z=\{h(1, \ldots , 1, \pm 1)\}\simeq Z/2Z

and we can take: f=h(\nu, \ldots, \nu, \nu) .

Case (\beta) : Assume that 4 |\ell . Then we have X=\langle\alpha_{1}, . . ’ \alpha_{\ell-1}, \overline{\omega}’\rangle . And,
as a basis \{\chi_{i}\} of X , we can take: \chi_{i}=\alpha_{i}(1\leqq i\leqq\ell-1) , \chi\ell=\overline{\omega}’ . So
we have \alpha_{i}=\chi_{i} for 1\leqq i\leqq\ell-1 and \alpha_{\ell}=2\chi\ell-(\chi_{1}+\chi_{3}+, . +\chi_{\ell-3}) .
Hence, by Lemma 4, we see that M consists of those elements h(x, . , x, y)
with x\in F_{p}^{\cross} and y\in F_{q}^{\cross} such that y^{2}=x^{\ell/2} . Hence we have Z=
\{h(1, . . ’ 1, \pm 1)\}\simeq Z/2Z and we have take: f=h(\nu, . . ’ \nu, \nu^{\ell/4}) .

Assume that ord_{2}\ell=1 . Then we have X=\langle\alpha_{1}, . . ’ \alpha_{\ell-2},\overline{\omega}’, \alpha_{\ell}\rangle . So,
as a basis \{\chi_{i}\} of X , we can take: \chi_{i}=\alpha_{i}(1\leqq i\leqq\ell-2) , \chi_{\ell-1}=\overline{\omega}’ ,
\chi\ell=\alpha_{\ell} . Then we have \alpha_{i}=\chi_{i} for 1\leqq i\leqq\ell-2 and i=\ell and \alpha_{\ell-1}=

2\chi_{\ell-1} – (\chi_{1}+\chi_{3}+ +\chi_{\ell-3}) . Therefore, by Lemma 4, we see that M
consists of those elements h(x, . . ’ x, y, x) with x\in F_{p}^{\cross} and y\in F_{q}^{\cross} such
that y^{2}=x^{\ell/2} . Thus we have Z=h(1, \ldots , 1, \pm 1,1)\}\simeq Z/2Z . As \ell/2

is odd, we see that, for x=\nu , the equation y^{2}=x^{\ell/2} has no solutions in
F_{p}^{\cross} and has a solution in F_{q}^{\cross} if and only if (q-1)/(p-1) is even, i.e.,
q is square. If q is square, then y=\eta^{i} with i= \frac{1}{2}(\frac{q-1}{p-1} \frac{\ell}{2}) is a solution
of that equation for x=\nu and y^{p-1}=-1 . Assume therefore that q is
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non-square. Then we see that, for x=\nu^{2} , that equation has a solution y in
F_{p}^{\cross} and y can be found in (F_{p}^{\cross})^{2} if and only if (p-1)/2 is odd. In fact,
if p\equiv-1 (mod 4), then y=\nu^{(\ell+p-1)/2} is a solution and y^{(p-1)/2}=1 . If
p\equiv 1 (mod 4), then y=\nu^{\ell/2} is a solution.

Case (\gamma) : Similar to the case (\beta) .

This completes the proof of Lemma 8. \square

Lemma 9 Assume that G is a non-adjoint group of type (E_{6}) . Then
Z\simeq Z/(3, q-1)Z and \tau(M)=\pi and f can be chosen so that M=\langle f\rangle\cross Z

and f^{p-1}=1 .
This lemma is proved in [10].

Lemma 10 Assume that G is a non-adjoint group of type (E7). Then
Z\simeq Z/2Z and we have: (i) if q is square, then \tau(M)=\pi and f^{p-1}=\epsilon ,
where \epsilon is the generator of Z ; (ii) if q is non-square and p\equiv-1 (mod 4),
then (\pi : \tau(M))=2 and f can be chosen so that M=\langle f\rangle\cross Z and f^{(p-1)/2}=

1 ; (iii) if q is non-square and p\equiv 1 (mod 4), then (\pi : \tau(M))=2 and
f^{(p-1)/2}=\epsilon .

