On the Schur indices of certain irreducible characters of finite Chevalley groups

Zyozyu Ohmori
(Received September 27, 1996; Revised March 23, 1998)

Abstract

Let G be a finite Chevalley group of split type. We shall give some sufficient conditions subject for that G has irreducible characters of the Schur index equal to 2 .

Key words: Chevalley groups, irreducible characters, Schur index.

Introduction

Let F_{q} be a finite field with q elements of characteristic p. Let \boldsymbol{G} be a connectecd, reductive algebraic group defined over F_{q}, and let $F: \boldsymbol{G} \rightarrow \boldsymbol{G}$ be the corresponding Frobenius endomorphism of \boldsymbol{G}. In the following, if H denotes an F-stable subgroup of \boldsymbol{G}, then the group of F-fixed points of \boldsymbol{H} will be denoted by H. Let \boldsymbol{B} be an F-stable Borel subgroup of \boldsymbol{G}, and let \boldsymbol{U} be the unipotent radical of \boldsymbol{B}. Then \boldsymbol{U} is F-stable and U is a Sylow p-subgroups of \boldsymbol{G}. According to a theorem of Gel'fand-Graev-Yokonuma-Steinberg, if λ is a linear character of U in "general position", then the character λ^{G} of G induced by λ is multiplicity-free (see Steinberg [13, Theorem 49, p. 258] and Carter [2, Theorem 8.1.3]). In [5], R. Gow has initiated to study the rationality-properties of the characters λ^{G} where λ runs over certain linear characters of U and, using the results obtained there, he obtained some informations about the Schur indices of some irreducible characters of G (also cf. A. Helversen-Pasoto [7]). He has treated the case that $\boldsymbol{G}=G L_{n}, S L_{n}$ and $S p_{2 n}$. In [10], we have obtained some results about the rationality of the λ^{G} when \boldsymbol{G} is a general reductive group. Our intension here is to get more precise results when \boldsymbol{G} is a simple algebraic group. The twisted cases are treated in [12]. So, in this paper, we shall treat the untwisted cases. We shall obtain some sufficient conditions subject for that the Schur index of any irreducible character of G is equal to one and some sufficient conditions subject for that G has irreducible characters of the Schur index equal to 2 .

[^0]We note that the results of this paper have been announced in [11].

1. Linear characters of \boldsymbol{U}

Let K be an algebraic closure of F_{q}. Let \boldsymbol{G} be an simple algebraic group over K. We assume that G is defined and split over F_{q}. Let $F: \boldsymbol{G} \rightarrow \boldsymbol{G}$ be the corresponding Frobenius endomorphism of \boldsymbol{G}. We shall fix an F-stable Borel subgroup \boldsymbol{B} of G and an F-stable maximal torus \boldsymbol{T} of \boldsymbol{G} contained in \boldsymbol{B}. Let \boldsymbol{U} be the unipotent radical of \boldsymbol{B}. Let R, R^{+}and Δ be respectively the set of roots of \boldsymbol{G} with respect to \boldsymbol{T}, the set of positive roots determined by \boldsymbol{B} and the set of corresponding simple roots. For a root α, let \boldsymbol{U}_{α} be the root subgroup of \boldsymbol{G} associated with α. Let $X=\operatorname{Hom}\left(\boldsymbol{T}, K^{\times}\right)$be the character module of \boldsymbol{T}. Then F acts on X by $(F \chi)(t)=\chi(F(t))$ for $\chi \in X$, $t \in \boldsymbol{T}$. As \boldsymbol{T} splits over F_{q}, we have $F(t)=t^{q}, t \in \boldsymbol{T}$, so we have $F \chi=q \chi$, $\chi \in X$.

Let $\boldsymbol{U} .=\left\langle\boldsymbol{U}_{\alpha} \mid \alpha \in R^{+}-\Delta\right\rangle$. Then \boldsymbol{U}. is an F-stable normal subgroup of \boldsymbol{U} and contains the derived group of \boldsymbol{U}. It is known that if p is not a bad prime for \boldsymbol{G}, then \boldsymbol{U}. coincides with the commutator subgroup of \boldsymbol{U}. We have $\boldsymbol{U} / \boldsymbol{U} .=\prod_{\alpha \in \Delta} \boldsymbol{U}_{\alpha}=\prod_{\alpha \in \Delta} F_{q}$ (we note that each \boldsymbol{U}_{α} is F-stable since \boldsymbol{G} splits over F_{q}).

Let Λ be the set of all linear characters λ of U such that $\lambda \mid U .=1$, and let Λ_{0} be the set of all λ in Λ such that $\lambda \mid U_{\alpha} \neq 1$ for all $\alpha \in \Delta$.

Lemma 1 (Gel'fand-Graev [4], Yokonuma [15], Steinberg [13]) If $\lambda \in$ Λ_{0}, then λ^{G} is multiplicity-free.

For a subset J of Δ, put $\boldsymbol{T}_{J}=\bigcap_{\alpha \in J} \operatorname{Ker} \alpha$ (we put $\boldsymbol{T}_{\phi}=\boldsymbol{T}$). Then, for any such J, \boldsymbol{T}_{J} is an F-stable subgroup of \boldsymbol{T}.

Lemma 2 (cf. Yokonuma [15], Steinberg [13, Exercise on p. 263]) If $\lambda \in$ Λ_{0}, then there is a set S of subsets J of Δ such that S contains Δ and ϕ and that $\left(\lambda^{G}, \lambda^{G}\right)_{G}=\sum_{J \in S}\left|T_{J}\right|$.

This is proved in [12]. The next lemma is also proved in [12].
Lemma 3 ([12, Proposition 1]) Let c be the order of the centre Z of G. Then if $\lambda \in \Lambda_{0}$, there is a positive integer r such that $\left(\lambda^{G}, \lambda^{G}\right)_{G}=$ $r(q-1)+c$.

Let $\lambda \in \Lambda_{0}$. Let $\eta_{1}, \ldots, \eta_{c}$ be all the irreducible characters of the centre
Z. For $1 \leqq i \leqq c$, put $\Gamma_{\lambda, i}=\operatorname{Ind}_{U Z}^{G}\left(\lambda \eta_{i}\right)$. Then it is easy to see that $\lambda^{G}=\Gamma_{\lambda, 1}+\cdots+\Gamma_{\lambda, c}$ and that (by using Lemma 3)

$$
\left(\Gamma_{\lambda, i}, \Gamma_{\lambda, j}\right)_{G}=\delta_{i j} \cdot \frac{1}{c} \cdot\left(\lambda^{G}, \lambda^{G}\right)_{G}=\delta_{i j}\left\{\frac{r(q-1)}{c}+1\right\}
$$

$$
(1 \leqq i, j \leqq c)
$$

($\delta_{i j}$ denotes Kronecker's delta.)
Our purpose is to study the rationality properties of the $\lambda^{G}, \lambda \in \Lambda$. For that purpose we study the rationality of the λ^{B}. If $p=2$, then U / U. is an elementary abelian 2-group, so that all the λ^{B} are realizable in Q. Therefore in the rest of this paper, we shall assume that $p \neq 2$.

Let ζ_{p} be a fixed primitive p-th root of unity, and let π be the Galois group of $Q\left(\zeta_{p}\right)$ over Q. Then π acts on $\widehat{F}_{q}=\operatorname{Hom}\left(F_{q}, C^{\times}\right)$naturally. Let $\chi \in \widehat{F}_{q}, \chi \neq 1$. For $a \in F_{q}$, we define $\chi_{a} \in \widehat{F}_{q}$ by $\chi_{a}(x)=\chi(a x), x \in F_{q}$. Then we have $\widehat{F}_{q}=\left\{\chi_{a} \mid a \in F_{q}\right\}$ and $\left\{\chi^{\sigma} \mid \sigma \in \pi\right\}=\left\{\chi_{a} \mid a \in F_{p} \times\right\}$.
B acts on Λ by $\lambda^{b}(u)=\lambda\left(b u b^{-1}\right), b \in B, \lambda \in \Lambda ; B$ fixes Λ_{0}. Fix a character λ in Λ_{0}, and set $L=\left\{b \in B \mid \lambda^{b}=\lambda^{\tau(b)}\right.$ for some $\left.\tau(b) \in \pi\right\}$. Put $M=L \cap T$. Then we have $L=M U$ (semidirect product) and we see easily that

$$
M=\left\{t \in T \mid \text { for some } x \in F_{p}{ }^{\times}: \alpha(t)=x \text { for all } \alpha \in \Delta\right\}
$$

This shows that L is independent of the choice of λ in Λ_{0} and the mapping $b \rightarrow \tau(b)$ is a homomorphism of L into π with kernel $Z U$ (Z is the centre of $G)$. Let f be an element of T such that $\langle\tau(f)\rangle=\tau(L)$ and put $\sigma=\tau(f)$.

Let λ be any character in Λ such that $\lambda \neq 1$. Let $\eta_{1}, \ldots, \eta_{c}$ be as before all the irreducible characters of $Z(c=|Z|)$. For $1 \leqq i \leqq c$, put $\mu_{i}=\operatorname{Ind}_{Z U}^{L}\left(\eta_{i} \lambda\right)$. Then we see easily that μ_{1}, \ldots, μ_{c} are mutually different irreducible characters of L and we have $\lambda^{L}=\mu_{1}+\cdots+\mu_{c}$.

