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LP-L9? asymptotic behaviors of the solutions
to the perturbed Schrodinger equations

Naoyasu KiTA
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Abstract. We consider the asymptotic behaviors of a solution to the Schrédinger equa-
tion as t goes to oo. We present the sharp asymptotics in L (R™). In particular, the
low energy part of the perturbed dynamics is dominant to the L° scattering and an
explicit asymptotic form is shown in the uniform convergence topology.

Our approach to prove the results is based on the application of two facts, i.e., the
local energy decay of e~ *H P, (H) due to Jensen-Kato [4] and the LP-boundedness prop-
erties of wave operators due to Yajima [10].
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1. Introduction

In this paper, we consider the asymptotic behaviors of the solution to
the linear Schrodinger equation of the following type:

10yu = Hu,

ult=0 = ¢,

(1.1)

where u is a complex valued function of (t,z) € R x R™ (m > 3). H is the
Hamiltonian of the form H = Hy + V, where Hy = —A and V is a short
range scalar potential.

If the potential V is rapidly decreasing as |z| — oo, a particle governed
by the above dynamics is expected to be asymptotically free for large time
t. In view of the quantum mechanics, this means that the quantum state
approaches to the free state. Mathematically, the solution u(t,z) of (1.1)
tends to the solution v(¢, z) of the free equation i:9;v = Hyv. More precisely,
by introducing the wave operators Wy = s—1limy_, 1o, e e~ Ho jn LQ(Rm),
it is well-known that, if ¢ belongs to the absolutely continuous part of H,
then |le"®H ¢ — e~HoW 1|2 — 0 as t — +o0, where W2 are the adjoint
operators of Wi. This scattering result can be extended into the general
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situation in LI(R™). Let P,.(H) is the orthogonal projection onto the
absolutely continuous subspace of H. For some appropriate potential V/,
we note that the LP-L9 estimate ||e = P, (H)@| 1« < C|t|=™1/2=1/9)| ¢|| 1
holds with 1 <p <2and 1/p+1/q = 1. Also we have the LP-boundedness
of Wi. If 6, p' and ¢ satisfy 1/p’+1/¢’ =1 and 1/qg =6/2+ (1 —-0)/q¢
for 0 < 6 < 1, then, by the Holder inequality, it follows that, for ¢ €
L*(R™) N L” (R™),

”e—itHPac(H)¢ _ e_itHOW:T:d)”Lq
< e H Pac(H) — e HOWL 6| e H Puc(H) — e oW1 g7
< C|t|—m(1/2-1/q)“e—ithac(H)¢ — e—itHoW;(z)Hiz“(b”;Iq (1.2)

Since |le M P,.(H)p — e tHoW2 |2 = o(1) as t — 400, this estimate
shows that the left hand side of decays at a rate faster than
|t|—m(1/2-1/q),

Our main concern is now to study the case when ¢ = co. We shall show
that, in this case, the decay rate is just equal to |t|"m/ 2 but not smaller
order in general.

To state our result precisely, we specify the potential V' as follows.

(V) Assumptions on V:
(V-1) V is a real valued function.
(V-2) There exists some d > 3m/2 + 1 such that

sup ((z)5|8°‘V(w)|) < 00
zeR™

holds for any o with |a| < m — 3.
(V-3) In addition, if 3 < m < 6, we assume that

Ve LYR™),
where V stands for the Fourier transform of V.

Note that, if m > 7, then the smoothness condition (V-2) automatically
implies (V-3).

We call that zero is the resonance of H if the equation —Au + Vu =10
(in distribution sense) has a solution w such that v ¢ L?(R™) but (1 +
|z|2)~"/?u € L3(R™) for any v > 1/2. We assume the second assumption
according to [4].
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(S) Spectral assumption of H: Zero is neither an eigenvalue nor a
resonance of H.

Under the assumption (V), it is well-known that
(i) H is the self-adjoint operator on L?(R™) with the domain D(H) =
H*(R™),
(ii) the wave operators W exist,
(iii) Wy are complete (see for example [1], [6]).
We are now in the position to state our result.

