On the Schur indices of certain irreducible characters of finite Chevalley groups

Zyozyu Ohmori

(Received September 27, 1996; Revised March 23, 1998)

Abstract. Let G be a finite Chevalley group of split type. We shall give some sufficient conditions subject for that G has irreducible characters of the Schur index equal to 2.

Key words: Chevalley groups, irreducible characters, Schur index.

Introduction

Let F_q be a finite field with q elements of characteristic p. Let G be a connected, reductive algebraic group defined over F_q , and let $F: \mathbf{G} \to \mathbf{G}$ be the corresponding Frobenius endomorphism of G. In the following, if H denotes an F-stable subgroup of G, then the group of F-fixed points of H will be denoted by H. Let B be an F-stable Borel subgroup of G, and let U be the unipotent radical of B. Then U is F-stable and U is a Sylow p-subgroups of G. According to a theorem of Gel'fand-Graev-Yokonuma-Steinberg, if λ is a linear character of U in "general position", then the character λ^G of G induced by λ is multiplicity-free (see Steinberg [13, Theorem 49, p. 258] and Carter [2, Theorem 8.1.3]). In [5], R. Gow has initiated to study the rationality-properties of the characters λ^G where λ runs over certain linear characters of U and, using the results obtained there, he obtained some informations about the Schur indices of some irreducible characters of G (also cf. A. Helversen-Pasoto [7]). He has treated the case that $G = GL_n$, SL_n and Sp_{2n} . In [10], we have obtained some results about the rationality of the λ^G when **G** is a general reductive group. Our intension here is to get more precise results when G is a simple algebraic group. The twisted cases are treated in [12]. So, in this paper, we shall treat the untwisted cases. We shall obtain some sufficient conditions subject for that the Schur index of any irreducible character of G is equal to one and some sufficient conditions subject for that G has irreducible characters of the Schur index equal to 2.

¹⁹⁹¹ Mathematics Subject Classification: 20G05.

We note that the results of this paper have been announced in [11].

1. Linear characters of U

Let K be an algebraic closure of F_q . Let G be an simple algebraic group over K. We assume that G is defined and split over F_q . Let $F : G \to G$ be the corresponding Frobenius endomorphism of G. We shall fix an F-stable Borel subgroup B of G and an F-stable maximal torus T of G contained in B. Let U be the unipotent radical of B. Let R, R^+ and Δ be respectively the set of roots of G with respect to T, the set of positive roots determined by B and the set of corresponding simple roots. For a root α , let U_{α} be the root subgroup of G associated with α . Let $X = \text{Hom}(T, K^{\times})$ be the character module of T. Then F acts on X by $(F\chi)(t) = \chi(F(t))$ for $\chi \in X$, $t \in T$. As T splits over F_q , we have $F(t) = t^q$, $t \in T$, so we have $F\chi = q\chi$, $\chi \in X$.

Let $U_{\cdot} = \langle U_{\alpha} \mid \alpha \in R^{+} - \Delta \rangle$. Then U_{\cdot} is an F-stable normal subgroup of U and contains the derived group of U_{\cdot} . It is known that if p is not a bad prime for G, then U_{\cdot} coincides with the commutator subgroup of U_{\cdot} We have $U/U_{\cdot} = \prod_{\alpha \in \Delta} U_{\alpha} = \prod_{\alpha \in \Delta} F_{q}$ (we note that each U_{α} is F-stable since G splits over F_{q}).

Let Λ be the set of all linear characters λ of U such that $\lambda \mid U_{\cdot} = 1$, and let Λ_0 be the set of all λ in Λ such that $\lambda \mid U_{\alpha} \neq 1$ for all $\alpha \in \Delta$.

Lemma 1 (Gel'fand-Graev [4], Yokonuma [15], Steinberg [13]) If $\lambda \in \Lambda_0$, then λ^G is multiplicity-free.

For a subset J of Δ , put $T_J = \bigcap_{\alpha \in J} \operatorname{Ker} \alpha$ (we put $T_{\phi} = T$). Then, for any such J, T_J is an F-stable subgroup of T.

Lemma 2 (cf. Yokonuma [15], Steinberg [13, Exercise on p. 263]) If $\lambda \in \Lambda_0$, then there is a set S of subsets J of Δ such that S contains Δ and ϕ and that $(\lambda^G, \lambda^G)_G = \sum_{J \in S} |T_J|$.

This is proved in [12]. The next lemma is also proved in [12].

Lemma 3 ([12, Proposition 1]) Let c be the order of the centre Z of G. Then if $\lambda \in \Lambda_0$, there is a positive integer r such that $(\lambda^G, \lambda^G)_G = r(q-1) + c$.

Let $\lambda \in \Lambda_0$. Let η_1, \ldots, η_c be all the irreducible characters of the centre

Z. For $1 \leq i \leq c$, put $\Gamma_{\lambda,i} = \operatorname{Ind}_{UZ}^G(\lambda \eta_i)$. Then it is easy to see that $\lambda^G = \Gamma_{\lambda,1} + \cdots + \Gamma_{\lambda,c}$ and that (by using Lemma 3)

$$(\Gamma_{\lambda,i},\Gamma_{\lambda,j})_G = \delta_{ij} \cdot \frac{1}{c} \cdot (\lambda^G, \lambda^G)_G = \delta_{ij} \left\{ \frac{r(q-1)}{c} + 1 \right\}$$

$$(1 \le i, \ j \le c).$$

 $(\delta_{ij} \text{ denotes Kronecker's delta.})$

Our purpose is to study the rationality properties of the $\lambda^G, \lambda \in \Lambda$. For that purpose we study the rationality of the λ^B . If p = 2, then U/U. is an elementary abelian 2-group, so that all the λ^B are realizable in Q. Therefore in the rest of this paper, we shall assume that $p \neq 2$.

Let ζ_p be a fixed primitive *p*-th root of unity, and let π be the Galois group of $Q(\zeta_p)$ over Q. Then π acts on $\widehat{F}_q = \operatorname{Hom}(F_q, C^{\times})$ naturally. Let $\chi \in \widehat{F}_q, \ \chi \neq 1$. For $a \in F_q$, we define $\chi_a \in \widehat{F}_q$ by $\chi_a(x) = \chi(ax), \ x \in F_q$. Then we have $\widehat{F}_q = \{\chi_a \mid a \in F_q\}$ and $\{\chi^{\sigma} \mid \sigma \in \pi\} = \{\chi_a \mid a \in F_p^{\times}\}$.

B acts on Λ by $\lambda^{b}(u) = \lambda(bub^{-1}), b \in B, \lambda \in \Lambda$; *B* fixes Λ_{0} . Fix *a* character λ in Λ_{0} , and set $L = \{b \in B \mid \lambda^{b} = \lambda^{\tau(b)} \text{ for some } \tau(b) \in \pi\}$. Put $M = L \cap T$. Then we have L = MU (semidirect product) and we see easily that

$$M = \{t \in T \mid \text{ for some } x \in F_p^{\times} : \alpha(t) = x \text{ for all } \alpha \in \Delta\}.$$

This shows that L is independent of the choice of λ in Λ_0 and the mapping $b \to \tau(b)$ is a homomorphism of L into π with kernel ZU (Z is the centre of G). Let f be an element of T such that $\langle \tau(f) \rangle = \tau(L)$ and put $\sigma = \tau(f)$.

Let λ be any character in Λ such that $\lambda \neq 1$. Let η_1, \ldots, η_c be as before all the irreducible characters of Z (c = |Z|). For $1 \leq i \leq c$, put $\mu_i = \operatorname{Ind}_{ZU}^L(\eta_i \lambda)$. Then we see easily that μ_1, \ldots, μ_c are mutually different irreducible characters of L and we have $\lambda^L = \mu_1 + \cdots + \mu_c$.

Now, if χ is an ordinary character of a finite group and k is a field of characteristic 0, then $k(\chi)$ denotes the field generated over k by the values of χ . Then we see easily that $Q(\lambda^L) = Q(\zeta_p)^{\langle \sigma \rangle}$ and, for $1 \leq i \leq c$, $Q(\mu_i) = Q(\lambda^L)(\eta_i)$. Put $k = Q(\lambda^L)$ and $k_i = Q(\mu_i)$ $(1 \leq i \leq c)$. For $1 \leq i \leq c$, let A_i be the simple direct summand of the group algebra $k_i[L]$ of L over k_i associated with μ_i . Let h = (M : Z). Then f^h is an element of Z. For $1 \leq i \leq c$, put $\theta_i = \eta_i(f^h)$. Then we see that, for $1 \leq i \leq c$, A_i is isomorphic over k_i to the cyclic algebra $(\theta_i, k_i(\zeta_p), \sigma_i)$ over k_i , where σ_i is a certain extension of σ to $k_i(\zeta_p)$ over k_i (see Yamada [14, Proposition 3.5]).