Now, if χ is an ordinary character of a finite group and k is a field of characteristic 0 , tnen $k(\chi)$ denotes the field generated over k by the values of χ. Then we see easily that $Q\left(\lambda^{L}\right)=Q\left(\zeta_{p}\right)^{\langle\sigma\rangle}$ and, for $1 \leqq i \leqq c$, $Q\left(\mu_{i}\right)=Q\left(\lambda^{L}\right)\left(\eta_{i}\right)$. Put $k=Q\left(\lambda^{L}\right)$ and $k_{i}=Q\left(\mu_{i}\right)(1 \leqq i \leqq c)$. For $1 \leqq i \leqq c$, let A_{i} be the simple direct summand of the group algebra $k_{i}[L]$ of L over k_{i} associated with μ_{i}. Let $h=(M: Z)$. Then f^{h} is an element of Z. For $1 \leqq i \leqq c$, put $\theta_{i}=\eta_{i}\left(f^{h}\right)$. Then we see that, for $1 \leqq i \leqq c$, A_{i} is isomorphic over k_{i} to the cyclic algebra $\left(\theta_{i}, k_{i}\left(\zeta_{p}\right), \sigma_{i}\right)$ over k_{i}, where σ_{i} is a certain extension of σ to $k_{i}\left(\zeta_{p}\right)$ over k_{i} (see Yamada [14, Proposition 3.5]).

2. Calculation of the group M

Let X denote as before the character module $\operatorname{Hom}\left(\boldsymbol{T}, K^{\times}\right)$of \boldsymbol{T}. Let $P(R)$ and $Q(R)$ denote respectively the weight-lattice of R and the rootlattice of R. Then $P(R) \supset X \supset Q(R)$. We say that \boldsymbol{G} is adjoint if $X=$ $Q(R)$. By [9], we see that if \boldsymbol{G} is adjoint, then τ induces an isomorphism of M with π and f can be chosen so that $\langle f\rangle=M$.

Let $Y=\operatorname{Hom}\left(K^{\times}, T\right)$ be the cocharacter module of \boldsymbol{T} written additively. Then the pairing $\langle\chi, \lambda\rangle=\operatorname{deg}(\chi \circ \lambda)$ defines a perfect pairing $\langle\rangle:, X \times Y \rightarrow Z$. Suppose that $\operatorname{dim} \boldsymbol{T}=\ell$. Let $\left\{\chi_{1}, \ldots, \chi_{\ell}\right\}$ be a basis of X over Z and let $\left\{\lambda_{1}, \ldots, \lambda_{\ell}\right\}$ be the basis of Y dual to it, i.e., $\left\langle\chi_{i}, \lambda_{j}\right\rangle=\delta_{i j}$. Then each element t of \boldsymbol{T} can be written uniquely as

$$
t=h\left(x_{1}, \ldots, x_{\ell}\right)=\lambda_{1}\left(x_{1}\right) \cdots \lambda_{\ell}\left(x_{\ell}\right) \quad\left(x_{1}, \ldots, x_{\ell} \in K^{\times}\right) .
$$

Recall that we have $F \chi_{i}=q \chi_{i}, 1 \leqq i \leqq \ell$.
Lemma 4 Assume that $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}$ and, for $1 \leqq i \leqq \ell$, let $\alpha_{i}=$ $\sum_{j=1}^{\ell} s_{i j} \chi_{j}\left(s_{i j} \in Z\right)$. Then, for $t \in \boldsymbol{T}, t=h\left(x_{1}, \ldots, x_{\ell}\right), t$ lies in M if and only if $x_{j}^{q}=x_{j}$ for $1 \leqq j \leqq \ell$ and $\prod_{j=1}^{\ell} x_{j}{ }^{s_{1 j}}=\cdots=\prod_{j=1}^{\ell} x_{j}^{s_{\ell j}}=x$ for some $x \in F_{p}{ }^{\times}$.

Proof. Let $t=h\left(x_{1}, \ldots, x_{\ell}\right)$ be an element of \boldsymbol{T}. Then, as $F(t)=t^{q}$, it is easy to see that $F\left(h\left(x_{1}, \ldots, x_{\ell}\right)\right)=h\left(x_{1}{ }^{q}, \ldots, x_{\ell}{ }^{q}\right)$. Therefore $F(t)=t$ if and only if $x_{i}{ }^{q}=x_{i}$ for $1 \leqq i \leqq \ell$. Next, we have

$$
\begin{aligned}
\alpha_{i}(t) & =\alpha_{i}\left(\prod_{j=1}^{\ell} \lambda_{j}\left(x_{j}\right)\right) \\
& =\prod_{j=1}^{\ell} x_{j}{ }^{\left\langle\alpha_{i}, \lambda_{j}\right\rangle} \\
& =\prod_{j=1}^{\ell} x_{j}^{s_{i j}}
\end{aligned}
$$

Therefore the assertion in the lemma follows.
In the following, η is a fixed primitive element of F_{q} and $\nu=\eta^{(q-1) /(p-1)}$, a primitive element of F_{p}. If m is an integer, then we denote by $\operatorname{ord}_{2} m$ the exponent of the 2-part of m. Put $d=(X: Q(R))$.

Lemma 5 (cf. Gow [5, 6]) Assume that \boldsymbol{G} is of type $\left(A_{\ell}\right), \ell \geqq 1$. Then
$Z \simeq \boldsymbol{Z} /(d, q-1) \boldsymbol{Z}$ and we have: (i) if $2 \mid \ell(\ell+1) / d$ or $\operatorname{ord}_{2} d>\operatorname{ord}_{2}(p-1)$, then $\tau(M)=\pi$ and f can be chosen so that $M=\langle f\rangle \times Z$ and $f^{p-1}=1$. Assume that $2 \nmid \ell(\ell+1) / d$ and $\operatorname{ord}_{2} d \leqq \operatorname{ord}_{2}(p-1)$. Then: (ii) if q is square, then $\tau(M)=\pi$ and f can be chosen so that $f^{p-1}=\varepsilon$, where ε is the unique element of Z of order 2 ; (iii) if q is non-square and $\operatorname{ord}_{2} d=$ $\operatorname{ord}_{2}(p-1)$, then $(\pi: \tau(M))=2$ and f can be chosen so that $M=\langle f\rangle \times Z$ and $f^{(p-1) / 2}=1$; (iv) if q is non-square and $\operatorname{ord}_{2} d<\operatorname{ord}_{2}(p-1)$, then $(\pi: \tau(M))=2$ and f can be chosen so that $f^{(p-1) / 2}=\varepsilon$.

Proof. We use the notation of Bourbaki [1]. By [1, P1.I, (VIII)], we have $P(R)=\left\langle\alpha_{1}, \ldots, \alpha_{\ell-1}, \bar{\omega}\right\rangle_{Z}$, where

$$
\bar{\omega}=\varepsilon_{1}-\frac{1}{\ell+1}\left(\varepsilon_{1}+\cdots+\varepsilon_{\ell+1}\right)=\frac{1}{\ell+1} \sum_{i=1}^{\ell}(\ell-i+1) \alpha_{i},
$$

so that $P(R) / Q(R)=\langle\bar{\omega}+Q(R)\rangle=\boldsymbol{Z} /(\ell+1) \boldsymbol{Z}$. Therefore, as a basis $\left\{\chi_{i}\right\}$ of X, we can take: $\chi_{i}=\alpha_{i}$ for $1 \leqq i \leqq \ell-1$ and $\chi_{\ell}=\frac{1}{\ell} \sum_{i=1}^{\ell}(\ell-i+1) \alpha_{i}$. Thus $\alpha_{i}=\chi_{i}$ for $1 \leqq i \leqq \ell-1$ and $\alpha_{\ell}=d \chi_{\ell}-\sum_{i=1}^{\ell-1}(\ell-i+1) \chi_{i}$. It follows from Lemma 4 that, for $t=h\left(x_{1}, \ldots, x_{\ell}\right) \in T$, we have $t \in M$ if and only if $x_{1}, \ldots, x_{\ell} \in F_{q}{ }^{\times}$and, for some $x \in F_{p}{ }^{\times}, x_{1}=\cdots=x_{\ell-1}=x$ and $x^{-\ell} x^{-(\ell-1)} \cdots x^{-2} x_{\ell}{ }^{d}=x$, i.e.,

$$
\begin{equation*}
x_{\ell}{ }^{d}=x^{\ell(\ell+1) / 2} . \tag{1}
\end{equation*}
$$

First, as $\boldsymbol{Z}=\bigcap_{\alpha \in \Delta} \operatorname{Ker} \alpha(\boldsymbol{Z}$ is the centre of \boldsymbol{G}; we see easily that Z is equal to the group of F_{q}-rational points of $\left.\boldsymbol{Z}\right)$, we have $Z=\{h(1, \ldots, 1, y) \mid$ $\left.y \in F_{q}{ }^{\times}, y^{d}=1\right\}=\boldsymbol{Z} /(d, q-1) \boldsymbol{Z}$.

Next, we note that we have $\tau(M)=\pi$ if and only if the equation (1) has a solution in $F_{q}{ }^{\times}$for $x=\nu$, and when $\tau(M)=\pi f$ can be chosen so that $M=\langle f\rangle \times Z$ and $f^{p-1}=1$ if and only if that solution can be found in $F_{p}{ }^{\times}$. We also note that when $\tau(M) \neq \pi$ we have $(\pi: \tau(M))=2$ if and only if the equation (1) has a solution in $F_{q} \times$ for $x=\nu^{2}$, and if this is the case, then f can be chosen so that $M=\langle f\rangle \times Z$ and $f^{(p-1) / 2}=1$ if and only if that solution can be found in $\left(F_{p} \times\right)^{2}$.

Now the group $\left(F_{p}{ }^{\times}\right)^{d}=\left\{y^{d} \mid y \in F_{p}{ }^{\times}\right\}$is the cyclic subgroup of $F_{p}{ }^{\times}$ of order $a=(p-1) /(d, p-1)$ and the element $\nu^{\ell(\ell+1) / 2}$ of $F_{p} \times$ has the order $b=(p-1) /(\ell(\ell+1) / 2, p-1)$. Therefore, for $x=\nu$, the equation (1) has a solution in $F_{p}{ }^{\times}$if and only if $b \mid a$, i.e., $(d, p-1) \mid(\ell(\ell+1) / 2, p-1)$. But, as $d \mid \ell(\ell+1)$, the latter condition is satisfied if and only if $d \mid \ell(\ell+1) / 2$
(i.e. $2 \mid \ell(\ell+1) / d)$ or $\operatorname{ord}_{2} d>\operatorname{ord}_{2}(p-1)($ Case (i)).