Proof By [1, PL.6, (VIII)], we have P(R)=\langle Q(R),\overline{\omega}_{2}\rangle , where \overline{\omega}_{2}\equiv

\frac{1}{2}(\alpha_{2}+\alpha_{5}+\alpha_{7}) (mod Q(R) ), so that we have P(R)=\langle\alpha_{1} , \ldots , \alpha_{6} , \frac{1}{2}(\alpha_{2}+

\alpha_{5}+\alpha_{7})\rangle . Therefore, as a basis \{\chi_{i}\} of X , we can take: \chi_{i}=\alpha_{i}(1\leqq

i\leqq 6) , \chi_{7}=\frac{1}{2}(\alpha_{2}+\alpha_{5}+\alpha_{7}) . Hence we have \alpha_{i}=\chi_{i} for 1\leqq i\leqq 6 and
\alpha_{7}=2\chi_{7}-\chi_{2}-\chi_{5} . Therefore, by Lemma 4, we see that M consists of
those elements h(x, . . , x, y) with x\in F_{p}^{\cross} and y\in F_{q}^{\cross} such that y^{2}=x^{3} .
Hence Z=\{h(1, \ldots, 1, \pm 1)\}=Z/2Z . It is easy to see that, for x=\nu , the

ifandon1yifqisequationy^{2}=x^{3}hasnoso1utionsyinF_{p}^{\cross}andhasaso1utioninF_{q}^{\cross}square.Ifqissquare,theny=\eta^{i}withi=\frac{q-1y}{p-1}3\frac{1}{2}

is a solution and y^{p-1}=-1 . We see that, for x=\nu^{2} , that equation has
a solution y in F_{p}^{\cross} and y can be found in (F_{p}^{\cross})^{2} if and only if (p-1)/2
is odd. In fact, if p\equiv-1 (mod 4), then y=\nu^{i} with i=3+ \frac{p-1}{2} is a
solution and y^{(p-1)/2}=1 and if p\equiv 1 (mod 4), then y=\nu^{3} is a solution
and y^{(p-1)/2}=-1 .

This proves Lemma 10. \square

3. The Hasse invariants of the algebras A_{i}

Let \lambda\in\Lambda , \lambda\neq 1 . Let the \mu_{i} , k, the k_{i} and the A_{i} be as in \S 1.
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First we assume that \tau(M)=\pi and f can be chosen so that M=\langle f\rangle\cross Z

and f^{p-1}=1 (this occurs when G is adjoint or G is non-adjoint of any
one of the following types: (A_{\ell})2|\ell(\ell+1)/d or ord_{2}d>ord_{2}(p-1) ;
(B_{\ell})4|\ell(\ell+1) , (D_{\ell})(Spin_{2\ell}) either (a) 4 |\ell(\ell-1) or (b) ord_{2}(\ell-1)=1

and p\equiv-1 (mod 4); (D_{\ell})(SO_{2\ell});(D_{\ell})(HSpin_{2\ell})4|\ell;(E_{6})) . Put \sigma=\tau(f) .
Then, as \tau(\langle f\rangle)=\pi=Ga1(Q(\zeta_{p})/Q) , \sigma is a generator of Ga1(Q(\zeta_{p})/Q) ,
so we see easily that k=Q and, for 1\leqq i\leqq c , k_{i}=Q(\eta_{i})(=the field
generator over Q by the values of \eta_{i} ). Let us fix i(1\leqq i\leqq c) . Then, as
f^{p-1}=1 , we have \theta_{i}=\eta_{i}(1)=1 . So A_{i} is isomorphic over k_{i} to the cyclic
algebra (1, k_{i}(\zeta_{p}) , \sigma_{i})\sim k_{i} (similar). Thus we have m_{Q}(\mu_{i})=m_{k_{i}}(\mu_{i})=1 .
Here, if \xi is an irreducible character of a finite group and E is a field of
characteristic 0, then m_{E}(\xi) denotes the Schur index of \xi with respect to
E .