Theorem 1.1 Suppose that the assumptions (V) and (S) are satisfied.
Then, the operators e P, (H) — e ®HoW: can be extended from
B(L?*(R™)) to B(L*(R™); L>*(R™)) for t # 0. Besides, for ¢ € L'(R™),
we have

lim (47it)™? (e "1 P, (H)¢ — e tHow s ¢)

t—to0

= —((I+GoV)'1,$)GoV(I + GoV) ™11, in L®(R™), (1.3)

where Go(=(—A)"1) s the integral operator defined by Gop(z) =
m [z—y|"™2¢(y)dy (wm is the surface measure of the unit sphere).

We note some technical remarks.

Remark 1.1 According to [2]-[4], the inverse of I + GoV exists in the
weighted Sobolev spaces if the spectral assumption (S) is satisfied. Since we
can show that both (I+GoV)~11 and GoV (I +GoV)~!1 belong to L>®(R™)
(see and 2.4), the right hand side of (1.3) is well-defined for any
¢ € LY(R™).

Remark 1.2 If ¢ € LY(R™), then (4nit)™/2e"tHoWtp — (1, Wid)l as
t — Foo in H%™ = {f;(z)"7f € L?} with v large enough. Applying
Theorem 1.1 and the local energy decay estimate of e /P, .(H)¢ (see
below), we can show that

~(LWI)L = lim (4mit)™/* (e Poc(H)g — e~ *HoW1g)
- gimoo(4wit)m/ 2.-itHp (H)¢
= —(I+GoV)'1,¢)1 in HO.

Hence, Wig(0) = (1,Wi¢) = ((I + GoV)~'1,4) for any ¢ € LI{(R™).
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This implies, from the physical point of view, that the zero momentum
component of the state W}i¢ contributes to the right hand side of (1.3).
Note that ((I + GoV)711, ¢) is generally away from O.

Remark 1.3 We note that the right hand side of (1.3) is not identically
zero unless V' = 0. In fact, one can show that GoV (I + GoV)~!1 = 0 only
if V=0 If GoV(I+GoV) 11 =0, then 1 = (I+GoV)(I+GoV) 1=
(I +GoV)™11 and it follows GoV1 =0, ie., V = (-=A)GoV'1 = 0.

The result of [Theorem 1.1l shows a large contrast with the scattering
result in LI(R™) when ¢ < oo. In fact, the right hand side of (1.3)
is basically the low energy part of the asymptotic expansion
i [0 e =9 oy e=isHp (H)$ ds. This term is visible only when we ob-
serve the scattering in L>°(R™) space.

Before closing this section, we introduce some notations. Let {,-) be
the inner product defined by

(f.9)= [ f(2)g(z)dz
Rm™

S’ denotes the space of tempered distributions and H°Y(R™) is the weighted
Sobolev space given by

H*(R™) = {f € 8 flony=II(1 + [21?)72(1 = A)°/2 f|| 12 < o0}.

Note that the norm ||(1— A)?/2(1+|z|%)?/2 f| L2 is equivalent to || f||, . We
often use the brief notations LP, H*" in place of LP(R™), H%7(R™). The
abbreviation B(X) stands for B(X; X).

2. Preliminaries

We start to state the asymptotic behaviors of the perturbed Schrodinger
evolution due to Jensen [2]-[3] and Jensen-Kato [4].

Lemma 2.1 ([2|-]4]) For m >3, Let v,y > m/2+1 (if m is odd) and
Y, > m/2+ 2 (if m is even). Under the assumptions (V) and (S), we
have

e—itHPac(H)
= (4mit) ™I + GoV) 11, YT + GoV) L+ o(t™™2)  (2.1)

as t — Foo in B(H®Y(R™); HO—7' (R™)).
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For the proof of Lemma 2.1, see [4] (cf. [2], [3]). O

To extend the operators e *H P, (H) — e ®HoWw} from B(L?) to
B(L'; L), we need the LP-boundedness of Wi. This properties of Wi
was proved by Yajima [10].

Lemma 2.2 ([10]) Let m >3 and 1 < p < 0o. Then, under the assump-
tions (V) and (S), the wave operators Wy are extended from B(LP(R™)) to
B(LP(R™)) and it follows that there exists a positive constant C such that

IWxllgry < C. (2.2)

For the proof of lemma 2.2, see [8] and (cf. [9]). O

Remark 2.1 In [8], Yajima proved the LP-L? estimate of e"®Hp (H) by
applying the LP-boundedness of Wy. Since e *H P, (H) = Wie #How},
it follows that, for 1/p+1/g=1and 1 <p <2,

le™H Poc(H)|Is(LrsLey < Clt|7™0/271/9), (2.3)

Remark 2.2 In [10], is proved under more general situation.
For example, instead of the assumption (V-2), holds if V satisfies

1/po
sup <x>6(/ |a°*V(y>|P°dy) < o0
zeR™ lz—y|<1

for |a] < m — 3, where pp > m/2 if m > 4, and pg = 2 if m = 3. In this
paper, however, we assume the condition (V) for simplicity of the proof.