Suppose therefore that $2 \nmid \ell(\ell+1) / d$ and $\operatorname{ord}_{2} d \leqq \operatorname{ord}_{2}(p-1)$. If q is square, then $y=\eta^{((q-1) / 2(p-1)) \ell(\ell+1) / d}$ is a solution of the equation (1) for $x=\nu$ in $F_{q} \times$ and $y^{p-1}=-1$ (Case (ii)). Assume that q is non-square. Then $(q-1) /(p-1)$ is odd and $(d, q-1) \nmid(((q-1) /(p-1)) \ell(\ell+1) / 2, q-1)$. This means that the equation (1) has no solutions in $F_{q}{ }^{\times}$for $x=\nu$. But, for $x=\nu^{2}$, the equation (1) has a solution in $F_{p}{ }^{\times}$, e.g., $y=\nu^{\ell(\ell+1) / d}$ (cf. $\left.y^{(p-1) / 2}=-1\right) . \operatorname{As}\left(F_{p} \times\right)^{2 d}$ is a cyclic group of order $((p-1) / 2) /(d,(p-1) / 2)$ and $\nu^{2 \cdot \ell(\ell+1) / 2}$ is of order $((p-1) / 2) /(\ell(\ell+1) / 2,(p-1) / 2)$, the equation (1) has a solution in $\left(F_{p}{ }^{\times}\right)^{2}$ for $x=\nu^{2}$ if and only if $(d,(p-1) / 2) \mid(\ell(\ell+$ 1) $/ 2,(p-1) / 2)$, i.e., $\operatorname{ord}_{2} d>\operatorname{ord}_{2}(p-1) / 2$, i.e., $\operatorname{ord}_{2} d=\operatorname{ord}_{2}(p-1)($ Cases (iii), (iv)).

This proves Lemma 5.
We note that the case $\boldsymbol{G}=S L_{\ell+1}$ of Lemma 5 was treated by Gow $([5,6])$.

Lemma 6 Assume that \boldsymbol{G} is non-adjoint and of type $\left(B_{\ell}\right), \ell \geqq 2$ (i.e. $\left.\boldsymbol{G}=\operatorname{Spin}_{2 \ell+1}\right)$. Then $Z \simeq \boldsymbol{Z} / 2 \boldsymbol{Z}$. And: (i) if $4 \mid \ell(\ell+1)$, then $\tau(M)=\pi$ and f can be chosen so that $M=\langle f\rangle \times Z$ and $f^{p-1}=1$. Assume that $4 \nmid \ell(\ell+1)$. Then: (ii) if q is square, we have $\tau(M)=\pi$ and $f^{p-1}=$ ε, where ε is the generator of Z; (iii) if q is non-square and $p \equiv-1$ $(\bmod 4)$, we have $(\pi: \tau(M))=2$ and f can be chosen so that $M=\langle f\rangle \times Z$ and $f^{(p-1) / 2}=1$; (iv) if q is non-square and $p \equiv 1(\bmod 4)$, we have $(\pi: \tau(M))=2$ and $f^{(p-1) / 2}=\varepsilon$.

Proof. By [1, PL.2, (VIII)], we have $P(R)=\left\langle\bar{\omega}, \alpha_{2}, \ldots, \alpha_{\ell}\right\rangle$, where $\bar{\omega}=\frac{1}{2} \sum_{i=1}^{\ell} i \alpha_{i}$. So $P(R) / Q(R)=\langle\bar{\omega}+Q(R)\rangle=\boldsymbol{Z} / 2 \boldsymbol{Z}$. As \boldsymbol{G} is nonadjoint, we have $X=P(R)$. Therefore, as a basis $\left\{\chi_{i}\right\}$ of X, we can take: $\chi_{1}=\frac{1}{2} \sum_{i=1}^{\ell} i \alpha_{i}, \chi_{i}=\alpha_{i}(2 \leqq i \leqq \ell)$. So se have $\alpha_{1}=2 \chi_{1}-\sum_{i=2}^{\ell} i \chi_{i}$, $\alpha_{i}=\chi_{i}(2 \leqq i \leqq \ell)$. Therefore, by Lemma 4, we see that M consists of those elements $h(y, x, \ldots, x)$ with $x \in F_{p}{ }^{\times}$and $y \in F_{q}{ }^{\times}$such that $y^{2}=x^{\ell(\ell+1) / 2}$. In particular, by solving the last equation for $x=1$, we get $Z=\{h(\pm 1,1, \ldots, 1)\} \simeq \boldsymbol{Z} / 2 \boldsymbol{Z}$. For $x=\nu$, a solution y of the equation $y^{2}=x^{\ell(\ell+1) / 2}$ can be found in $F_{p}{ }^{\times}$if and only if $2 \mid \ell(\ell+1) / 2$, and if this is the case, then $y=\nu^{\ell(\ell+1) / 4}$ is a solution of that equation (Case (i)). Assume that $4 \nmid \ell(\ell+1)$. Then $\ell(\ell+1) / 2$ is odd. Hence we see that, for $x=\nu$, solutions y of that equation can be found in $F_{q}{ }^{\times}$if and only if
$(q-1) /(p-1)$ is even, i.e., q is square, and if this is the case, then $y=\eta^{i}$ with $i=(\ell(\ell+1) / 2) \cdot(q-1) / 2(p-1)$ is a solution and $y^{p-1}=-1$ (Case (ii)). Assume that q is non-square. Then, for $x=\nu^{2}$, we can find a solution y of the equation $y^{2}=x^{\ell(\ell+1) / 2}$ in $F_{p}{ }^{\times}$, and we see that a solution y can be found in $\left(F_{p} \times\right)^{2}$ if and only if $(p-1) / 2$ is odd, i.e., $p \equiv-1(\bmod 4)$, and if this is the case, then $y=\nu^{(\ell(\ell+1)+p-1)}$ is a solution in $\left(F_{p}{ }^{\times}\right)^{2}$ (Cases (iii), (iv); in case (iv), $y=\nu^{\ell(\ell+1) / 2}$ is a solution in $\left.F_{p}{ }^{\times}\right)$.

This proves Lemma 6.
Lemma 7 (cf. Gow [5]) Assume that \boldsymbol{G} is non-adjoint and of type $\left(C_{\ell}\right)$, $\ell \geqq 2$ (i.e., $\boldsymbol{G}=S p_{2 \ell}$). Then $Z \simeq \boldsymbol{Z} / 2 \boldsymbol{Z}$ and: (i) if q is square, we have $\tau(M)=\pi$ and $f^{p-1}=\varepsilon$, where ε is the generator of Z; (ii) if q is nonsquare and $p \equiv-1(\bmod 4)$, we have $(\pi: \tau(M))=2$ and f can be chosen so that $M=\langle f\rangle \times Z$ and $f^{(p-1) / 2}=1$; (iii) if q is non-square and $p \equiv 1$ $(\bmod 4)$, then $(\pi: \tau(M))=2$ and $f^{(p-1) / 2}=\varepsilon$.

Proof. By [1, PL.3, (VIII)], we have $P(R)=\left\langle\alpha_{1}, \ldots, \alpha_{\ell-1}, \bar{\omega}_{1}\right\rangle$, where $\bar{\omega}_{1}=\sum_{i=1}^{\ell-1} \alpha_{i}+\frac{1}{2} \alpha_{\ell} \equiv \frac{1}{2} \alpha_{\ell}(\bmod Q(R))$, hence $P(R) / Q(R)=\left\langle\frac{1}{2} \alpha_{\ell}+\right.$ $Q(R)\rangle \simeq \boldsymbol{Z} / 2 \boldsymbol{Z}$. Since \boldsymbol{G} is non-adjoint, we have $X=P(R)$. So, as a basis $\left\{\chi_{i}\right\}$ of X, we can take: $\chi_{i}=\alpha_{i}(1 \leqq i \leqq \ell-1), \chi_{\ell}=\frac{1}{2} \alpha_{\ell}$. Therefore we have $\alpha_{i}=\chi_{i}(1 \leqq i \leqq \ell-1), \alpha_{\ell}=2 \chi_{\ell}$. Hence, by Lemma 4, we see that M consists of those elements $h(x, \ldots, x, y)$ with $x \in F_{p}{ }^{\times}$and $y \in F_{q}{ }^{\times}$with $y^{2}=x$. Clearly we have $Z=\langle h(1, \ldots, 1, \pm 1)\rangle \simeq \boldsymbol{Z} / 2 \boldsymbol{Z}$. We see easily that, for $x=\nu$, the equation $y^{2}=x$ has no solutions in $F_{p}{ }^{\times}$and has a solution in $F_{q}{ }^{\times}$if and only if q is square. Thus case (i). Assume that q is non-square. Then we see that, for $x=\nu^{2}$, the equation $y^{2}=x$ has a solution in $F_{p}{ }^{\times}$and has a solution in $\left(F_{p} \times\right)^{2}$ if and only if $(p-1) / 2$ is odd, i.e., $p \equiv-1(\bmod 4)$. Thus (ii) and (iii). (We can take: (i) $y=\eta^{(q-1) / 2(p-1)}$; (ii) $y=\nu^{(p+1) / 2}$; (iii) $y=\nu$.)