Let \overline{Q} denote an algebraic closure of Q . Then Ga1(\overline{Q}/Q) acts on the
set C=\{\mu_{1}, \ldots, \mu_{c}\} . Let X be the set of orbits of Ga1(\overline{Q}/Q) on C . For
x\in X , put \mu_{x}=\sum_{\mu\in x}\mu . Then, as m_{Q}(\mu)=1 for all \mu\in C , by a theorem
of Schur (see, e.g., Feit [3, (11.4)]), each \mu_{x} is a Q irreducible character of
L . Therefore \lambda^{L}=\sum_{x\in X}\mu_{x} is realizable in Q . Therefore \lambda^{G}=(\lambda^{L})^{G} is
realizable in Q .

Thus we get

Proposition 1 Recall that p\neq 2 . Assume that G is adjoint or a non-
adjoint group of any one of the following types: (A_{\ell})2|\ell(\ell+1)/d or
ord_{2}d>ord_{2}(p-1);(B_{\ell})4|\ell(\ell+1);(D_{\ell})(Spin_{2\ell}) either (a) 4 |\ell(\ell-1) or
(b) ord_{2}(\ell-1)=1 and p\equiv-1 (mod 4); (D_{\ell})(SO_{2\ell});(D_{\ell})(HSpin_{2\ell})4|\ell ;
(E_{6}) . Then, for any \lambda\in\Lambda , \lambda^{G} is realizable in Q .

Next, we assume that G is a non-adjoint group of any one of the fol-
lowing types: (A_{\ell})2 { \ell(\ell+1)/d , ord_{2}d\leqq ord_{2}(p-1) and q square;
(B_{\ell})4 ( \ell(\ell+1) and q square; (C_{\ell})q square; (D_{\ell})(Spin_{2\ell})q square and
(a) ord_{2}\ell=1 or (b) ord_{2}(\ell-1)=1 and p\equiv 1 (mod 4); (D_{\ell})(HSpin_{2\ell})q

square and ord_{2}\ell=1 ; (E7) q square. Then, by Lemmas 5-10, we see that
\tau(M)=\pi but there is no f such that M=\langle f\rangle\cross Z and f^{p-1}=1 .

In the following, if E is a finite extension of Q (that is E is an algebraic
number field of finite degree) and B is a finite dimensional central simple
algebra over E , then, for any place v of E, h_{v}(B) denotes the Hasse invariant
of E at E_{v} .

We arrange the characters \eta_{1} , \ldots , \eta_{c} of Z(c=|Z|) as follows: If Z is
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cyclic, then we fix a generator z of Z and a primitive c-th root \zeta_{c} of unity
and we assume that \eta_{i}(z)=\zeta_{c}^{i} for 1\leqq i\leqq c . If Z\simeq Z/2Z\cross Z/2Z (this
case occurs when G=Spin_{2\ell} with ord_{2}\ell=1 , and in this case we have Z=
\{h(1, . . ’ ^{1}, \pm 1, \pm 1)\}) , then we assume that \eta_{i}(h(1, , 1, -1, -1))=(-1)^{i} ,
1\leqq i\leqq 4 (we note that f can be chosen so that f^{p-1}=h (1, \ldots , 1, -1, -1)).
Then we have k=Q, k_{i}=Q(\eta_{i})(1\leqq i\leqq c) and A_{i}\sim k_{i}\otimes_{Q}((-1)^{i}, Q((_{p}), \sigma)

(1\leqq i\leqq c) .
If i is even, then A_{i} splits in k_{i} . Suppose that i is odd. Put A=

(-1, Q(\zeta_{p}), \sigma) . Then we have h_{\infty}(A) \equiv h_{p}(A)\equiv\frac{1}{2} (mod 1) and h_{r}(A)\equiv 0

(mod 1) for any finite place r of Q different from p. If Z\simeq Z/2Z or
Z/2Z\cross Z/2Z , then k_{i}=Q and A_{i}=A . Suppose that Z is cyclic and
that Z\not\simeq Z/2Z . Let v be any place of k_{i} . Then if v is infinite, we have
h_{v}(A_{i}) \equiv\frac{1}{2} (mod 1) or \equiv 0 (mod 1) according as v is real or imaginary. If
v is a finite place of k_{i} such that v ( p , then h_{v}(A_{i})\equiv 0 (mod 1). Suppose
that v|p and put f_{i}=[(k_{i})_{v} : Q_{p}] . Then h_{v}(A_{i}) \equiv\frac{1}{2}f_{i} (mod 1).