On account of the following lemmas, the right hand side of (1.3) makes
a sense for any ¢ € L'(R™).

Lemma 2.3 Let V satisfy the assumption (V). Then,
(I 4+ GoV)~ ! € B(L®(R™)). (2.4)
Moreover, if 0 <o <m—3 and m/2 < 7, then

(I +GoV)™! € B(H™™(R™)). (2.5)

Proof of Lemma 2.3 Since L® ¢ H% ™ for v > m/2, g = (I + GoV)~1f



334 N. Kita

is well-defined in H%~7. To show g € L*, we rewrite g as

g = Z (—GoVY f + (=GoV)N(I + GoV) ' f

2?
Lo

IH

Aj(f) + Rn(f), (2.6)

<.
I
o

where N is the largest integer not to exceed (m+1)/2. We apply the Holder
inequality to obtain

14;(F) ()]

— | (m=2) A
o[ [ Je v
S CIIVA;1(f)llze + CIIVA;—1(f)Iz,

where p; > m/2 if m > 4 and p; = 2 if m = 3. From the Hardy-Littlwood-
Sobolev inequality, we see that Go € B(LF; L?) with 1/¢ = 1/p — 2/m. On
the other hand, Gy € B(H®Y; H%~"") for some v, > 1/2 and vy +v' > 2
(see, e.g., [3]; Lemma 2.3)). Then, it follows that

IVAi—1(Hlliee < Cl) VIRV £ e
< Clifz)’ V)] oonfn[,oo

VA1l < CIHPVILLNV Fllosy
< Cl{@)° VI ol Fll oo,

where p; = m/2j + € and § can be seen in the assumptions on V. Hence,
there exists Cy > 0 depending on V such that

14 (HllLe < Cv || fllLoe- (2.7)
Similarly, we can show that
| RN (f)l oo
< Cl@)VIIE=" (IVU + GoV) fllzew + VI +GoV) ™ fllo)
< CIz) V(| 3oo || £ | oo (2.8)

Note that, we have used the fact that (I+GoV)~! € B(H*™) for v > m/2

in the last inequality of [2.8). Hence [2.6), and give us in

Lemma 2.3. The proof of is easily shown by the expansion and
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the fact that Go € B(H~27; H~"') for 4,94 > 1/2,7++ >2and 0 € R
(see, e.g., [3]; Lemma 2.4). O

Lemma 2.4 Let V satisfy the assumption (V).
If f € Hm/2A-L-[m/2-Y(R™)  then [F®eisHoV fds € L®°(R™) and we
have

+o0
/ e*Hoy fds = —iGoV f. (2.9)
0

Proof of Lemma 2.4. We start the proof by showing that the integral in
the left hand side of makes a sense in L*°. For sufficiently large Nj,
N, with N; > N», we have, by using L!-L™® estimate of e**/0 that

Ny
/ ey fds

Ny

Loo
Ny
<c / s 2V £l ads
< O™ = Ny )@YV oo 1 £ llo,—pmy2)-1- (2.10)

Hence, the left hand side of (2.10) tends to 0 as Ny, No — 00.
On the other hand, for small €; and €3, it follows that

€1 €1 . L~
/ eSOy fds|| = / / SEITETF(£)deds
€ Loo €2 Loo

- / R D I BT

LOO
< / @ e THEld. (2.11)

By Lebesgue’s dominated convergence theorem, the right hand side of (2.11)
tends to 0 as €;, e — 0 if we show that £ 2V f € L. By applying the L!-L*®
estimate of the Fourier transform and the Schwarz inequality, we obtain

12T F s < (/ . / l>1) 2V (©)\de

CIV fllr + ATV £l 2)

C  sup  |[{&)°0°VI|zeoll fllmy2)—1,~my2—1 < 00
lo|<[m/2]-1

IA I/\
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Thus, limy 00 e—0 LN e*Hoy fds € L. To show the identity (2.9), we put
Y € Cg°(R™) and we observe, by Fubini’s theorem,

oo N, 9 —~
<¢,/ eZSHOVfds> = lim <¢,e'5S Vf> ds
0

N—o00,e—0 J,
_ . T iNEZ  eg? —2A>
ylm (=i — )2y
= ($,i672VF) = (0, iGoV ).
The case N — —oo can be shown similarly. This completes the proof. O

The following lemma is well known. (see e.g. Journé-Soffer-Sogge [5]).