This proves Lemma 7.
Lemma 8 Assume that \boldsymbol{G} is non-adjoint and of type $\left(D_{\ell}\right), \ell \geqq 3$. Then $Z \simeq \boldsymbol{Z} /(d, q-1) \boldsymbol{Z}(d=(P(R): X))$ if $2 \nmid \ell, Z \simeq \boldsymbol{Z} / 2 \boldsymbol{Z} \times \boldsymbol{Z} / 2 \boldsymbol{Z}$ if $2 \mid \ell$ and $d=4$, and $Z \simeq \boldsymbol{Z} / 2 \boldsymbol{Z}$ if $2 \mid \ell$ and $d=2$. And the following holds:
(I) $\quad X=P(R)\left(G=\operatorname{Spin}_{2 \ell}\right)$; (i) either (a) if $4 \mid \ell(\ell-1)$ or (b) if $\operatorname{ord}_{2}(\ell-1)=1$ and $p \equiv-1(\bmod 4)$, then $\tau(M)=\pi$ and f can be chosen so that $M=\langle f\rangle \times Z$ and $f^{p-1}=1$; (ii) if q is square and either (a) if $\operatorname{ord}_{2} \ell=1$ or (b) if $\operatorname{ord}_{2}(\ell-1)=1$ and $p \equiv 1(\bmod 4)$, then $\tau(M)=\pi$ and
f can be chosen so that $\left|\left\langle f^{p-1}\right\rangle\right|=2$; (iii) if q is non-square and either (a) if $\operatorname{ord}_{2}(\ell-1)=1$ and $\operatorname{ord}_{2}(p-1)=2$ or (b) if ord $\ell=1$ and $p \equiv-1$ $(\bmod 4)$, then $(\pi: \tau(M))=2$ and f can be chosen so that $M=\langle f\rangle \times Z$ and $f^{(p-1) / 2}=1$; (iv) if q is non-square and either (a) if $\operatorname{ord}_{2}(\ell-1)=1$ and $\operatorname{ord}_{2}(p-1) \geqq 3$ or (b) if $\operatorname{ord}_{2} \ell=1$ and $p \equiv 1(\bmod 4)$, then $(\pi: \tau(M))=2$ and f can be chosen such that $\left|\left\langle f^{(p-1) / 2}\right\rangle\right|=2$.
(II) $\boldsymbol{G}=S O_{2 \ell}(d=2)$: We have $\tau(M)=\pi$ and f can be chosen so that $M=\langle f\rangle \times Z$ and $f^{p-1}=1$.
(III) $\boldsymbol{G}=\operatorname{HSpin}_{2 \ell}(2 \mid \ell, d=2)$: (i) if $4 \mid \ell$, then $\tau(M)=\pi$ and f can be chosen so that $M=\langle f\rangle \times Z$ and $f^{p-1}=1$; (ii) if $\operatorname{ord}_{2} \ell=1$ and q is square, then $\tau(M)=\pi$ and $f^{p-1}=\varepsilon$, where ε is the generator of Z; (iii) if $\operatorname{ord}_{2} \ell=1, q$ is non-square and $p \equiv-1(\bmod 4)$, then $(\pi: \tau(M))=2$ and f can be chosen so that $M=\langle f\rangle \times Z$ and $f^{(p-1) / 2}=1$; (iv) if $\operatorname{ord}_{2} \ell=1$, q is non-square and $p \equiv 1(\bmod 4)$, then $(\pi: \tau(M))=2$ and $f^{(p-1) / 2}=\varepsilon$.

Proof. First we assume that ℓ is odd. Then, by [1, PL.4, (VIII)], we have $P(R)=\left\langle Q(R), \bar{\omega}_{\ell}\right\rangle$, where

$$
\bar{\omega}_{\ell}=\frac{1}{2}\left\{\alpha_{1}+2 \alpha_{2}+\cdots+(\ell-2) \alpha_{\ell-2}+\frac{1}{2}(\ell-2) \alpha_{\ell-1}+\frac{1}{2} \ell \alpha_{\ell}\right\} .
$$

$\bar{\omega}_{\ell}$ is congruent modulo $Q(R)$ to $\bar{\omega}$, where

$$
\bar{\omega}= \begin{cases}\frac{1}{2}\left(\alpha_{1}+\alpha_{3}+\cdots+\alpha_{\ell-2}-\frac{1}{2} \alpha_{\ell-1}+\frac{1}{2} \alpha_{\ell}\right) & (4 \mid \ell-1), \\ \frac{1}{2}\left(\alpha_{1}+\alpha_{3}+\cdots+\alpha_{\ell-2}+\frac{1}{2} \alpha_{\ell-1}-\frac{1}{2} \alpha_{\ell}\right) & (4 \mid \ell+1) .\end{cases}
$$

Therefore we have $P(R)=\left\langle\alpha_{1}, \ldots, \alpha_{\ell-1}, \bar{\omega}\right\rangle$.
The case $X=P(R)$: As a basis $\left\{\chi_{i}\right\}$ of X, we can take: $\chi_{i}=\alpha_{i}$ $(1 \leqq i \leqq \ell-1), \chi_{\ell}=\bar{\omega}$. So we have $\alpha_{i}=\chi_{i}$ for $1 \leqq i \leqq \ell-1$ and

$$
\alpha_{\ell}= \begin{cases}4 \chi_{\ell}-2\left(\chi_{1}+\chi_{3}+\cdots+\chi_{\ell-2}\right)+\chi_{\ell-1} & (4 \mid \ell-1), \\ -4 \chi_{\ell}+2\left(\chi_{1}+\chi_{3}+\cdots+\chi_{\ell-2}\right)+\chi_{\ell-1} & (4 \mid \ell+1) .\end{cases}
$$

Therefore we see that M consists of those elements $h(x, \ldots, x, y)$ with $x \in$ $F_{p}{ }^{\times}$and $y \in F_{q}{ }^{\times}$such that

$$
\begin{equation*}
y^{4}=x^{\ell-1} . \tag{2}
\end{equation*}
$$

By solving the equation (2) for $x=1$, we see that $Z=\{h(1, \ldots, 1, y \mid$ $\left.y^{4}=1, y \in F_{q}{ }^{\times}\right\} \simeq \boldsymbol{Z} /(4, q-1) \boldsymbol{Z}$. Let us calculate the group M. We see
easily that the equation (2) has a solution y in $F_{p}{ }^{\times}$for $x=\nu$ if and only if (a) $4 \mid \ell-1$ or (b) $4 \mid \ell+1$ and ($p-1$)/2 is odd, and that in case (a) (resp. in case (b)) $y=\nu^{(\ell-1) / 4}$ (resp. $\left.y=\nu^{(\ell-p) / 4}\right)$ is a solution of the equation (2) for $x=\nu$ (Case (i)). Assume that $4 \nmid \ell-1$ and $p \equiv 1(\bmod 4)$. Then we see that the equation (2) has a solution y in $F_{q} \times$ for $x=\nu$ if and only if q is square, and if this is the case $y=\eta^{i}$ with $i=\frac{q-1}{2(p-1)} \cdot \frac{\ell-1}{2}$ is a solution and $y^{p-1}=-1$. Assume that q is non-square $(4 \nmid \ell-1$ and $p \equiv 1(\bmod 4))$. Then we see that the equation (2) for $x=\nu^{2}$ has a solution y in $F_{p}{ }^{\times}$and y can be found in $\left(F_{q} \times\right)^{2}$ if and only if $\operatorname{ord}_{2}(p-1)=2$. If $\operatorname{ord}_{2}(p-1)=2$, then we may take $y=\nu^{i}$ with $i=\frac{\ell-1}{2}+\frac{p-1}{4}$ (then $y^{(p-1) / 2}=1$), and if $\operatorname{ord}_{2}(p-1) \geqq 3$, then we may take $y=\nu^{(\ell-1) / 2}\left(\right.$ then $\left.y^{(p-1) / 2}=-1\right)$.

The case $d=2\left(S O_{2 \ell}\right)$: We have $X=\left\langle\alpha_{1}, \ldots, \alpha_{\ell-1}, \frac{1}{2}\left(\alpha_{\ell-1}-\alpha_{\ell}\right)\right\rangle$. So, as a basis $\left\{\chi_{i}\right\}$ of X, we can take: $\chi_{i}=\alpha_{i}(1 \leqq i \leqq \ell-1)$, $\chi_{\ell}=\frac{1}{2}\left(\alpha_{\ell-1}-\alpha_{\ell}\right)$. Hence we have $\alpha_{i}=\chi_{i}$ for $1 \leqq i \leqq \ell-1$ and $\alpha_{\ell}=-2 \chi_{\ell}+\chi_{\ell-1}$. Therefore we see that M consists of those elements $h(x, \ldots, x, y)$ with $x \in F_{p}{ }^{\times}$and $y \in F_{q}{ }^{\times}$such that $y^{2}=1$, and that $Z=\{h(1, \ldots, 1, \pm 1)\} \simeq \boldsymbol{Z} / 2 \boldsymbol{Z}$. Clearly we can take $f=h(\nu, \ldots, \nu, 1)$.