2. Calculation of the group M

Let X denote as before the character module $\operatorname{Hom}(\mathbf{T}, K^{\times})$ of \mathbf{T} . Let P(R) and Q(R) denote respectively the weight-lattice of R and the rootlattice of R. Then $P(R) \supset X \supset Q(R)$. We say that \mathbf{G} is adjoint if X = Q(R). By [9], we see that if \mathbf{G} is adjoint, then τ induces an isomorphism of M with π and f can be chosen so that $\langle f \rangle = M$.

Let $Y = \text{Hom}(K^{\times}, T)$ be the cocharacter module of T written additively. Then the pairing $\langle \chi, \lambda \rangle = \text{deg}(\chi \circ \lambda)$ defines a perfect pairing $\langle , \rangle : X \times Y \to Z$. Suppose that dim $T = \ell$. Let $\{\chi_1, \ldots, \chi_\ell\}$ be a basis of X over Z and let $\{\lambda_1, \ldots, \lambda_\ell\}$ be the basis of Y dual to it, i.e., $\langle \chi_i, \lambda_j \rangle = \delta_{ij}$. Then each element t of T can be written uniquely as

$$t=h(x_1,\ldots,x_\ell)=\lambda_1(x_1)\cdots\lambda_\ell(x_\ell)\quad (x_1,\ldots,x_\ell\in K^{ imes}).$$

Recall that we have $F\chi_i = q\chi_i, 1 \leq i \leq \ell$.

Lemma 4 Assume that $\Delta = \{\alpha_1, \ldots, \alpha_\ell\}$ and, for $1 \leq i \leq \ell$, let $\alpha_i = \sum_{j=1}^{\ell} s_{ij} \chi_j(s_{ij} \in Z)$. Then, for $t \in \mathbf{T}$, $t = h(x_1, \ldots, x_\ell)$, t lies in M if and only if $x_j^q = x_j$ for $1 \leq j \leq \ell$ and $\prod_{j=1}^{\ell} x_j^{s_{1j}} = \cdots = \prod_{j=1}^{\ell} x_j^{s_{\ell j}} = x$ for some $x \in F_p^{\times}$.

Proof. Let $t = h(x_1, \ldots, x_\ell)$ be an element of T. Then, as $F(t) = t^q$, it is easy to see that $F(h(x_1, \ldots, x_\ell)) = h(x_1^q, \ldots, x_\ell^q)$. Therefore F(t) = t if and only if $x_i^q = x_i$ for $1 \leq i \leq \ell$. Next, we have

$$egin{aligned} lpha_i(t) &= lpha_iigg(\prod_{j=1}^\ell\lambda_j(x_j)igg) \ &= \prod_{j=1}^\ell x_j^{\langle lpha_i,\lambda_j
angle} \ &= \prod_{j=1}^\ell x_j^{s_{ij}}. \end{aligned}$$

Therefore the assertion in the lemma follows.

In the following, η is a fixed primitive element of F_q and $\nu = \eta^{(q-1)/(p-1)}$, a primitive element of F_p . If m is an integer, then we denote by $\operatorname{ord}_2 m$ the exponent of the 2-part of m. Put d = (X : Q(R)).

Lemma 5 (cf. Gow [5, 6]) Assume that **G** is of type $(A_{\ell}), \ell \geq 1$. Then

 $Z \simeq \mathbb{Z}/(d,q-1)\mathbb{Z}$ and we have: (i) if $2 \mid \ell(\ell+1)/d$ or $\operatorname{ord}_2 d > \operatorname{ord}_2(p-1)$, then $\tau(M) = \pi$ and f can be chosen so that $M = \langle f \rangle \times Z$ and $f^{p-1} = 1$. Assume that $2 \nmid \ell(\ell+1)/d$ and $\operatorname{ord}_2 d \leq \operatorname{ord}_2(p-1)$. Then: (ii) if q is square, then $\tau(M) = \pi$ and f can be chosen so that $f^{p-1} = \varepsilon$, where ε is the unique element of Z of order 2; (iii) if q is non-square and $\operatorname{ord}_2 d =$ $\operatorname{ord}_2(p-1)$, then $(\pi:\tau(M)) = 2$ and f can be chosen so that $M = \langle f \rangle \times Z$ and $f^{(p-1)/2} = 1$; (iv) if q is non-square and $\operatorname{ord}_2 d < \operatorname{ord}_2(p-1)$, then $(\pi:\tau(M)) = 2$ and f can be chosen so that $f^{(p-1)/2} = \varepsilon$.

Proof. We use the notation of Bourbaki [1]. By [1, P1.I, (VIII)], we have $P(R) = \langle \alpha_1, \ldots, \alpha_{\ell-1}, \overline{\omega} \rangle_Z$, where

$$\overline{\omega} = \varepsilon_1 - \frac{1}{\ell+1}(\varepsilon_1 + \dots + \varepsilon_{\ell+1}) = \frac{1}{\ell+1}\sum_{i=1}^{\ell}(\ell-i+1)\alpha_i,$$

so that $P(R)/Q(R) = \langle \overline{\omega} + Q(R) \rangle = \mathbf{Z}/(\ell+1)\mathbf{Z}$. Therefore, as a basis $\{\chi_i\}$ of X, we can take: $\chi_i = \alpha_i$ for $1 \leq i \leq \ell - 1$ and $\chi_\ell = \frac{1}{d} \sum_{i=1}^{\ell} (\ell - i + 1)\alpha_i$. Thus $\alpha_i = \chi_i$ for $1 \leq i \leq \ell - 1$ and $\alpha_\ell = d\chi_\ell - \sum_{i=1}^{\ell-1} (\ell - i + 1)\chi_i$. It follows from Lemma 4 that, for $t = h(x_1, \ldots, x_\ell) \in \mathbf{T}$, we have $t \in M$ if and only if $x_1, \ldots, x_\ell \in F_q^{\times}$ and, for some $x \in F_p^{\times}$, $x_1 = \cdots = x_{\ell-1} = x$ and $x^{-\ell}x^{-(\ell-1)}\cdots x^{-2}x_\ell^d = x$, i.e.,

$$x_{\ell}^{d} = x^{\ell(\ell+1)/2}.$$
 (1)

First, as $\mathbf{Z} = \bigcap_{\alpha \in \Delta} \operatorname{Ker} \alpha$ (\mathbf{Z} is the centre of \mathbf{G} ; we see easily that Z is equal to the group of F_q -rational points of \mathbf{Z}), we have $Z = \{h(1, \ldots, 1, y) \mid y \in F_q^{\times}, y^d = 1\} = \mathbf{Z}/(d, q - 1)\mathbf{Z}$.

Next, we note that we have $\tau(M) = \pi$ if and only if the equation (1) has a solution in F_q^{\times} for $x = \nu$, and when $\tau(M) = \pi f$ can be chosen so that $M = \langle f \rangle \times Z$ and $f^{p-1} = 1$ if and only if that solution can be found in F_p^{\times} . We also note that when $\tau(M) \neq \pi$ we have $(\pi : \tau(M)) = 2$ if and only if the equation (1) has a solution in F_q^{\times} for $x = \nu^2$, and if this is the case, then f can be chosen so that $M = \langle f \rangle \times Z$ and $f^{(p-1)/2} = 1$ if and only if that solution can be found in $(F_p^{\times})^2$.

Now the group $(F_p^{\times})^d = \{y^d \mid y \in F_p^{\times}\}$ is the cyclic subgroup of F_p^{\times} of order a = (p-1)/(d, p-1) and the element $\nu^{\ell(\ell+1)/2}$ of F_p^{\times} has the order $b = (p-1)/(\ell(\ell+1)/2, p-1)$. Therefore, for $x = \nu$, the equation (1) has a solution in F_p^{\times} if and only if $b \mid a$, i.e., $(d, p-1) \mid (\ell(\ell+1)/2, p-1)$. But, as $d \mid \ell(\ell+1)$, the latter condition is satisfied if and only if $d \mid \ell(\ell+1)/2$

(i.e. $2 \mid \ell(\ell+1)/d$) or $\operatorname{ord}_2 d > \operatorname{ord}_2(p-1)$ (Case (i)).