Lemma 11 Assume that G is of type (A_{\ell}) where 2 ( \ell(\ell+1)/d , 1\leqq

ord_{2}(\ell+1)\leqq ord_{2}(p-1) and q is square or G=Spin_{2\ell} where ord_{2}(\ell-1)=1 ,
p\equiv 1 (mod 4) and q is square. Let q=p^{2^{t}s} with (2, s)=1 . Recall that i
is odd. Then 2 { f_{i} if and only if any odd prime divisor of c/(c, i) divides
p^{s}-1 . In particular, if G=Spin_{2\ell} , then f_{i} is odd.

Proof. Put c_{i}=c/(c, i) . c_{i} is equal to the order of (_{c^{i}} . Then f_{i} is
equal to the smallest positive integer h such that p^{h}\equiv 1 (mod c_{i} ). The
integers h\geqq 1 such that p^{h}\equiv 1 (mod c_{i} ) form the semigroup generated
by f_{i} . So f_{i} divides 2^{t}s since q\equiv 1 (mod c_{i} ). Hence f_{i} is odd if and only
if f_{i} divides s . But, if f_{i}|s , then p^{f_{i}} –1 |p^{s} –1, so p^{s}\equiv 1 (mod c_{i} ),
Hence f_{i}|s again. Therefore it suffices to show that the condition that
c_{i}|p^{s}-1 is equivalent to the condition which is stated in the lemma. For
an integer m, let V(m) be the set of odd prime divisors of m . Then we
have V(p^{s}-1)\cap V((q-1)/(p^{s}-1))=\emptyset since (p^{s}-1, (q-1)/(p^{s}-1))=

(p^{s}-1,2^{t})=a power of 2. Suppose that V(c_{i})\subset V(p^{s}-1) . Then, for
any r\in V(c_{i}) , r divides p^{s}-1 , so that the r-part r^{e} of c_{i} divides p^{s}-1

since r is an odd divisor of q-1=(p^{s}-1)((q-1)/(p^{s}-1)) . And we have
ord_{2}c_{i}(\leqq ord_{2}(\ell+1))\leqq ord_{2}(p-1)=ord_{2}(p^{s}-1) . Thus we have seen that
ord_{r}c_{i}\leqq ord_{r}(p^{s}-1) for any prime divisor r of c_{i} . Hence c_{i} divides p^{s}-1 .
Conversely, if c_{i} divides p^{s}-1 , then clearly V(c_{i})\subset V(p^{s}-1) . This proves
the lemma. \square
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Suppose that G is of type (A_{\ell}) where q is square, 2 { \ell(\ell+1)/d and
ord_{2}d\leqq ord_{2}(p-1) . Let i be the odd part of c . Then c_{i} is equal to the
2-part of c , so V(c_{i})=\emptyset . Hence f_{i} is odd and h_{v}(A_{i}) \equiv\frac{1}{2} (mod 1) if v is
any place of k_{i} lying above p . Hence we have m_{Q_{p}}(\mu_{i})=2 . Here, if \chi is an
irreducible character of a finite group and if E is a field of characteristic 0,
then m_{E}(\chi) denotes the Schur index of \chi with respect to E .

Suppose that G=Spin_{2\ell} where ord_{2}(\ell-1)=1 and q is an even power
of p\equiv 1 (mod 4) (cf. Lemma 8). Then Z\simeq Z/4Z . Suppose that i is odd.
Then c_{i}=4 , so V(c_{i})=\emptyset . Hence f_{i} is odd and we have m_{Q_{p}}(\mu_{i})=2 .