Next we assume that ℓ is even. Then we have $P(R)=\left\langle Q(R), \bar{\omega}_{\ell-1}, \bar{\omega}_{\ell}\right\rangle$, where $\bar{\omega}_{\ell}$ is as above and

$$
\bar{\omega}_{\ell-1}=\frac{1}{2}\left\{\alpha_{1}+2 \alpha_{2}+\cdots+(\ell-2) \alpha_{\ell-2}+\frac{1}{2} \ell \alpha_{\ell-1}+\frac{1}{2}(\ell-2) \alpha_{\ell}\right\} .
$$

Put:

$$
\begin{aligned}
\bar{\omega}^{\prime} & =\frac{1}{2}\left(\alpha_{1}+\alpha_{3}+\cdots+\alpha_{\ell-3}+\alpha_{\ell-1}\right), \\
\bar{\omega}^{\prime \prime} & =\frac{1}{2}\left(\alpha_{1}+\alpha_{3}+\cdots+\alpha_{\ell-3}+\alpha_{\ell}\right) .
\end{aligned}
$$

Then $\bar{\omega}_{\ell-1} \equiv \bar{\omega}^{\prime \prime}, \bar{\omega}_{\ell} \equiv \bar{\omega}^{\prime}(\bmod Q(R))$ if $4 \mid \ell$, and $\bar{\omega}_{\ell-1} \equiv \bar{\omega}^{\prime}, \bar{\omega}_{\ell} \equiv \bar{\omega}^{\prime \prime}$ $(\bmod Q(R))$ if $\operatorname{ord}_{2} \ell=1$. Therefore we have $P(R)=\left\langle Q(R), \bar{\omega}^{\prime}, \bar{\omega}^{\prime \prime}\right\rangle$.

The case $X=P(R)\left(\operatorname{Spin}_{2 \ell}\right)$: Let $\chi_{i}=\alpha_{i}$ for $1 \leqq i \leqq \ell-2, \chi_{\ell-1}=\bar{\omega}^{\prime}$ and $\chi_{\ell}=\bar{\omega}^{\prime \prime}$. Then $\left\{\chi_{1}, \ldots, \chi_{\ell}\right\}$ is a basis of X, and we have: $\alpha_{i}=\chi_{i}$ $(1 \leqq i \leqq \ell-2), \alpha_{\ell-1}=2 \chi_{\ell-1}-\left(\chi_{1}+\chi_{3}+\cdots+\chi_{\ell-3}\right)$ and $\alpha_{\ell}=2 \chi_{\ell}-$ $\left(\chi_{1}+\chi_{3}+\cdots+\chi_{\ell-3}\right)$. Therefore, by Lemma 4 4, we see that M consists of those elements $h(x, \ldots, x, y, z)$ with $x \in F_{p}{ }^{\times}$and $y, z \in F_{q}{ }^{\times}$such that $y^{2}=z^{2}=x^{\ell / 2}$. It is clear that $Z=\{h(1, \ldots, 1, \pm 1, \pm 1)\} \simeq \boldsymbol{Z} / 2 \boldsymbol{Z} \times \boldsymbol{Z} / 2 \boldsymbol{Z}$. Let us calculate the group M. First, it is easy to see that, for $x=\nu$, the equations $y^{2}=z^{2}=x^{\ell / 2}$ have solutions y, z in $F_{p}{ }^{\times}$if and only if $\ell / 2$ is
even and if this is the case then $y=z=\nu^{\ell / 4}$ are solutions (Case (I), (i)). Suppose therefore $\operatorname{ord}_{2} \ell=1$. Then we see that, for $x=\nu$, the equations $y^{2}=z^{2}=x^{\ell / 2}$ have solutions y, z in $F_{q}{ }^{\times}$if and only if $(q-1) /(p-1)$ is even, i.e., q is square, and if this is the case then $y=z=\eta^{i}$ with $i=\frac{1}{2}\left(\frac{q-1}{p-1} \cdot \frac{\ell}{2}+q-1\right)$ are solutions and $y^{p-1}=z^{p-1}=-1$ (Case (I), (ii)). Assume that q is non-square $\left(\operatorname{ord}_{2} \ell=1\right)$. Then we see that, for $x=\nu^{2}$, the equations $y^{2}=z^{2}=x^{\ell / 2}$ have solutions y, z in $F_{p}{ }^{\times}$and that y, z can be found in $\left(F_{p} \times\right)^{2}$ if and only if $(p-1) / 2$ if odd. In fact, if $p \equiv-1(\bmod 4)$, then taking $y=z=\nu^{i}$ with $i=\frac{\ell}{2}+\frac{p-1}{2}$, we have $y^{(p-1) / 2}=z^{(p-1) / 2}=1$, and if $p \equiv 1(\bmod 4)$, taking $y=z=\nu^{\ell / 2}$, we have $y^{(p-1) / 2}=z^{(p-1) / 2}=-1$ (Cases (I), (iii), (iv)).

The case $d=2$: Three cases occur: $(\alpha) \bar{\omega}^{\prime}+\bar{\omega}^{\prime \prime} \in X\left(S O_{2 \ell}\right),(\beta)$ $\bar{\omega}_{\ell-1} \in X\left(\operatorname{HSpin}_{2 \ell}\right),(\gamma) \bar{\omega}_{\ell} \in X\left(\operatorname{HSpin}_{2 \ell}\right)$.

Case (α) : We have $X=\left\langle\alpha_{1}, \ldots, \alpha_{\ell-1}, \frac{1}{2}\left(\alpha_{\ell-1}+\alpha_{\ell}\right)\right\rangle$. So, as a basis $\left\{\chi_{i}\right\}$ of X, we can take: $\chi_{i}=\alpha_{i}(1 \leqq i \leqq \ell-1)$, $\chi_{\ell}=\frac{1}{2}\left(\alpha_{\ell-1}+\alpha_{\ell}\right)$. Then we have $\alpha_{i}=\chi_{i}$ for $1 \leqq i \leqq \ell-1$ and $\alpha_{\ell}=2 \chi_{\mid} \ell-\chi_{\ell-1}$. Therefore, by Lemma 4, we see that M consists of those elements $h(x, \ldots, x, y)$ with $x \in F_{p}{ }^{\times}$and $y \in F_{q}{ }^{\times}$such that $y^{2}=x^{2}$. Thus we have $Z=\{h(1, \ldots, 1, \pm 1)\} \simeq \boldsymbol{Z} / 2 \boldsymbol{Z}$ and we can take: $f=h(\nu, \ldots, \nu, \nu)$.

Case (β) : Assume that $4 \mid \ell$. Then we have $X=\left\langle\alpha_{1}, \ldots, \alpha_{\ell-1}, \bar{\omega}^{\prime \prime}\right\rangle$. And, as a basis $\left\{\chi_{i}\right\}$ of X, we can take: $\chi_{i}=\alpha_{i}(1 \leqq i \leqq \ell-1)$, $\chi_{\ell}=\bar{\omega}^{\prime \prime}$. So we have $\alpha_{i}=\chi_{i}$ for $1 \leqq i \leqq \ell-1$ and $\alpha_{\ell}=2 \chi_{\ell}-\left(\chi_{1}+\chi_{3}+\cdots+\chi_{\ell-3}\right)$. Hence, by Lemma 4, we see that M consists of those elements $h(x, \ldots, x, y)$ with $x \in F_{p}{ }^{\times}$and $y \in F_{q}{ }^{\times}$such that $y^{2}=x^{\ell / 2}$. Hence we have $Z=$ $\{h(1, \ldots, 1, \pm 1)\} \simeq \boldsymbol{Z} / 2 \boldsymbol{Z}$ and we have take: $f=h\left(\nu, \ldots, \nu, \nu^{\ell / 4}\right)$.

Assume that $\operatorname{ord}_{2} \ell=1$. Then we have $X=\left\langle\alpha_{1}, \ldots, \alpha_{\ell-2}, \bar{\omega}^{\prime}, \alpha_{\ell}\right\rangle$. So, as a basis $\left\{\chi_{i}\right\}$ of X, we can take: $\chi_{i}=\alpha_{i}(1 \leqq i \leqq \ell-2)$, $\chi_{\ell-1}=\bar{\omega}^{\prime}$, $\chi_{\ell}=\alpha_{\ell}$. Then we have $\alpha_{i}=\chi_{i}$ for $1 \leqq i \leqq \ell-2$ and $i=\ell$ and $\alpha_{\ell-1}=$ $2 \chi_{\ell-1}-\left(\chi_{1}+\chi_{3}+\cdots+\chi_{\ell-3}\right)$. Therefore, by Lemma 4, we see that M consists of those elements $h(x, \ldots, x, y, x)$ with $x \in F_{p}{ }^{\times}$and $y \in F_{q}{ }^{\times}$such that $y^{2}=x^{\ell / 2}$. Thus we have $\left.Z=h(1, \ldots, 1, \pm 1,1)\right\} \simeq \boldsymbol{Z} / 2 \boldsymbol{Z}$. As $\ell / 2$ is odd, we see that, for $x=\nu$, the equation $y^{2}=x^{\ell / 2}$ has no solutions in $F_{p} \times$ and has a solution in $F_{q} \times$ if and only if $(q-1) /(p-1)$ is even, i.e., q is square. If q is square, then $y=\eta^{i}$ with $i=\frac{1}{2}\left(\frac{q-1}{p-1} \cdot \frac{\ell}{2}\right)$ is a solution of that equation for $x=\nu$ and $y^{p-1}=-1$. Assume therefore that q is
non-square. Then we see that, for $x=\nu^{2}$, that equation has a solution y in $F_{p}{ }^{\times}$and y can be found in $\left(F_{p}{ }^{\times}\right)^{2}$ if and only if $(p-1) / 2$ is odd. In fact, if $p \equiv-1(\bmod 4)$, then $y=\nu^{(\ell+p-1) / 2}$ is a solution and $y^{(p-1) / 2}=1$. If $p \equiv 1(\bmod 4)$, then $y=\nu^{\ell / 2}$ is a solution.

Case (γ): Similar to the case (β).
This completes the proof of Lemma 8.
Lemma 9 Assume that \boldsymbol{G} is a non-adjoint group of type $\left(E_{6}\right)$. Then $Z \simeq \boldsymbol{Z} /(3, q-1) \boldsymbol{Z}$ and $\tau(M)=\pi$ and f can be chosen so that $M=\langle f\rangle \times Z$ and $f^{p-1}=1$.