Suppose therefore that $2 \nmid \ell(\ell+1)/d$ and $\operatorname{ord}_2 d \leq \operatorname{ord}_2(p-1)$. If q is square, then $y = \eta^{((q-1)/2(p-1))\ell(\ell+1)/d}$ is a solution of the equation (1) for $x = \nu$ in F_q^{\times} and $y^{p-1} = -1$ (Case (ii)). Assume that q is non-square. Then (q-1)/(p-1) is odd and $(d,q-1) \nmid (((q-1)/(p-1))\ell(\ell+1)/2,q-1)$. This means that the equation (1) has no solutions in F_q^{\times} for $x = \nu$. But, for $x = \nu^2$, the equation (1) has a solution in F_p^{\times} , e.g., $y = \nu^{\ell(\ell+1)/d}$ (cf. $y^{(p-1)/2} = -1$). As $(F_p^{\times})^{2d}$ is a cyclic group of order ((p-1)/2)/(d, (p-1)/2) and $\nu^{2 \cdot \ell(\ell+1)/2}$ is of order $((p-1)/2)/(\ell(\ell+1)/2, (p-1)/2)$, the equation (1) has a solution in $(F_p^{\times})^2$ for $x = \nu^2$ if and only if $(d, (p-1)/2) \mid (\ell(\ell+1)/2, (p-1)/2) \mid$

This proves Lemma 5.

We note that the case $G = SL_{\ell+1}$ of Lemma 5 was treated by Gow ([5, 6]).

Lemma 6 Assume that **G** is non-adjoint and of type (B_{ℓ}) , $\ell \geq 2$ (i.e. $G = \operatorname{Spin}_{2\ell+1}$). Then $Z \simeq \mathbb{Z}/2\mathbb{Z}$. And: (i) if $4 \mid \ell(\ell+1)$, then $\tau(M) = \pi$ and f can be chosen so that $M = \langle f \rangle \times Z$ and $f^{p-1} = 1$. Assume that $4 \nmid \ell(\ell+1)$. Then: (ii) if q is square, we have $\tau(M) = \pi$ and $f^{p-1} = \varepsilon$, where ε is the generator of Z; (iii) if q is non-square and $p \equiv -1$ (mod 4), we have $(\pi : \tau(M)) = 2$ and f can be chosen so that $M = \langle f \rangle \times Z$ and $f^{(p-1)/2} = 1$; (iv) if q is non-square and $p \equiv 1 \pmod{4}$, we have $(\pi : \tau(M)) = 2$ and $f^{(p-1)/2} = \varepsilon$.

Proof. By [1, PL.2, (VIII)], we have $P(R) = \langle \overline{\omega}, \alpha_2, \ldots, \alpha_\ell \rangle$, where $\overline{\omega} = \frac{1}{2} \sum_{i=1}^{\ell} i \alpha_i$. So $P(R)/Q(R) = \langle \overline{\omega} + Q(R) \rangle = \mathbb{Z}/2\mathbb{Z}$. As \mathbb{G} is nonadjoint, we have X = P(R). Therefore, as a basis $\{\chi_i\}$ of X, we can take: $\chi_1 = \frac{1}{2} \sum_{i=1}^{\ell} i \alpha_i, \ \chi_i = \alpha_i \ (2 \leq i \leq \ell)$. So se have $\alpha_1 = 2\chi_1 - \sum_{i=2}^{\ell} i \chi_i, \alpha_i = \chi_i \ (2 \leq i \leq \ell)$. Therefore, by Lemma 4, we see that M consists of those elements $h(y, x, \ldots, x)$ with $x \in F_p^{\times}$ and $y \in F_q^{\times}$ such that $y^2 = x^{\ell(\ell+1)/2}$. In particular, by solving the last equation for x = 1, we get $Z = \{h(\pm 1, 1, \ldots, 1)\} \simeq \mathbb{Z}/2\mathbb{Z}$. For $x = \nu$, a solution y of the equation $y^2 = x^{\ell(\ell+1)/2}$ can be found in F_p^{\times} if and only if $2 \mid \ell(\ell+1)/2$, and if this is the case, then $y = \nu^{\ell(\ell+1)/4}$ is a solution of that equation (Case (i)). Assume that $4 \nmid \ell(\ell+1)$. Then $\ell(\ell+1)/2$ is odd. Hence we see that, for $x = \nu$, solutions y of that equation can be found in F_q^{\times} if and only if (q-1)/(p-1) is even, i.e., q is square, and if this is the case, then $y = \eta^i$ with $i = (\ell(\ell+1)/2) \cdot (q-1)/2(p-1)$ is a solution and $y^{p-1} = -1$ (Case (ii)). Assume that q is non-square. Then, for $x = \nu^2$, we can find a solution y of the equation $y^2 = x^{\ell(\ell+1)/2}$ in F_p^{\times} , and we see that a solution y can be found in $(F_p^{\times})^2$ if and only if (p-1)/2 is odd, i.e., $p \equiv -1 \pmod{4}$, and if this is the case, then $y = \nu^{(\ell(\ell+1)+p-1)}$ is a solution in $(F_p^{\times})^2$ (Cases (iii), (iv); in case (iv), $y = \nu^{\ell(\ell+1)/2}$ is a solution in F_p^{\times}).

This proves Lemma 6.

Lemma 7 (cf. Gow [5]) Assume that **G** is non-adjoint and of type (C_{ℓ}) , $\ell \geq 2$ (i.e., $\mathbf{G} = Sp_{2\ell}$). Then $Z \simeq \mathbf{Z}/2\mathbf{Z}$ and: (i) if q is square, we have $\tau(M) = \pi$ and $f^{p-1} = \varepsilon$, where ε is the generator of Z; (ii) if q is nonsquare and $p \equiv -1 \pmod{4}$, we have $(\pi : \tau(M)) = 2$ and f can be chosen so that $M = \langle f \rangle \times Z$ and $f^{(p-1)/2} = 1$; (iii) if q is non-square and $p \equiv 1$ (mod 4), then $(\pi : \tau(M)) = 2$ and $f^{(p-1)/2} = \varepsilon$.

Proof. By [1, PL.3, (VIII)], we have $P(R) = \langle \alpha_1, \ldots, \alpha_{\ell-1}, \overline{\omega}_1 \rangle$, where $\overline{\omega}_1 = \sum_{i=1}^{\ell-1} \alpha_i + \frac{1}{2} \alpha_\ell \equiv \frac{1}{2} \alpha_\ell \pmod{Q(R)}$, hence $P(R)/Q(R) = \langle \frac{1}{2} \alpha_\ell + Q(R) \rangle \simeq \mathbf{Z}/2\mathbf{Z}$. Since \mathbf{G} is non-adjoint, we have X = P(R). So, as a basis $\{\chi_i\}$ of X, we can take: $\chi_i = \alpha_i \ (1 \leq i \leq \ell - 1), \ \chi_\ell = \frac{1}{2} \alpha_\ell$. Therefore we have $\alpha_i = \chi_i \ (1 \leq i \leq \ell - 1), \ \alpha_\ell = 2\chi_\ell$. Hence, by Lemma 4, we see that M consists of those elements $h(x, \ldots, x, y)$ with $x \in F_p^{\times}$ and $y \in F_q^{\times}$ with $y^2 = x$. Clearly we have $Z = \langle h(1, \ldots, 1, \pm 1) \rangle \simeq \mathbf{Z}/2\mathbf{Z}$. We see easily that, for $x = \nu$, the equation $y^2 = x$ has no solutions in F_p^{\times} and has a solution in F_q^{\times} if and only if q is square. Thus case (i). Assume that q is non-square. Then we see that, for $x = \nu^2$, the equation $y^2 = x$ has a solution in F_p^{\times} and has a solution in $(F_p^{\times})^2$ if and only if (p-1)/2 is odd, i.e., $p \equiv -1 \pmod{4}$. Thus (ii) and (iii). (We can take: (i) $y = \eta^{(q-1)/2(p-1)}$; (ii) $y = \nu^{(p+1)/2}$; (iii) $y = \nu$.)

This proves Lemma 7.