Thirdly, we assume that G is a non-adjoint group of any one of the
following types: (A_{\ell})2 { \ell(\ell+1)/d , ord_{2}d=ord_{2}(p-1) and q non-square;
(B_{\ell})4 { \ell(\ell+1) , q non-square and p\equiv-1 (mod 4); (C_{\ell})q non-square
and p\equiv-1 (mod 4); (D_{\ell})(Spin_{2\ell})q non-square, ord_{2}(\ell-1) =1 and
ord_{2}(p-1)=2;(Spin_{2\ell})q non-square, ord_{2}\ell=1 and p\equiv-1 (mod 4);
(HSpin_{2\ell})q non-square, ord_{2}\ell=1 and p\equiv-1 (mod 4); (E7) q non-square
and p\equiv-1 (mod 4). Then we have (\pi : \tau(M))=2 and f can be chosen
so that M=\langle f\rangle\cross Z and f^{(p-1)/2}=1 (cf. Lemmas 5-10). In this case k is

the quadratic subfield of Q((_{p}) , i.e., k=Q(\sqrt{(-1)^{(p-1)/2}p}) . For 1\leqq i\leqq c ,

we have \theta_{i}=1 , so A_{i} splits in k_{i} . Hence any \lambda^{G} is realizable in k .
Finally, we assume that G is a non-adjoint group of any one of the

following types: (A_{\ell})e ( \ell(\ell+1)/d, ord_{2}d<ord_{2}(p-1) and q non-square;
(B_{\ell})4 { \ell(\ell+1)q non-square and p\equiv 1 (mod 4); (C_{\ell})q non-square and p\equiv 1

(mod 4); (D_{\ell})(Spin_{2\ell})q non-square, ord_{2}(\ell-1)=1 and ord_{2}(p-1)\geqq 3 ;
(Spin_{2\ell})q non-square, ord_{2}\ell=1 and p\equiv(mod 4);(HSpin_{2\ell})q non-square,
ord_{2}\ell=1 and p\equiv 1 (mod 4); (E7) q non-square and p\equiv 1 (mod 4). Then
we have (\pi : \tau(M))=2 and f can be chosen so that |\langle f^{(p-1)/2}\rangle|=2 . We
arrange the characters \eta_{1} , . , n_{c} of Z as before. Then k is the quadratic
sub-field of Q((_{p}) and if i is even A_{i} splits in k_{i} . Assume that i is odd. Then
we have A_{i}\sim k_{i}\otimes_{k}B , where B is the cyclic algebra (-1, k(\zeta_{p}), \sigma) over k .
By [8, Proposition 1], we see that B has non-zero Hasse invariants only at
two real places of k and no others. Thus we have m_{R}(\mu_{i})=2 or 1 according
as \mu_{i} is real or not.

Assume that G is of type (A_{\ell}) and ord_{2}d=1 . Let i be the odd part of
c . Then c_{i}=2 and A_{i}=B . Hence we have m_{R}(\mu_{i})=2 . Assume that G is
of type (B_{\ell}) . Then i=1 and A_{1}=B . So we have m_{R}(\mu_{1})=2 . Similarly,
if G is of type (C_{\ell}) , then we have m_{R}(\mu_{1})=2 . Assume that G is of type
(D_{\ell}) . If Z\not\simeq Z/4Z , then k_{i} is real, so we have m_{R}(\mu_{i})=2 . If Z\not\simeq Z/4Z ,
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then k_{i} is not real, so we have m_{R}(\mu_{i})=1 . Assume that G is of type (E7).
Then k_{i}=k , so we have m_{R}(\mu_{1})=2 .

4. The Schur index

Let G be a simple algebraic group, defined and split over a finite field
F_{q} , and let G be the group of its F_{q} irrational points. Let \chi be any irreducible
character of G . We assume that there is a linear character \lambda in \Lambda such that
(\lambda^{G}, \chi)_{G}=1 or that when p is a good prime for Gp ( \chi(1) . We assume
that p\neq 2 .

Theorem 1 ([10]) We have the following.
(i) We have m_{Q}(\chi)\leqq 2 .
(ii) If p\equiv-1 (mod 4), then we have m_{Q(\sqrt{-p})}(\chi)=1 .
(iii) If p\equiv 1 (mod 4), then, for any finite place v of Q(\sqrt{p}) , we have

m_{Q(\sqrt{p})_{v}}(\chi)=1 .
(iv) If q is square, then, for any prime number r\neq p , we have

m_{Q_{r}}(\chi)=1 .