This lemma is proved in [10].
Lemma 10 Assume that \boldsymbol{G} is a non-adjoint group of type $\left(E_{7}\right)$. Then $Z \simeq \boldsymbol{Z} / 2 \boldsymbol{Z}$ and we have: (i) if q is square, then $\tau(M)=\pi$ and $f^{p-1}=\varepsilon$, where ε is the generator of Z; (ii) if q is non-square and $p \equiv-1(\bmod 4)$, then $(\pi: \tau(M))=2$ and f can be chosen so that $M=\langle f\rangle \times Z$ and $f^{(p-1) / 2}=$ 1 ; (iii) if q is non-square and $p \equiv 1(\bmod 4)$, then $(\pi: \tau(M))=2$ and $f^{(p-1) / 2}=\varepsilon$.

Proof. By [1, PL.6, (VIII)], we have $P(R)=\left\langle Q(R), \bar{\omega}_{2}\right\rangle$, where $\bar{\omega}_{2} \equiv$ $\frac{1}{2}\left(\alpha_{2}+\alpha_{5}+\alpha_{7}\right)(\bmod Q(R))$, so that we have $P(R)=\left\langle\alpha_{1}, \ldots, \alpha_{6}, \frac{1}{2}\left(\alpha_{2}+\right.\right.$ $\left.\left.\alpha_{5}+\alpha_{7}\right)\right\rangle$. Therefore, as a basis $\left\{\chi_{i}\right\}$ of X, we can take: $\chi_{i}=\alpha_{i}(1 \leqq$ $i \leqq 6), \chi_{7}=\frac{1}{2}\left(\alpha_{2}+\alpha_{5}+\alpha_{7}\right)$. Hence we have $\alpha_{i}=\chi_{i}$ for $1 \leqq i \leqq 6$ and $\alpha_{7}=2 \chi_{7}-\chi_{2}-\chi_{5}$. Therefore, by Lemma 4, we see that M consists of those elements $h(x, \ldots, x, y)$ with $x \in F_{p}{ }^{\times}$and $y \in F_{q}{ }^{\times}$such that $y^{2}=x^{3}$. Hence $Z=\{h(1, \ldots, 1, \pm 1)\}=Z / 2 Z$. It is easy to see that, for $x=\nu$, the equation $y^{2}=x^{3}$ has no solutions y in $F_{p}{ }^{\times}$and has a solution y in $F_{q}{ }^{\times}$ if and only if q is square. If q is square, then $y=\eta^{i}$ with $i=\frac{q-1}{p-1} \cdot 3 \cdot \frac{1}{2}$ is a solution and $y^{p-1}=-1$. We see that, for $x=\nu^{2}$, that equation has a solution y in $F_{p}{ }^{\times}$and y can be found in $\left(F_{p}{ }^{\times}\right)^{2}$ if and only if $(p-1) / 2$ is odd. In fact, if $p \equiv-1(\bmod 4)$, then $y=\nu^{i}$ with $i=3+\frac{p-1}{2}$ is a solution and $y^{(p-1) / 2}=1$ and if $p \equiv 1(\bmod 4)$, then $y=\nu^{3}$ is a solution and $y^{(p-1) / 2}=-1$.

This proves Lemma 10.

3. The Hasse invariants of the algebras $\boldsymbol{A}_{\boldsymbol{i}}$

Let $\lambda \in \Lambda, \lambda \neq 1$. Let the μ_{i}, k, the k_{i} and the A_{i} be as in $\S 1$.

First we assume that $\tau(M)=\pi$ and f can be chosen so that $M=\langle f\rangle \times Z$ and $f^{p-1}=1$ (this occurs when \boldsymbol{G} is adjoint or \boldsymbol{G} is non-adjoint of any one of the following types: $\left(A_{\ell}\right) 2 \mid \ell(\ell+1) / d$ or $\operatorname{ord}_{2} d>\operatorname{ord}_{2}(p-1)$; $\left(B_{\ell}\right) 4 \mid \ell(\ell+1),\left(D_{\ell}\right)\left(\operatorname{Spin}_{2 \ell}\right)$ either (a) $4 \mid \ell(\ell-1)$ or (b) $\operatorname{ord}_{2}(\ell-1)=1$ and $\left.p \equiv-1(\bmod 4) ;\left(D_{\ell}\right)\left(S O_{2 \ell}\right) ;\left(D_{\ell}\right)\left(\operatorname{HSpin}_{2 \ell}\right) 4 \mid \ell ;\left(E_{6}\right)\right)$. Put $\sigma=\tau(f)$. Then, as $\tau(\langle f\rangle)=\pi=\operatorname{Gal}\left(Q\left(\zeta_{p}\right) / Q\right), \sigma$ is a generator of $\operatorname{Gal}\left(Q\left(\zeta_{p}\right) / Q\right)$, so we see easily that $k=Q$ and, for $1 \leqq i \leqq c, k_{i}=Q\left(\eta_{i}\right)$ ($=$ the field generator over Q by the values of $\left.\eta_{i}\right)$. Let us fix $i(1 \leqq i \leqq c)$. Then, as $f^{p-1}=1$, we have $\theta_{i}=\eta_{i}(1)=1$. So A_{i} is isomorphic over k_{i} to the cyclic algebra $\left(1, k_{i}\left(\zeta_{p}\right), \sigma_{i}\right) \sim k_{i}$ (similar). Thus we have $m_{Q}\left(\mu_{i}\right)=m_{k_{i}}\left(\mu_{i}\right)=1$. Here, if ξ is an irreducible character of a finite group and E is a field of characteristic 0 , then $m_{E}(\xi)$ denotes the Schur index of ξ with respect to E.

Let \bar{Q} denote an algebraic closure of Q. Then $\operatorname{Gal}(\bar{Q} / Q)$ acts on the set $C=\left\{\mu_{1}, \ldots, \mu_{c}\right\}$. Let X be the set of orbits of $\operatorname{Gal}(\bar{Q} / Q)$ on C. For $x \in X$, put $\mu_{x}=\sum_{\mu \in x} \mu$. Then, as $m_{Q}(\mu)=1$ for all $\mu \in C$, by a theorem of Schur (see, e.g., Feit [3, (11.4)]), each μ_{x} is a Q-irreducible character of L. Therefore $\lambda^{L}=\sum_{x \in X} \mu_{x}$ is realizable in Q. Therefore $\lambda^{G}=\left(\lambda^{L}\right)^{G}$ is realizable in Q.

Thus we get
Proposition 1 Recall that $p \neq 2$. Assume that \boldsymbol{G} is adjoint or a nonadjoint group of any one of the following types: $\left(A_{\ell}\right) 2 \mid \ell(\ell+1) / d$ or $\operatorname{ord}_{2} d>\operatorname{ord}_{2}(p-1) ;\left(B_{\ell}\right) 4 \mid \ell(\ell+1) ;\left(D_{\ell}\right)\left(\operatorname{Spin}_{2 \ell}\right)$ either (a) $4 \mid \ell(\ell-1)$ or (b) $\operatorname{ord}_{2}(\ell-1)=1$ and $p \equiv-1(\bmod 4) ;\left(D_{\ell}\right)\left(S O_{2 \ell}\right) ;\left(D_{\ell}\right)\left(\operatorname{HSpin}_{2 \ell}\right) 4 \mid \ell$; $\left(E_{6}\right)$. Then, for any $\lambda \in \Lambda, \lambda^{G}$ is realizable in Q.

Next, we assume that \boldsymbol{G} is a non-adjoint group of any one of the following types: $\left(A_{\ell}\right) 2 \nmid \ell(\ell+1) / d, \operatorname{ord}_{2} d \leqq \operatorname{ord}_{2}(p-1)$ and q square; $\left(B_{\ell}\right) 4 \nmid \ell(\ell+1)$ and q square; $\left(C_{\ell}\right) q$ square; $\left(D_{\ell}\right)\left(\operatorname{Spin}_{2 \ell}\right) q$ square and (a) $\operatorname{ord}_{2} \ell=1$ or $(\mathrm{b}) \operatorname{ord}_{2}(\ell-1)=1$ and $p \equiv 1(\bmod 4) ;\left(D_{\ell}\right)\left(\mathrm{HSpin}_{2 \ell}\right) q$ square and $\operatorname{ord}_{2} \ell=1 ;\left(E_{7}\right) q$ square. Then, by Lemmas $5-10$, we see that $\tau(M)=\pi$ but there is no f such that $M=\langle f\rangle \times Z$ and $f^{p-1}=1$.

In the following, if E is a finite extension of Q (that is E is an algebraic number field of finite degree) and B is a finite dimensional central simple algebra over E, then, for any place v of $E, h_{v}(B)$ denotes the Hasse invariant of E at E_{v}.

We arrange the characters $\eta_{1}, \ldots, \eta_{c}$ of $Z(c=|Z|)$ as follows: If Z is
cyclic, then we fix a generator z of Z and a primitive c-th root ζ_{c} of unity and we assume that $\eta_{i}(z)=\zeta_{c}{ }^{i}$ for $1 \leqq i \leqq c$. If $Z \simeq \boldsymbol{Z} / 2 \boldsymbol{Z} \times \boldsymbol{Z} / 2 \boldsymbol{Z}$ (this case occurs when $G=\operatorname{Spin}_{2 \ell}$ with $\operatorname{ord}_{2} \ell=1$, and in this case we have $Z=$ $\{h(1, \ldots, 1, \pm 1, \pm 1)\})$, then we assume that $\eta_{i}(h(1, \ldots, 1,-1,-1))=(-1)^{i}$, $1 \leqq i \leqq 4$ (we note that f can be chosen so that $f^{p-1}=h(1, \ldots, 1,-1,-1)$). Then we have $k=Q, k_{i}=Q\left(\eta_{i}\right)(1 \leqq i \leqq c)$ and $A_{i} \sim k_{i} \otimes_{Q}\left((-1)^{i}, Q\left(\zeta_{p}\right), \sigma\right)$ $(1 \leqq i \leqq c)$.