Lemma 8 Assume that G is non-adjoint and of type (D_{ℓ}) , $\ell \geq 3$. Then $Z \simeq \mathbf{Z}/(d, q-1)\mathbf{Z}$ (d = (P(R) : X)) if $2 \nmid \ell$, $Z \simeq \mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/2\mathbf{Z}$ if $2 \mid \ell$ and d = 4, and $Z \simeq \mathbf{Z}/2\mathbf{Z}$ if $2 \mid \ell$ and d = 2. And the following holds:

(I) X = P(R) $(G = \text{Spin}_{2\ell})$; (i) either (a) if $4 \mid \ell(\ell - 1)$ or (b) if $\operatorname{ord}_2(\ell - 1) = 1$ and $p \equiv -1 \pmod{4}$, then $\tau(M) = \pi$ and f can be chosen so that $M = \langle f \rangle \times Z$ and $f^{p-1} = 1$; (ii) if q is square and either (a) if $\operatorname{ord}_2\ell = 1$ or (b) if $\operatorname{ord}_2(\ell - 1) = 1$ and $p \equiv 1 \pmod{4}$, then $\tau(M) = \pi$ and

Z. Ohmori

f can be chosen so that $|\langle f^{p-1} \rangle| = 2$; (iii) if q is non-square and either (a) if $\operatorname{ord}_2(\ell-1) = 1$ and $\operatorname{ord}_2(p-1) = 2$ or (b) if $\operatorname{ord}_2\ell = 1$ and $p \equiv -1$ (mod 4), then $(\pi : \tau(M)) = 2$ and f can be chosen so that $M = \langle f \rangle \times Z$ and $f^{(p-1)/2} = 1$; (iv) if q is non-square and either (a) if $\operatorname{ord}_2(\ell-1) = 1$ and $\operatorname{ord}_2(p-1) \geq 3$ or (b) if $\operatorname{ord}_2\ell = 1$ and $p \equiv 1 \pmod{4}$, then $(\pi : \tau(M)) = 2$ and f can be chosen such that $|\langle f^{(p-1)/2} \rangle| = 2$.

(II) $G = SO_{2\ell}$ (d = 2): We have $\tau(M) = \pi$ and f can be chosen so that $M = \langle f \rangle \times Z$ and $f^{p-1} = 1$.

(III) $G = \operatorname{HSpin}_{2\ell}(2 \mid \ell, \ d = 2)$: (i) if $4 \mid \ell$, then $\tau(M) = \pi$ and f can be chosen so that $M = \langle f \rangle \times Z$ and $f^{p-1} = 1$; (ii) if $\operatorname{ord}_2\ell = 1$ and q is square, then $\tau(M) = \pi$ and $f^{p-1} = \varepsilon$, where ε is the generator of Z; (iii) if $\operatorname{ord}_2\ell = 1$, q is non-square and $p \equiv -1 \pmod{4}$, then $(\pi : \tau(M)) = 2$ and f can be chosen so that $M = \langle f \rangle \times Z$ and $f^{(p-1)/2} = 1$; (iv) if $\operatorname{ord}_2\ell = 1$, q is non-square and $p \equiv 1 \pmod{4}$, then $(\pi : \tau(M)) = 2$ and $f^{(p-1)/2} = \varepsilon$.

Proof. First we assume that ℓ is odd. Then, by [1, PL.4, (VIII)], we have $P(R) = \langle Q(R), \overline{\omega}_{\ell} \rangle$, where

$$\overline{\omega}_{\ell} = \frac{1}{2} \left\{ \alpha_1 + 2\alpha_2 + \dots + (\ell - 2)\alpha_{\ell-2} + \frac{1}{2}(\ell - 2)\alpha_{\ell-1} + \frac{1}{2}\ell\alpha_{\ell} \right\}.$$

 $\overline{\omega}_{\ell}$ is congruent modulo Q(R) to $\overline{\omega}$, where

$$\overline{\omega} = \begin{cases} \frac{1}{2} \left(\alpha_1 + \alpha_3 + \dots + \alpha_{\ell-2} - \frac{1}{2} \alpha_{\ell-1} + \frac{1}{2} \alpha_{\ell} \right) & (4 \mid \ell - 1), \\ \frac{1}{2} \left(\alpha_1 + \alpha_3 + \dots + \alpha_{\ell-2} + \frac{1}{2} \alpha_{\ell-1} - \frac{1}{2} \alpha_{\ell} \right) & (4 \mid \ell + 1). \end{cases}$$

Therefore we have $P(R) = \langle \alpha_1, \ldots, \alpha_{\ell-1}, \overline{\omega} \rangle$.

The case X = P(R): As a basis $\{\chi_i\}$ of X, we can take: $\chi_i = \alpha_i$ $(1 \le i \le \ell - 1), \chi_\ell = \overline{\omega}$. So we have $\alpha_i = \chi_i$ for $1 \le i \le \ell - 1$ and

$$\alpha_{\ell} = \begin{cases} 4\chi_{\ell} - 2(\chi_1 + \chi_3 + \dots + \chi_{\ell-2}) + \chi_{\ell-1} & (4 \mid \ell - 1), \\ -4\chi_{\ell} + 2(\chi_1 + \chi_3 + \dots + \chi_{\ell-2}) + \chi_{\ell-1} & (4 \mid \ell + 1). \end{cases}$$

Therefore we see that M consists of those elements $h(x, \ldots, x, y)$ with $x \in F_p^{\times}$ and $y \in F_q^{\times}$ such that

$$y^4 = x^{\ell - 1}.$$
 (2)

By solving the equation (2) for x = 1, we see that $Z = \{h(1, \ldots, 1, y \mid y^4 = 1, y \in F_q^{\times}\} \simeq \mathbb{Z}/(4, q-1)\mathbb{Z}$. Let us calculate the group M. We see

easily that the equation (2) has a solution y in F_p^{\times} for $x = \nu$ if and only if (a) $4 \mid \ell - 1$ or (b) $4 \mid \ell + 1$ and (p-1)/2 is odd, and that in case (a) (resp. in case (b)) $y = \nu^{(\ell-1)/4}$ (resp. $y = \nu^{(\ell-p)/4}$) is a solution of the equation (2) for $x = \nu$ (Case (i)). Assume that $4 \nmid \ell - 1$ and $p \equiv 1 \pmod{4}$. Then we see that the equation (2) has a solution y in F_q^{\times} for $x = \nu$ if and only if q is square, and if this is the case $y = \eta^i$ with $i = \frac{q-1}{2(p-1)} \cdot \frac{\ell-1}{2}$ is a solution and $y^{p-1} = -1$. Assume that q is non-square $(4 \nmid \ell - 1 \text{ and } p \equiv 1 \pmod{4})$. Then we see that the equation (2) for $x = \nu^2$ has a solution y in F_p^{\times} and y can be found in $(F_q^{\times})^2$ if and only if $\operatorname{ord}_2(p-1) = 2$. If $\operatorname{ord}_2(p-1) = 2$, then we may take $y = \nu^i$ with $i = \frac{\ell-1}{2} + \frac{p-1}{4}$ (then $y^{(p-1)/2} = 1$), and if $\operatorname{ord}_2(p-1) \geq 3$, then we may take $y = \nu^{(\ell-1)/2}$ (then $y^{(p-1)/2} = -1$).

The case $d = 2(SO_{2\ell})$: We have $X = \langle \alpha_1, \ldots, \alpha_{\ell-1}, \frac{1}{2}(\alpha_{\ell-1} - \alpha_{\ell}) \rangle$. So, as a basis $\{\chi_i\}$ of X, we can take: $\chi_i = \alpha_i \ (1 \leq i \leq \ell-1), \ \chi_\ell = \frac{1}{2}(\alpha_{\ell-1} - \alpha_{\ell})$. Hence we have $\alpha_i = \chi_i$ for $1 \leq i \leq \ell-1$ and $\alpha_\ell = -2\chi_\ell + \chi_{\ell-1}$. Therefore we see that M consists of those elements $h(x, \ldots, x, y)$ with $x \in F_p^{\times}$ and $y \in F_q^{\times}$ such that $y^2 = 1$, and that $Z = \{h(1, \ldots, 1, \pm 1)\} \simeq \mathbb{Z}/2\mathbb{Z}$. Clearly we can take $f = h(\nu, \ldots, \nu, 1)$.

Next we assume that ℓ is even. Then we have $P(R) = \langle Q(R), \overline{\omega}_{\ell-1}, \overline{\omega}_{\ell} \rangle$, where $\overline{\omega}_{\ell}$ is as above and

$$\overline{\omega}_{\ell-1} = \frac{1}{2} \bigg\{ \alpha_1 + 2\alpha_2 + \dots + (\ell-2)\alpha_{\ell-2} + \frac{1}{2}\ell\alpha_{\ell-1} + \frac{1}{2}(\ell-2)\alpha_\ell \bigg\}.$$

Put:

Then $\overline{\omega}_{\ell-1} \equiv \overline{\omega}'', \ \overline{\omega}_{\ell} \equiv \overline{\omega}' \pmod{Q(R)}$ if $4 \mid \ell$, and $\overline{\omega}_{\ell-1} \equiv \overline{\omega}', \ \overline{\omega}_{\ell} \equiv \overline{\omega}'' \pmod{Q(R)}$ if $\operatorname{ord}_2 \ell = 1$. Therefore we have $P(R) = \langle Q(R), \overline{\omega}', \overline{\omega}'' \rangle$.