By proposition 1 and the argument in the proof of Corollary 4 in [10],
we get:

Theorem 2 In the following cases, we have m_{Q}(\chi)=1 : (i) G adjoint;
(ii) (A_{\ell})2|\ell(\ell+1)/d or ord_{2}d>ord_{2}(p-1);(B_{\ell})4|\ell(\ell+1);(D_{\ell})(Spin_{2\ell})

either 4 |\ell(\ell-1) , or, ord_{2}(\ell-1) =1 and p\equiv-1 (mod 4); (SO_{2\ell}) ;
(HSpin_{2\ell})4|\ell;(E_{6}) .

Similarly, by the arguments in \S 3, we get:

Theorem 3 Let k be the quadratic subfield of Q(\zeta_{p}) . Then in the follow-
ing cases we have m_{k}(\chi)=1 : (A_{\ell})2\{\ell(\ell+1)/d , ord_{2}d=ord_{2}(p-1) and
q non-square; (Spin_{2\ell})q non-square, ord_{2}(\ell-1)=1 and ord_{2}(p-1)=2 .

Theorem 4 Assume that G is non-adjoint. Let \lambda\in\Lambda_{0} . Then in any
one of the following cases \lambda^{G} contains an irreducible character of the Schur
index 2 over Q : (A_{\ell}) either (a) q square, 2 \{ \ell(\ell+1)/d , ord_{2}d\leqq ord_{2}(p-1) ,
or (b) q non-square, 2 { \ell(\ell+1)/d , ord_{2}d=1<ord_{2}(p-1);(B_{\ell}) either
(a) 4 { \ell(\ell+1) , q square, or (b) 4 { \ell(\ell+1) , q non-square, p\equiv 1 (mod 4);
(C_{\ell}) either (a) q square, or (b) q non-square, p\equiv 1 (mod 4); (Spin_{2\ell}) either
(a) ord_{2}\ell=1 , q square, or (b) ord_{2}\ell=1 , q non-square, p\equiv 1 (mod 8), or
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(c) ord_{2}(\ell-1)=1 , q square, p\equiv 1 (mod 4); (HSpin_{2\ell}) either (a) ord_{2}\ell=1 ,
q square, or (b) ord_{2}\ell=1 , q non-square, p\equiv 1 (mod 4); (E7) either (a) q

square, or (b) q non-square, p\equiv 1 (mod 4).

Proof. We repeat the argument in the proof of Theorem 4 of [12]. Assume
that G is a non-adjoint simple group of type (A_{\ell}) where q is square, 2 (

\ell(\ell+1)/d and ord_{2}d\leqq ord_{2}(p-1) . Then we see from the argument in \S 3 that
k=Q and there is an irreducible character \mu_{i} of L such that m_{k_{i}}(\mu_{i})=2

(\lambda\in\Lambda_{0}) . By the arguments in \S 1, we see that \Gamma_{\lambda,i} is multiplicity-free and
(\Gamma_{\lambda,i}, \Gamma_{\lambda,i})_{G} is odd. Let X be the set of all the irreducible components of
\Gamma_{\lambda,i} . Then, by Schur’s lemma, we see that, for any \chi\in X , we must have
\chi|Z=\chi(1)\eta_{i} . Therefore we find that Q(\Gamma_{\lambda,i})\subset k_{i} . We show that there
is a character \chi in X such that m_{k_{i}}(\chi)=2 . Suppose, on the contrary, that
we have m_{k_{i}}(\chi)=1 for all \chi\in X (cf. Theorem 1 (i)). Then we see from the
theorem of Schur that \Gamma_{\lambda,i} is realizable in k_{i} . But, then, as (\Gamma_{\lambda,i}|L, \mu_{i})_{L}=

(\Gamma_{\lambda,i}, \Gamma_{\lambda,i})_{G} is odd, we must have m_{k_{i}}(\mu_{i})=1 , a contradiction. Therefore
X must contains a character \chi such that m_{k_{i}}(\chi)=2 . The remaining cases
can be treated similarly. \square
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