If i is even, then A_{i} splits in k_{i}. Suppose that i is odd. Put $A=$ $\left(-1, Q\left(\zeta_{p}\right), \sigma\right)$. Then we have $h_{\infty}(A) \equiv h_{p}(A) \equiv \frac{1}{2}(\bmod 1)$ and $h_{r}(A) \equiv 0$ $(\bmod 1)$ for any finite place r of Q different from p. If $Z \simeq \boldsymbol{Z} / 2 \boldsymbol{Z}$ or $\boldsymbol{Z} / 2 \boldsymbol{Z} \times \boldsymbol{Z} / 2 \boldsymbol{Z}$, then $k_{i}=Q$ and $A_{i}=A$. Suppose that Z is cyclic and that $Z \not \approx \boldsymbol{Z} / 2 \boldsymbol{Z}$. Let v be any place of k_{i}. Then if v is infinite, we have $h_{v}\left(A_{i}\right) \equiv \frac{1}{2}(\bmod 1)$ or $\equiv 0(\bmod 1)$ according as v is real or imaginary. If v is a finite place of k_{i} such that $v \nmid p$, then $h_{v}\left(A_{i}\right) \equiv 0(\bmod 1)$. Suppose that $v \mid p$ and put $f_{i}=\left[\left(k_{i}\right)_{v}: Q_{p}\right]$. Then $h_{v}\left(A_{i}\right) \equiv \frac{1}{2} f_{i}(\bmod 1)$.
Lemma 11 Assume that \boldsymbol{G} is of type $\left(A_{\ell}\right)$ where $2 \nmid \ell(\ell+1) / d, 1 \leqq$ $\operatorname{ord}_{2}(\ell+1) \leqq \operatorname{ord}_{2}(p-1)$ and q is square or $G=\operatorname{Spin}_{2 \ell}$ where $\operatorname{ord}_{2}(\ell-1)=1$, $p \equiv 1(\bmod 4)$ and q is square. Let $q=p^{2^{2 t}}$ with $(2, s)=1$. Recall that i is odd. Then $2 \nmid f_{i}$ if and only if any odd prime divisor of $c /(c, i)$ divides $p^{s}-1$. In particular, if $\boldsymbol{G}=\operatorname{Spin}_{2 \ell}$, then f_{i} is odd.

Proof. Put $c_{i}=c /(c, i) . c_{i}$ is equal to the order of $\zeta_{c}{ }^{i}$. Then f_{i} is equal to the smallest positive integer h such that $p^{h} \equiv 1\left(\bmod c_{i}\right)$. The integers $h \geqq 1$ such that $p^{h} \equiv 1\left(\bmod c_{i}\right)$ form the semigroup generated by f_{i}. So f_{i} divides $2^{t} s$ since $q \equiv 1\left(\bmod c_{i}\right)$. Hence f_{i} is odd if and only if f_{i} divides s. But, if $f_{i} \mid s$, then $p^{f_{i}}-1 \mid p^{s}-1$, so $p^{s} \equiv 1\left(\bmod c_{i}\right)$, hence $f_{i} \mid s$ again. Therefore it suffices to show that the condition that $c_{i} \mid p^{s}-1$ is equivalent to the condition which is stated in the lemma. For an integer m, let $V(m)$ be the set of odd prime divisors of m. Then we have $V\left(p^{s}-1\right) \cap V\left((q-1) /\left(p^{s}-1\right)\right)=\emptyset$ since $\left(p^{s}-1,(q-1) /\left(p^{s}-1\right)\right)=$ $\left(p^{s}-1,2^{t}\right)=a$ power of 2 . Suppose that $V\left(c_{i}\right) \subset V\left(p^{s}-1\right)$. Then, for any $r \in V\left(c_{i}\right), r$ divides $p^{s}-1$, so that the r-part r^{e} of c_{i} divides $p^{s}-1$ since r is an odd divisor of $q-1=\left(p^{s}-1\right)\left((q-1) /\left(p^{s}-1\right)\right)$. And we have $\operatorname{ord}_{2} c_{i}\left(\leqq \operatorname{ord}_{2}(\ell+1)\right) \leqq \operatorname{ord}_{2}(p-1)=\operatorname{ord}_{2}\left(p^{s}-1\right)$. Thus we have seen that $\operatorname{ord}_{r} c_{i} \leqq \operatorname{ord}_{r}\left(p^{s}-1\right)$ for any prime divisor r of c_{i}. Hence c_{i} divides $p^{s}-1$. Conversely, if c_{i} divides $p^{s}-1$, then clearly $V\left(c_{i}\right) \subset V\left(p^{s}-1\right)$. This proves the lemma.

Suppose that \boldsymbol{G} is of type $\left(A_{\ell}\right)$ where q is square, $2 \nmid \ell(\ell+1) / d$ and $\operatorname{ord}_{2} d \leqq \operatorname{ord}_{2}(p-1)$. Let i be the odd part of c. Then c_{i} is equal to the 2-part of c, so $V\left(c_{i}\right)=\emptyset$. Hence f_{i} is odd and $h_{v}\left(A_{i}\right) \equiv \frac{1}{2}(\bmod 1)$ if v is any place of k_{i} lying above p. Hence we have $m_{Q_{p}}\left(\mu_{i}\right)=2$. Here, if χ is an irreducible character of a finite group and if E is a field of characteristic 0 , then $m_{E}(\chi)$ denotes the Schur index of χ with respect to E.

Suppose that $G=\operatorname{Spin}_{2 \ell}$ where $\operatorname{ord}_{2}(\ell-1)=1$ and q is an even power of $p \equiv 1(\bmod 4)(c f$. Lemma 8$)$. Then $Z \simeq \boldsymbol{Z} / 4 \boldsymbol{Z}$. Suppose that i is odd. Then $c_{i}=4$, so $V\left(c_{i}\right)=\emptyset$. Hence f_{i} is odd and we have $m_{Q_{p}}\left(\mu_{i}\right)=2$.

Thirdly, we assume that \boldsymbol{G} is a non-adjoint group of any one of the following types: $\left(A_{\ell}\right) 2 \nmid \ell(\ell+1) / d, \operatorname{ord}_{2} d=\operatorname{ord}_{2}(p-1)$ and q non-square; $\left(B_{\ell}\right) 4 \nmid \ell(\ell+1), q$ non-square and $p \equiv-1(\bmod 4) ;\left(C_{\ell}\right) q$ non-square and $p \equiv-1(\bmod 4) ;\left(D_{\ell}\right)\left(\operatorname{Spin}_{2 \ell}\right) q$ non-square, $\operatorname{ord}_{2}(\ell-1)=1$ and $\operatorname{ord}_{2}(p-1)=2 ;\left(\operatorname{Spin}_{2 \ell}\right) q$ non-square, $\operatorname{ord}_{2} \ell=1$ and $p \equiv-1(\bmod 4)$; $\left(\operatorname{HSpin}_{2 \ell}\right) q$ non-square, $\operatorname{ord}_{2} \ell=1$ and $p \equiv-1(\bmod 4) ;\left(E_{7}\right) q$ non-square and $p \equiv-1(\bmod 4)$. Then we have $(\pi: \tau(M))=2$ and f can be chosen so that $M=\langle f\rangle \times Z$ and $f^{(p-1) / 2}=1$ (cf. Lemmas 5-10). In this case k is the quadratic subfield of $Q\left(\zeta_{p}\right)$, i.e., $k=Q\left(\sqrt{(-1)^{(p-1) / 2} p}\right)$. For $1 \leqq i \leqq c$, we have $\theta_{i}=1$, so A_{i} splits in k_{i}. Hence any λ^{G} is realizable in k.

Finally, we assume that \boldsymbol{G} is a non-adjoint group of any one of the following types: $\left(A_{\ell}\right) e \nmid \ell(\ell+1) / d, \operatorname{ord}_{2} d<\operatorname{ord}_{2}(p-1)$ and q non-square; $\left(B_{\ell}\right) 4 \nmid \ell(\ell+1) q$ non-square and $p \equiv 1(\bmod 4) ;\left(C_{\ell}\right) q$ non-square and $p \equiv 1$ $(\bmod 4) ;\left(D_{\ell}\right)\left(\operatorname{Spin}_{2 \ell}\right) q$ non-square, $\operatorname{ord}_{2}(\ell-1)=1$ and $\operatorname{ord}_{2}(p-1) \geqq 3$; $\left(\operatorname{Spin}_{2 \ell}\right) q$ non-square, $\operatorname{ord}_{2} \ell=1$ and $p \equiv(\bmod 4) ;\left(\operatorname{HSpin}_{2 \ell}\right) q$ non-square, $\operatorname{ord}_{2} \ell=1$ and $p \equiv 1(\bmod 4) ;\left(E_{7}\right) q$ non-square and $p \equiv 1(\bmod 4)$. Then we have $(\pi: \tau(M))=2$ and f can be chosen so that $\left|\left\langle f^{(p-1) / 2}\right\rangle\right|=2$. We arrange the characters η_{1}, \ldots, n_{c} of Z as before. Then k is the quadratic sub-field of $Q\left(\zeta_{p}\right)$ and if i is even A_{i} splits in k_{i}. Assume that i is odd. Then we have $A_{i} \sim k_{i} \otimes_{k} B$, where B is the cyclic algebra $\left(-1, k\left(\zeta_{p}\right), \sigma\right)$ over k. By [8, Proposition 1], we see that B has non-zero Hasse invariants only at two real places of k and no others. Thus we have $m_{R}\left(\mu_{i}\right)=2$ or 1 according as μ_{i} is real or not.