The case $X = P(R)(\operatorname{Spin}_{2\ell})$: Let $\chi_i = \alpha_i$ for $1 \leq i \leq \ell - 2$, $\chi_{\ell-1} = \overline{\omega}'$ and $\chi_{\ell} = \overline{\omega}''$. Then $\{\chi_1, \ldots, \chi_\ell\}$ is a basis of X, and we have: $\alpha_i = \chi_i$ $(1 \leq i \leq \ell - 2), \ \alpha_{\ell-1} = 2\chi_{\ell-1} - (\chi_1 + \chi_3 + \cdots + \chi_{\ell-3})$ and $\alpha_{\ell} = 2\chi_{\ell} - (\chi_1 + \chi_3 + \cdots + \chi_{\ell-3})$. Therefore, by Lemma 4, we see that M consists of those elements $h(x, \ldots, x, y, z)$ with $x \in F_p^{\times}$ and $y, z \in F_q^{\times}$ such that $y^2 = z^2 = x^{\ell/2}$. It is clear that $Z = \{h(1, \ldots, 1, \pm 1, \pm 1)\} \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Let us calculate the group M. First, it is easy to see that, for $x = \nu$, the equations $y^2 = z^2 = x^{\ell/2}$ have solutions y, z in F_p^{\times} if and only if $\ell/2$ is even and if this is the case then $y = z = \nu^{\ell/4}$ are solutions (Case (I), (i)). Suppose therefore $\operatorname{ord}_2 \ell = 1$. Then we see that, for $x = \nu$, the equations $y^2 = z^2 = x^{\ell/2}$ have solutions y, z in F_q^{\times} if and only if (q-1)/(p-1) is even, i.e., q is square, and if this is the case then $y = z = \eta^i$ with $i = \frac{1}{2}(\frac{q-1}{p-1} \cdot \frac{\ell}{2} + q - 1)$ are solutions and $y^{p-1} = z^{p-1} = -1$ (Case (I), (ii)). Assume that q is non-square ($\operatorname{ord}_2 \ell = 1$). Then we see that, for $x = \nu^2$, the equations $y^2 = z^2 = x^{\ell/2}$ have solutions y, z in F_p^{\times} and that y, z can be found in $(F_p^{\times})^2$ if and only if (p-1)/2 if odd. In fact, if $p \equiv -1 \pmod{4}$, then taking $y = z = \nu^i$ with $i = \frac{\ell}{2} + \frac{p-1}{2}$, we have $y^{(p-1)/2} = z^{(p-1)/2} = 1$, and if $p \equiv 1 \pmod{4}$, taking $y = z = \nu^{\ell/2}$, we have $y^{(p-1)/2} = z^{(p-1)/2} = -1 \pmod{4}$.

The case d = 2: Three cases occur: (α) $\overline{\omega}' + \overline{\omega}'' \in X(SO_{2\ell})$, (β) $\overline{\omega}_{\ell-1} \in X(\operatorname{HSpin}_{2\ell})$, (γ) $\overline{\omega}_{\ell} \in X(\operatorname{HSpin}_{2\ell})$.

Case (α): We have $X = \langle \alpha_1, \ldots, \alpha_{\ell-1}, \frac{1}{2}(\alpha_{\ell-1} + \alpha_{\ell}) \rangle$. So, as a basis $\{\chi_i\}$ of X, we can take: $\chi_i = \alpha_i \ (1 \leq i \leq \ell-1), \ \chi_\ell = \frac{1}{2}(\alpha_{\ell-1} + \alpha_{\ell})$. Then we have $\alpha_i = \chi_i$ for $1 \leq i \leq \ell-1$ and $\alpha_\ell = 2\chi_{|}\ell - \chi_{\ell-1}$. Therefore, by Lemma 4, we see that M consists of those elements $h(x, \ldots, x, y)$ with $x \in F_p^{\times}$ and $y \in F_q^{\times}$ such that $y^2 = x^2$. Thus we have $Z = \{h(1, \ldots, 1, \pm 1)\} \simeq \mathbb{Z}/2\mathbb{Z}$ and we can take: $f = h(\nu, \ldots, \nu, \nu)$.

Case (β) : Assume that $4 \mid \ell$. Then we have $X = \langle \alpha_1, \ldots, \alpha_{\ell-1}, \overline{\omega}'' \rangle$. And, as a basis $\{\chi_i\}$ of X, we can take: $\chi_i = \alpha_i$ $(1 \leq i \leq \ell - 1), \ \chi_\ell = \overline{\omega}''$. So we have $\alpha_i = \chi_i$ for $1 \leq i \leq \ell - 1$ and $\alpha_\ell = 2\chi_\ell - (\chi_1 + \chi_3 + \cdots + \chi_{\ell-3})$. Hence, by Lemma 4, we see that M consists of those elements $h(x, \ldots, x, y)$ with $x \in F_p^{\times}$ and $y \in F_q^{\times}$ such that $y^2 = x^{\ell/2}$. Hence we have $Z = \{h(1, \ldots, 1, \pm 1)\} \simeq \mathbb{Z}/2\mathbb{Z}$ and we have take: $f = h(\nu, \ldots, \nu, \nu^{\ell/4})$.

Assume that $\operatorname{ord}_2 \ell = 1$. Then we have $X = \langle \alpha_1, \ldots, \alpha_{\ell-2}, \overline{\omega}', \alpha_\ell \rangle$. So, as a basis $\{\chi_i\}$ of X, we can take: $\chi_i = \alpha_i$ $(1 \leq i \leq \ell-2), \ \chi_{\ell-1} = \overline{\omega}', \ \chi_\ell = \alpha_\ell$. Then we have $\alpha_i = \chi_i$ for $1 \leq i \leq \ell-2$ and $i = \ell$ and $\alpha_{\ell-1} = 2\chi_{\ell-1} - (\chi_1 + \chi_3 + \cdots + \chi_{\ell-3})$. Therefore, by Lemma 4, we see that M consists of those elements $h(x, \ldots, x, y, x)$ with $x \in F_p^{\times}$ and $y \in F_q^{\times}$ such that $y^2 = x^{\ell/2}$. Thus we have $Z = h(1, \ldots, 1, \pm 1, 1) \geq Z/2Z$. As $\ell/2$ is odd, we see that, for $x = \nu$, the equation $y^2 = x^{\ell/2}$ has no solutions in F_p^{\times} and has a solution in F_q^{\times} if and only if (q-1)/(p-1) is even, i.e., q is square. If q is square, then $y = \eta^i$ with $i = \frac{1}{2}(\frac{q-1}{p-1} \cdot \frac{\ell}{2})$ is a solution of that equation for $x = \nu$ and $y^{p-1} = -1$. Assume therefore that q is non-square. Then we see that, for $x = \nu^2$, that equation has a solution y in F_p^{\times} and y can be found in $(F_p^{\times})^2$ if and only if (p-1)/2 is odd. In fact, if $p \equiv -1 \pmod{4}$, then $y = \nu^{(\ell+p-1)/2}$ is a solution and $y^{(p-1)/2} = 1$. If $p \equiv 1 \pmod{4}$, then $y = \nu^{\ell/2}$ is a solution.

Case (γ) : Similar to the case (β) .

This completes the proof of Lemma 8.

Lemma 9 Assume that G is a non-adjoint group of type (E_6) . Then $Z \simeq \mathbf{Z}/(3, q-1)\mathbf{Z}$ and $\tau(M) = \pi$ and f can be chosen so that $M = \langle f \rangle \times Z$ and $f^{p-1} = 1$.

This lemma is proved in [10].

Lemma 10 Assume that **G** is a non-adjoint group of type (E_7) . Then $Z \simeq \mathbb{Z}/2\mathbb{Z}$ and we have: (i) if q is square, then $\tau(M) = \pi$ and $f^{p-1} = \varepsilon$, where ε is the generator of Z; (ii) if q is non-square and $p \equiv -1 \pmod{4}$, then $(\pi : \tau(M)) = 2$ and f can be chosen so that $M = \langle f \rangle \times \mathbb{Z}$ and $f^{(p-1)/2} = 1$; (iii) if q is non-square and $p \equiv 1 \pmod{4}$, then $(\pi : \tau(M)) = 2$ and f can be chosen so that $M = \langle f \rangle \times \mathbb{Z}$ and $f^{(p-1)/2} = 1$; (iii) if q is non-square and $p \equiv 1 \pmod{4}$, then $(\pi : \tau(M)) = 2$ and f

Proof. By [1, PL.6, (VIII)], we have $P(R) = \langle Q(R), \overline{\omega}_2 \rangle$, where $\overline{\omega}_2 \equiv \frac{1}{2}(\alpha_2 + \alpha_5 + \alpha_7) \pmod{Q(R)}$, so that we have $P(R) = \langle \alpha_1, \ldots, \alpha_6, \frac{1}{2}(\alpha_2 + \alpha_5 + \alpha_7) \rangle$. Therefore, as a basis $\{\chi_i\}$ of X, we can take: $\chi_i = \alpha_i$ $(1 \leq i \leq 6)$, $\chi_7 = \frac{1}{2}(\alpha_2 + \alpha_5 + \alpha_7)$. Hence we have $\alpha_i = \chi_i$ for $1 \leq i \leq 6$ and $\alpha_7 = 2\chi_7 - \chi_2 - \chi_5$. Therefore, by Lemma 4, we see that M consists of those elements $h(x, \ldots, x, y)$ with $x \in F_p^{\times}$ and $y \in F_q^{\times}$ such that $y^2 = x^3$. Hence $Z = \{h(1, \ldots, 1, \pm 1)\} = Z/2Z$. It is easy to see that, for $x = \nu$, the equation $y^2 = x^3$ has no solutions y in F_p^{\times} and has a solution y in F_q^{\times} if and only if q is square. If q is square, then $y = \eta^i$ with $i = \frac{q-1}{p-1} \cdot 3 \cdot \frac{1}{2}$ is a solution and $y^{p-1} = -1$. We see that, for $x = \nu^2$, that equation has a solution y in F_p^{\times} and y can be found in $(F_p^{\times})^2$ if and only if (p-1)/2 is odd. In fact, if $p \equiv -1 \pmod{4}$, then $y = \nu^i$ with $i = 3 + \frac{p-1}{2}$ is a solution and $y^{(p-1)/2} = 1$ and if $p \equiv 1 \pmod{4}$, then $y = \nu^3$ is a solution and $y^{(p-1)/2} = -1$.

This proves Lemma 10.

3. The Hasse invariants of the algebras A_i

Let $\lambda \in \Lambda$, $\lambda \neq 1$. Let the μ_i , k, the k_i and the A_i be as in §1.

First we assume that $\tau(M) = \pi$ and f can be chosen so that $M = \langle f \rangle \times Z$ and $f^{p-1} = 1$ (this occurs when G is adjoint or G is non-adjoint of any one of the following types: $(A_{\ell}) \ 2 \mid \ell(\ell+1)/d$ or $\operatorname{ord}_2 d > \operatorname{ord}_2(p-1)$; $(B_{\ell}) \ 4 \mid \ell(\ell+1), (D_{\ell}) \ (\operatorname{Spin}_{2\ell})$ either (a) $4 \mid \ell(\ell-1)$ or (b) $\operatorname{ord}_2(\ell-1) = 1$ and $p \equiv -1 \pmod{4}$; $(D_{\ell}) \ (SO_{2\ell})$; $(D_{\ell}) \ (\operatorname{HSpin}_{2\ell})4 \mid \ell; (E_6)$). Put $\sigma = \tau(f)$. Then, as $\tau(\langle f \rangle) = \pi = \operatorname{Gal}(Q(\zeta_p)/Q), \sigma$ is a generator of $\operatorname{Gal}(Q(\zeta_p)/Q)$, so we see easily that k = Q and, for $1 \leq i \leq c, k_i = Q(\eta_i)$ (= the field generator over Q by the values of η_i). Let us fix $i \ (1 \leq i \leq c)$. Then, as $f^{p-1} = 1$, we have $\theta_i = \eta_i(1) = 1$. So A_i is isomorphic over k_i to the cyclic algebra $(1, k_i(\zeta_p), \sigma_i) \sim k_i$ (similar). Thus we have $m_Q(\mu_i) = m_{k_i}(\mu_i) = 1$. Here, if ξ is an irreducible character of a finite group and E is a field of characteristic 0, then $m_E(\xi)$ denotes the Schur index of ξ with respect to E.

Let \overline{Q} denote an algebraic closure of Q. Then $\operatorname{Gal}(\overline{Q}/Q)$ acts on the set $C = \{\mu_1, \ldots, \mu_c\}$. Let X be the set of orbits of $\operatorname{Gal}(\overline{Q}/Q)$ on C. For $x \in X$, put $\mu_x = \sum_{\mu \in x} \mu$. Then, as $m_Q(\mu) = 1$ for all $\mu \in C$, by a theorem of Schur (see, e.g., Feit [3, (11.4)]), each μ_x is a Q-irreducible character of L. Therefore $\lambda^L = \sum_{x \in X} \mu_x$ is realizable in Q. Therefore $\lambda^G = (\lambda^L)^G$ is realizable in Q.

Thus we get

Proposition 1 Recall that $p \neq 2$. Assume that G is adjoint or a nonadjoint group of any one of the following types: $(A_{\ell}) \ 2 \mid \ell(\ell+1)/d$ or $\operatorname{ord}_2 d > \operatorname{ord}_2(p-1); (B_{\ell}) \ 4 \mid \ell(\ell+1); (D_{\ell}) \ (\operatorname{Spin}_{2\ell}) \ either \ (a) \ 4 \mid \ell(\ell-1) \ or$ (b) $\operatorname{ord}_2(\ell-1) = 1$ and $p \equiv -1 \pmod{4}; (D_{\ell}) \ (SO_{2\ell}); (D_{\ell}) \ (\operatorname{HSpin}_{2\ell})4 \mid \ell;$ (E_6) . Then, for any $\lambda \in \Lambda, \lambda^G$ is realizable in Q.

Next, we assume that G is a non-adjoint group of any one of the following types: $(A_{\ell}) \ 2 \nmid \ell(\ell+1)/d$, $\operatorname{ord}_2 d \leq \operatorname{ord}_2(p-1)$ and q square; $(B_{\ell}) \ 4 \nmid \ell(\ell+1)$ and q square; $(C_{\ell}) \ q$ square; $(D_{\ell}) \ (\operatorname{Spin}_{2\ell})q$ square and (a) $\operatorname{ord}_2 \ell = 1$ or (b) $\operatorname{ord}_2(\ell-1) = 1$ and $p \equiv 1 \pmod{4}$; $(D_{\ell}) \ (\operatorname{HSpin}_{2\ell})q$ square and $\operatorname{ord}_2 \ell = 1$; $(E_7) \ q$ square. Then, by Lemmas 5–10, we see that $\tau(M) = \pi$ but there is no f such that $M = \langle f \rangle \times Z$ and $f^{p-1} = 1$.

In the following, if E is a finite extension of Q (that is E is an algebraic number field of finite degree) and B is a finite dimensional central simple algebra over E, then, for any place v of E, $h_v(B)$ denotes the Hasse invariant of E at E_v .

We arrange the characters η_1, \ldots, η_c of Z (c = |Z|) as follows: If Z is

Schur indices

cyclic, then we fix a generator z of Z and a primitive c-th root ζ_c of unity and we assume that $\eta_i(z) = \zeta_c^i$ for $1 \leq i \leq c$. If $Z \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ (this case occurs when $G = \operatorname{Spin}_{2\ell}$ with $\operatorname{ord}_2\ell = 1$, and in this case we have $Z = \{h(1, \ldots, 1, \pm 1, \pm 1)\}$), then we assume that $\eta_i(h(1, \ldots, 1, -1, -1)) = (-1)^i$, $1 \leq i \leq 4$ (we note that f can be chosen so that $f^{p-1} = h(1, \ldots, 1, -1, -1)$). Then we have k = Q, $k_i = Q(\eta_i)$ $(1 \leq i \leq c)$ and $A_i \sim k_i \otimes_Q((-1)^i, Q(\zeta_p), \sigma)$ $(1 \leq i \leq c)$.