Assume that G is of type $\left(A_{\ell}\right)$ and $\operatorname{ord}_{2} d=1$. Let i be the odd part of c. Then $c_{i}=2$ and $A_{i}=B$. Hence we have $m_{R}\left(\mu_{i}\right)=2$. Assume that \boldsymbol{G} is of type $\left(B_{\ell}\right)$. Then $i=1$ and $A_{1}=B$. So we have $m_{R}\left(\mu_{1}\right)=2$. Similarly, if G is of type $\left(C_{\ell}\right)$, then we have $m_{R}\left(\mu_{1}\right)=2$. Assume that \boldsymbol{G} is of type $\left(D_{\ell}\right)$. If $\boldsymbol{Z} \not 千 \boldsymbol{Z} / 4 \boldsymbol{Z}$, then k_{i} is real, so we have $m_{R}\left(\mu_{i}\right)=2$. If $Z \nsucceq \boldsymbol{Z} / 4 \boldsymbol{Z}$,
then k_{i} is not real, so we have $m_{R}\left(\mu_{i}\right)=1$. Assume that \boldsymbol{G} is of type $\left(E_{7}\right)$. Then $k_{i}=k$, so we have $m_{R}\left(\mu_{1}\right)=2$.

4. The Schur index

Let \boldsymbol{G} be a simple algebraic group, defined and split over a finite field F_{q}, and let G be the group of its F_{q}-rational points. Let χ be any irreducible character of G. We assume that there is a linear character λ in Λ such that $\left(\lambda^{G}, \chi\right)_{G}=1$ or that when p is a good prime for $\boldsymbol{G} p \nmid \chi(1)$. We assume that $p \neq 2$.

Theorem 1 ([10]) We have the following.
(i) We have $m_{Q}(\chi) \leqq 2$.
(ii) If $p \equiv-1(\bmod 4)$, then we have $m_{Q(\sqrt{-p})}(\chi)=1$.
(iii) If $p \equiv 1(\bmod 4)$, then, for any finite place v of $Q(\sqrt{p})$, we have $m_{Q(\sqrt{p})_{v}}(\chi)=1$.
(iv) If q is square, then, for any prime number $r \neq p$, we have $m_{Q_{r}}(\chi)=1$.

By proposition 1 and the argument in the proof of Corollary 4 in [10], we get:

Theorem 2 In the following cases, we have $m_{Q}(\chi)=1$: (i) \boldsymbol{G} adjoint; (ii) $\left(A_{\ell}\right) 2 \mid \ell(\ell+1) / d$ or $\operatorname{ord}_{2} d>\operatorname{ord}_{2}(p-1) ;\left(B_{\ell}\right) 4 \mid \ell(\ell+1) ;\left(D_{\ell}\right)\left(\operatorname{Spin}_{2 \ell}\right)$ either $4 \mid \ell(\ell-1)$, or, $\operatorname{ord}_{2}(\ell-1)=1$ and $p \equiv-1(\bmod 4) ;\left(S O_{2 \ell}\right)$; $\left(\operatorname{HSpin}_{2 \ell}\right) 4 \mid \ell ;\left(E_{6}\right)$.

Similarly, by the arguments in $\S 3$, we get:
Theorem 3 Let k be the quadratic subfield of $Q\left(\zeta_{p}\right)$. Then in the following cases we have $m_{k}(\chi)=1:\left(A_{\ell}\right) 2 \nmid \ell(\ell+1) / d$, $\operatorname{ord}_{2} d=\operatorname{ord}_{2}(p-1)$ and q non-square; $\left(\operatorname{Spin}_{2 \ell}\right) q$ non-square, $\operatorname{ord}_{2}(\ell-1)=1$ and $\operatorname{ord}_{2}(p-1)=2$.

Theorem 4 Assume that \boldsymbol{G} is non-adjoint. Let $\lambda \in \Lambda_{0}$. Then in any one of the following cases λ^{G} contains an irreducible character of the Schur index 2 over $Q:\left(A_{\ell}\right)$ either (a) q square, $2 \nmid \ell(\ell+1) / d, \operatorname{ord}_{2} d \leqq \operatorname{ord}_{2}(p-1)$, or (b) q non-square, $2 \nmid \ell(\ell+1) / d$, $\operatorname{ord}_{2} d=1<\operatorname{ord}_{2}(p-1) ;\left(B_{\ell}\right)$ either (a) $4 \nmid \ell(\ell+1), q$ square, or (b) $4 \nmid \ell(\ell+1), q$ non-square, $p \equiv 1(\bmod 4)$; $\left(C_{\ell}\right)$ either $(\mathrm{a}) q$ square, or $(\mathrm{b}) q$ non-square, $p \equiv 1(\bmod 4) ;\left(\operatorname{Spin}_{2 \ell}\right)$ either (a) $\operatorname{ord}_{2} \ell=1, q$ square, or $(\mathrm{b}) \operatorname{ord}_{2} \ell=1, q$ non-square, $p \equiv 1(\bmod 8)$, or
(c) $\operatorname{ord}_{2}(\ell-1)=1, q$ square, $p \equiv 1(\bmod 4) ;\left(\operatorname{HSpin}_{2 \ell}\right)$ either $(\mathrm{a}) \operatorname{ord}_{2} \ell=1$, q square, or $(\mathrm{b}) \operatorname{ord}_{2} \ell=1, q$ non-square, $p \equiv 1(\bmod 4) ;\left(E_{7}\right)$ either $(\mathrm{a}) q$ square, or $(\mathrm{b}) q$ non-square, $p \equiv 1(\bmod 4)$.

Proof. We repeat the argument in the proof of Theorem 4 of [12]. Assume that \boldsymbol{G} is a non-adjoint simple group of type $\left(A_{\ell}\right)$ where q is square, $2 \nmid$ $\ell(\ell+1) / d$ and $\operatorname{ord}_{2} d \leqq \operatorname{ord}_{2}(p-1)$. Then we see from the argument in §3 that $k=Q$ and there is an irreducible character μ_{i} of L such that $m_{k_{i}}\left(\mu_{i}\right)=2$ $\left(\lambda \in \Lambda_{0}\right)$. By the arguments in $\S 1$, we see that $\Gamma_{\lambda, i}$ is multiplicity-free and $\left(\Gamma_{\lambda, i}, \Gamma_{\lambda, i}\right)_{G}$ is odd. Let X be the set of all the irreducible components of $\Gamma_{\lambda, i}$. Then, by Schur's lemma, we see that, for any $\chi \in X$, we must have $\chi \mid Z=\chi(1) \eta_{i}$. Therefore we find that $Q\left(\Gamma_{\lambda, i}\right) \subset k_{i}$. We show that there is a character χ in X such that $m_{k_{i}}(\chi)=2$. Suppose, on the contrary, that we have $m_{k_{i}}(\chi)=1$ for all $\chi \in X$ (cf. Theorem 1 (i)). Then we see from the theorem of Schur that $\Gamma_{\lambda, i}$ is realizable in k_{i}. But, then, as $\left(\Gamma_{\lambda, i} \mid L, \mu_{i}\right)_{L}=$ $\left(\Gamma_{\lambda, i}, \Gamma_{\lambda, i}\right)_{G}$ is odd, we must have $m_{k_{i}}\left(\mu_{i}\right)=1$, a contradiction. Therefore X must contains a character χ such that $m_{k_{i}}(\chi)=2$. The remaining cases can be treated similarly.

References

[1] Bourbaki N., Groupes et Algèbres de Lie. Chapitres 4, 5 et 6. Hermann, Paris, 1968.
[2] Carter R.W., Finite Groups of Lie Type: Conjugacy Classes and Complex Characters. John Wiley and Sons, 1985.
[3] Feit W., Characters of Finite Groups. Benjamin, New York-Amsterdam, 1967.
[4] Gal'fand I.M. and Graev M.I., Constructions of irreducible representations of simple algebraic groups over a finite field. Soviet Math. Dokl. 3 (1962), 1646-1649.
[5] Gow R., Schur indices of some groups of Lie type. J. Algebra 42 (1976), 102-120.
[6] Gow R., On the Schur indices of characters of finite classical groups. J. London Math. Soc. (2), 24 (1981), 135-147.
[7] Helversen-Pasotto A., Sur l'indices de Schur des représentations de $G L\left(n, F_{q}\right)$. C. R. Acad. Sc. Paris, t. 283 (20 septembre 1976), Serie A, 233-235.
[8] Janusz G.J., Simple components of $Q[S L(2, q)]$. Commun. Algebra 1 (1974), 1-22.
[9] Ohmori Z., On the Schur indices of reductive groups. Quart. J. Math. Oxford (2), 28 (1977), 357-361.
[10] Ohmori Z., On the Schur indices of certain irreducible characters of reductive groups over finite fields. Osaka J. Math. 25 (1988), 149-159.
[11] Ohmori Z., On the Schur indices of certain irreducible characters of simple algebraic groups over finite fields. Proceed. Japan Acad. 64, Ser. A, No. 7, (1988), 253-255.
[12] Ohmori Z., On the Schur indices of $S U_{\ell+1}\left(F_{q}\right)$ and $\operatorname{Spin}_{2 \ell}^{-}\left(F_{q}\right)$. Tokyo J. Math. 18 (1995), 11-29.
[13] Steinberg R., Lectures on Chevalley Groups. Yale Univ., 1967.
[14] Yamada T., The Schur Subgroup of the Brauer Group. Lecture Notes in Math. 397, Springer, Berlin-Heidelberg-New York, 1974.
[15] Yokonuma T., Sur le commutant d'une représentation d'un groupe de Chevalley fini. J. Fac. Sci. Univ. Tokyo 15 (1968), 115-129.

Iwamizawa College
Hokkaido University of Education
Midorigaoka, Iwamizawa 068-0835, Hokkaido
Japan

[^0]: 1991 Mathematics Subject Classification: 20G05.