If *i* is even, then A_i splits in k_i . Suppose that *i* is odd. Put $A = (-1, Q(\zeta_p), \sigma)$. Then we have $h_{\infty}(A) \equiv h_p(A) \equiv \frac{1}{2} \pmod{1}$ and $h_r(A) \equiv 0 \pmod{1}$ for any finite place *r* of *Q* different from *p*. If $Z \simeq \mathbb{Z}/2\mathbb{Z}$ or $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, then $k_i = Q$ and $A_i = A$. Suppose that *Z* is cyclic and that $Z \not\simeq \mathbb{Z}/2\mathbb{Z}$. Let *v* be any place of k_i . Then if *v* is infinite, we have $h_v(A_i) \equiv \frac{1}{2} \pmod{1}$ or $\equiv 0 \pmod{1}$ according as *v* is real or imaginary. If *v* is a finite place of k_i such that $v \nmid p$, then $h_v(A_i) \equiv 0 \pmod{1}$. Suppose that *v* | *p* and put $f_i = [(k_i)_v : Q_p]$. Then $h_v(A_i) \equiv \frac{1}{2}f_i \pmod{1}$.

Lemma 11 Assume that G is of type (A_{ℓ}) where $2 \nmid \ell(\ell+1)/d$, $1 \leq \operatorname{ord}_2(\ell+1) \leq \operatorname{ord}_2(p-1)$ and q is square or $G = \operatorname{Spin}_{2\ell}$ where $\operatorname{ord}_2(\ell-1) = 1$, $p \equiv 1 \pmod{4}$ and q is square. Let $q = p^{2^{t_s}}$ with (2, s) = 1. Recall that i is odd. Then $2 \nmid f_i$ if and only if any odd prime divisor of c/(c, i) divides $p^s - 1$. In particular, if $G = \operatorname{Spin}_{2\ell}$, then f_i is odd.

Put $c_i = c/(c,i)$. c_i is equal to the order of ζ_c^i . Then f_i is Proof. equal to the smallest positive integer h such that $p^h \equiv 1 \pmod{c_i}$. The integers $h \geq 1$ such that $p^h \equiv 1 \pmod{c_i}$ form the semigroup generated by f_i . So f_i divides $2^t s$ since $q \equiv 1 \pmod{c_i}$. Hence f_i is odd if and only if f_i divides s. But, if $f_i \mid s$, then $p^{f_i} - 1 \mid p^s - 1$, so $p^s \equiv 1 \pmod{c_i}$, hence $f_i | s$ again. Therefore it suffices to show that the condition that $c_i \mid p^s - 1$ is equivalent to the condition which is stated in the lemma. For an integer m, let V(m) be the set of odd prime divisors of m. Then we have $V(p^s - 1) \cap V((q - 1)/(p^s - 1)) = \emptyset$ since $(p^s - 1, (q - 1)/(p^s - 1)) = \emptyset$ $(p^s - 1, 2^t) = a$ power of 2. Suppose that $V(c_i) \subset V(p^s - 1)$. Then, for any $r \in V(c_i)$, r divides $p^s - 1$, so that the r-part r^e of c_i divides $p^s - 1$ since r is an odd divisor of $q - 1 = (p^s - 1)((q - 1)/(p^s - 1))$. And we have $\operatorname{ord}_2 c_i \ (\leq \operatorname{ord}_2(\ell+1)) \leq \operatorname{ord}_2(p-1) = \operatorname{ord}_2(p^s-1)$. Thus we have seen that $\operatorname{ord}_r c_i \leq \operatorname{ord}_r (p^s - 1)$ for any prime divisor r of c_i . Hence c_i divides $p^s - 1$. Conversely, if c_i divides $p^s - 1$, then clearly $V(c_i) \subset V(p^s - 1)$. This proves the lemma. \square

Z. Ohmori

Suppose that G is of type (A_{ℓ}) where q is square, $2 \nmid \ell(\ell + 1)/d$ and ord₂ $d \leq \operatorname{ord}_2(p-1)$. Let i be the odd part of c. Then c_i is equal to the 2-part of c, so $V(c_i) = \emptyset$. Hence f_i is odd and $h_v(A_i) \equiv \frac{1}{2} \pmod{1}$ if v is any place of k_i lying above p. Hence we have $m_{Q_p}(\mu_i) = 2$. Here, if χ is an irreducible character of a finite group and if E is a field of characteristic 0, then $m_E(\chi)$ denotes the Schur index of χ with respect to E.

Suppose that $G = \text{Spin}_{2\ell}$ where $\operatorname{ord}_2(\ell - 1) = 1$ and q is an even power of $p \equiv 1 \pmod{4}$ (cf. Lemma 8). Then $Z \simeq \mathbb{Z}/4\mathbb{Z}$. Suppose that i is odd. Then $c_i = 4$, so $V(c_i) = \emptyset$. Hence f_i is odd and we have $m_{Q_p}(\mu_i) = 2$.

Thirdly, we assume that G is a non-adjoint group of any one of the following types: $(A_{\ell}) \ 2 \nmid \ell(\ell+1)/d$, $\operatorname{ord}_2 d = \operatorname{ord}_2(p-1)$ and q non-square; $(B_{\ell}) \ 4 \nmid \ell(\ell+1)$, q non-square and $p \equiv -1 \pmod{4}$; $(C_{\ell}) \ q$ non-square and $p \equiv -1 \pmod{4}$; $(D_{\ell}) \ (\operatorname{Spin}_{2\ell})q$ non-square, $\operatorname{ord}_2(\ell-1) = 1$ and $\operatorname{ord}_2(p-1) = 2$; $(\operatorname{Spin}_{2\ell})q$ non-square, $\operatorname{ord}_2\ell = 1$ and $p \equiv -1 \pmod{4}$; $(HSpin_{2\ell})q$ non-square, $\operatorname{ord}_2\ell = 1$ and $p \equiv -1 \pmod{4}$; $(HSpin_{2\ell})q$ non-square, $\operatorname{ord}_2\ell = 1$ and $p \equiv -1 \pmod{4}$; $(E_7) \ q$ non-square and $p \equiv -1 \pmod{4}$. Then we have $(\pi : \tau(M)) = 2$ and f can be chosen so that $M = \langle f \rangle \times Z$ and $f^{(p-1)/2} = 1$ (cf. Lemmas 5–10). In this case k is the quadratic subfield of $Q(\zeta_p)$, i.e., $k = Q(\sqrt{(-1)^{(p-1)/2}p})$. For $1 \leq i \leq c$, we have $\theta_i = 1$, so A_i splits in k_i . Hence any λ^G is realizable in k.

Finally, we assume that G is a non-adjoint group of any one of the following types: $(A_{\ell}) \ e \nmid \ell(\ell+1)/d$, $\operatorname{ord}_2 d < \operatorname{ord}_2(p-1)$ and q non-square; $(B_{\ell}) \ 4 \nmid \ell(\ell+1)q$ non-square and $p \equiv 1 \pmod{4}$; $(C_{\ell}) \ q$ non-square and $p \equiv 1 \pmod{4}$; $(D_{\ell}) \ (\operatorname{Spin}_{2\ell})q$ non-square, $\operatorname{ord}_2(\ell-1) = 1$ and $\operatorname{ord}_2(p-1) \ge 3$; $(\operatorname{Spin}_{2\ell})q$ non-square, $\operatorname{ord}_2\ell = 1$ and $p \equiv (\operatorname{mod} 4)$; $(\operatorname{HSpin}_{2\ell})q$ non-square, $\operatorname{ord}_2\ell = 1$ and $p \equiv 1 \pmod{4}$; $(E_7) \ q$ non-square and $p \equiv 1 \pmod{4}$. Then we have $(\pi : \tau(M)) = 2$ and f can be chosen so that $|\langle f^{(p-1)/2} \rangle| = 2$. We arrange the characters η_1, \ldots, η_c of Z as before. Then k is the quadratic sub-field of $Q(\zeta_p)$ and if i is even A_i splits in k_i . Assume that i is odd. Then we have $A_i \sim k_i \otimes_k B$, where B is the cyclic algebra $(-1, k(\zeta_p), \sigma)$ over k. By [8, Proposition 1], we see that B has non-zero Hasse invariants only at two real places of k and no others. Thus we have $m_R(\mu_i) = 2$ or 1 according as μ_i is real or not.

Assume that G is of type (A_{ℓ}) and $\operatorname{ord}_2 d = 1$. Let *i* be the odd part of *c*. Then $c_i = 2$ and $A_i = B$. Hence we have $m_R(\mu_i) = 2$. Assume that G is of type (B_{ℓ}) . Then i = 1 and $A_1 = B$. So we have $m_R(\mu_1) = 2$. Similarly, if *G* is of type (C_{ℓ}) , then we have $m_R(\mu_1) = 2$. Assume that *G* is of type (D_{ℓ}) . If $Z \not\simeq \mathbb{Z}/4\mathbb{Z}$, then k_i is real, so we have $m_R(\mu_i) = 2$. If $Z \not\simeq \mathbb{Z}/4\mathbb{Z}$, then k_i is not real, so we have $m_R(\mu_i) = 1$. Assume that **G** is of type (E_7) . Then $k_i = k$, so we have $m_R(\mu_1) = 2$.

4. The Schur index

Let G be a simple algebraic group, defined and split over a finite field F_q , and let G be the group of its F_q -rational points. Let χ be any irreducible character of G. We assume that there is a linear character λ in Λ such that $(\lambda^G, \chi)_G = 1$ or that when p is a good prime for $G p \nmid \chi(1)$. We assume that $p \neq 2$.

Theorem 1 ([10]) We have the following.

- (i) We have $m_Q(\chi) \leq 2$.
- (ii) If $p \equiv -1 \pmod{4}$, then we have $m_{Q(\sqrt{-p})}(\chi) = 1$.
- (iii) If $p \equiv 1 \pmod{4}$, then, for any finite place v of $Q(\sqrt{p})$, we have $m_{Q(\sqrt{p})v}(\chi) = 1$.
- (iv) If q is square, then, for any prime number $r \neq p$, we have $m_{Q_r}(\chi) = 1$.

By proposition 1 and the argument in the proof of Corollary 4 in [10], we get:

Theorem 2 In the following cases, we have $m_Q(\chi) = 1$: (i) \boldsymbol{G} adjoint; (ii) $(A_\ell) \ 2 \mid \ell(\ell+1)/d \text{ or } \operatorname{ord}_2d > \operatorname{ord}_2(p-1)$; $(B_\ell) \ 4 \mid \ell(\ell+1)$; $(D_\ell) \ (\operatorname{Spin}_{2\ell})$ either $4 \mid \ell(\ell-1)$, or, $\operatorname{ord}_2(\ell-1) = 1$ and $p \equiv -1 \pmod{4}$; $(SO_{2\ell})$; (HSpin_{2\ell})4 $\mid \ell$; (E_6) .

Similarly, by the arguments in $\S3$, we get:

Theorem 3 Let k be the quadratic subfield of $Q(\zeta_p)$. Then in the following cases we have $m_k(\chi) = 1 : (A_\ell) \ 2 \nmid \ell(\ell+1)/d$, $\operatorname{ord}_2 d = \operatorname{ord}_2(p-1)$ and q non-square; $(\operatorname{Spin}_{2\ell})q$ non-square, $\operatorname{ord}_2(\ell-1) = 1$ and $\operatorname{ord}_2(p-1) = 2$.

Theorem 4 Assume that G is non-adjoint. Let $\lambda \in \Lambda_0$. Then in any one of the following cases λ^G contains an irreducible character of the Schur index 2 over $Q: (A_\ell)$ either (a) q square, $2 \nmid \ell(\ell+1)/d$, $\operatorname{ord}_2 d \leq \operatorname{ord}_2(p-1)$, or (b) q non-square, $2 \nmid \ell(\ell+1)/d$, $\operatorname{ord}_2 d = 1 < \operatorname{ord}_2(p-1)$; (B_ℓ) either (a) $4 \nmid \ell(\ell+1)$, q square, or (b) $4 \nmid \ell(\ell+1)$, q non-square, $p \equiv 1 \pmod{4}$; (C_ℓ) either (a) q square, or (b) q non-square, $p \equiv 1 \pmod{4}$; $(\operatorname{Spin}_{2\ell})$ either (a) $\operatorname{ord}_2 \ell = 1$, q square, or (b) $\operatorname{ord}_2 \ell = 1$, q non-square, $p \equiv 1 \pmod{8}$, or (c) $\operatorname{ord}_2(\ell-1) = 1$, q square, $p \equiv 1 \pmod{4}$; $(\operatorname{HSpin}_{2\ell})$ either (a) $\operatorname{ord}_2\ell = 1$, q square, or (b) $\operatorname{ord}_2\ell = 1$, q non-square, $p \equiv 1 \pmod{4}$; (E_7) either (a) q square, or (b) q non-square, $p \equiv 1 \pmod{4}$.

We repeat the argument in the proof of Theorem 4 of |12|. Assume Proof. that **G** is a non-adjoint simple group of type (A_{ℓ}) where q is square, 2 \nmid $\ell(\ell+1)/d$ and $\operatorname{ord}_2 d \leq \operatorname{ord}_2(p-1)$. Then we see from the argument in §3 that k = Q and there is an irreducible character μ_i of L such that $m_{k_i}(\mu_i) = 2$ $(\lambda \in \Lambda_0)$. By the arguments in §1, we see that $\Gamma_{\lambda,i}$ is multiplicity-free and $(\Gamma_{\lambda,i},\Gamma_{\lambda,i})_G$ is odd. Let X be the set of all the irreducible components of $\Gamma_{\lambda,i}$. Then, by Schur's lemma, we see that, for any $\chi \in X$, we must have $\chi \mid Z = \chi(1)\eta_i$. Therefore we find that $Q(\Gamma_{\lambda,i}) \subset k_i$. We show that there is a character χ in X such that $m_{k_i}(\chi) = 2$. Suppose, on the contrary, that we have $m_{k_i}(\chi) = 1$ for all $\chi \in X$ (cf. Theorem 1 (i)). Then we see from the theorem of Schur that $\Gamma_{\lambda,i}$ is realizable in k_i . But, then, as $(\Gamma_{\lambda,i} \mid L, \mu_i)_L =$ $(\Gamma_{\lambda,i},\Gamma_{\lambda,i})_G$ is odd, we must have $m_{k_i}(\mu_i) = 1$, a contradiction. Therefore X must contains a character χ such that $m_{k_i}(\chi) = 2$. The remaining cases \square can be treated similarly.

References

- [1] Bourbaki N., Groupes et Algèbres de Lie. Chapitres 4, 5 et 6. Hermann, Paris, 1968.
- [2] Carter R.W., Finite Groups of Lie Type: Conjugacy Classes and Complex Characters. John Wiley and Sons, 1985.
- [3] Feit W., Characters of Finite Groups. Benjamin, New York-Amsterdam, 1967.
- [4] Gal'fand I.M. and Graev M.I., Constructions of irreducible representations of simple algebraic groups over a finite field. Soviet Math. Dokl. 3 (1962), 1646–1649.
- [5] Gow R., Schur indices of some groups of Lie type. J. Algebra 42 (1976), 102–120.
- [6] Gow R., On the Schur indices of characters of finite classical groups. J. London Math. Soc. (2), 24 (1981), 135–147.
- [7] Helversen-Pasotto A., Sur l'indices de Schur des représentations de $GL(n, F_q)$. C. R. Acad. Sc. Paris, t. **283** (20 septembre 1976), Serie A, 233–235.
- [8] Janusz G.J., Simple components of Q[SL(2,q)]. Commun. Algebra 1 (1974), 1–22.
- [9] Ohmori Z., On the Schur indices of reductive groups. Quart. J. Math. Oxford (2), 28 (1977), 357-361.
- [10] Ohmori Z., On the Schur indices of certain irreducible characters of reductive groups over finite fields. Osaka J. Math. 25 (1988), 149–159.
- [11] Ohmori Z., On the Schur indices of certain irreducible characters of simple algebraic groups over finite fields. Proceed. Japan Acad. 64, Ser. A, No. 7, (1988), 253–255.
- [12] Ohmori Z., On the Schur indices of $SU_{\ell+1}(F_q)$ and $\operatorname{Spin}_{2\ell}^-(F_q)$. Tokyo J. Math. 18 (1995), 11-29.

- [13] Steinberg R., Lectures on Chevalley Groups. Yale Univ., 1967.
- [14] Yamada T., The Schur Subgroup of the Brauer Group. Lecture Notes in Math. 397, Springer, Berlin-Heidelberg-New York, 1974.
- [15] Yokonuma T., Sur le commutant d'une représentation d'un groupe de Chevalley fini.
 J. Fac. Sci. Univ. Tokyo 15 (1968), 115–129.

Iwamizawa College Hokkaido University of Education Midorigaoka, Iwamizawa 068-0835, Hokkaido Japan