Lemma 2.5 Let V ¢ Ll(Rm). Then, for 1 < p < oo, eioHoy g—icHo ¢
B(LP(R™)). Moreover, it follows that

leeHove=ioHo| gy < (21) ™| V| 1. (2.12)

3. Proof of Theorem 1.1

To prove [I’heorem 1.1, we use the representation due to Cook—Kuroda.
e—itHPac(H)¢ _ e_itHOW;Qb

+oo . .
= / e~it=s)Hoy =i p (F)gds
t
too ]
= / eistfloye=is1+)H p (H)ods;. (3.1)
0

We decompose the integral range into two parts.

(The right hand side of [3.1))

oo )
= z/ eislHOVe“’(SIH)HPac(H)qbdsl
+e

+e
+1 / estfloye=isitOH p (H)ods,
0
= Q:t (t’ €, ¢) + Ri(ta ¢, ¢) (32)

To estimate R, (t,¢,¢), we need the following proposition.
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Proposition 3.1 For small € > 0, it follows that
|Re(t € @)z < Cvelt|™2[¢llLs, (3.3)

where Cy is a positive constant depending on V but independent of e.

Proof of [Proposition 3.1. We only show the estimate of Ry(t,€,¢) since
the result for R_(t,¢,¢) is proved by similar arguments. Putting f =
e *H P, (H)p for ¢ € L2 N L, we have Ry (t,¢,¢) = [ etHove=s1H fds,.
Note that Remark 2.1 gives us f € L? N L™ for t > 0.

By Duhamel’s formula, it follows that

ei‘rHQVe-—i‘er — e'i’rH()Ve—-iTHO¢
T
—i/ eimHoy gmirHo(gioHoy o=ioH £Yq5 (3 4)
0

Applying to (3.4), we obtain
le™ Ve T fll e < CIVIILlfllze
.
+CHV||L1/ le*Hove=7H f|| oo do.
0

Hence, Gronwall’s inequality gives us the estimate,

e HoVe=iTH || oo < C|[V |11 exp(CTI[V [ 2| £ll o
< Cvllflle (3.5)

for small 7 > 0. Using [(3.5), we see that

”R+(t’€’ (b)HL‘” < CVEHf“L"o
< Cvelt| ™21l .

This completes the proof of Proposition 3.1 |

In what follows, we use the notations; (I + GoV)™11 = g and (({ +
G()V)_ll,gb) = C¢-

Proof of Theorem 1.1. Let ¢ be a rapidly decreasing function. By Lemma
2.1, we decompose Q4 (t, €, ) in as

(4rit)™2Q.4 (¢, €, )
= ic¢/ e Hoym/2(s 4+ 1) ™™ 2ygds
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oo .
+ z/ etsHoym/28(s 4 t)pds

= (4mit)™2QV(t, e, 0) + (4mit)™2QP (¢, ¢, ¢), (3.6)

where S(o) is the operator satisfying ”S(U)”B(HM;H&—'Y’) = o(c™™/?) as
o — 0. Since

oo .
1(4mit)™2Q1 (¢, e, ¢) — icy / e*HoV uods|| oo
oo €
< C/ s™m/2 (1 —t™2(s + t)—m/2) |IVug|| 1 ds,
1t is easy to see that the first term of has a limit

lim (47rit)m/2Q$)(t, €, )
t—o0

o0
= iC¢/ e HoVyuods in L. (3.7)
Similarly, for the second term in [3.6), we can show that
lim (4rit)2QP (t,e,¢) =0 in L®. (3.8)

Hence, by (3.7), (3.8) and [Proposition 3.1, we obtain

. (x> .
lim sup”(47rz‘t)m/2(e-“HPac(H)¢_e—tHoWj_qs) — icg / e’SHOVuods“L
0 o0

t—o0

< Hc¢/ eisH"VuodsHLoo + Cvel|d|| - (3.9)
0

Since ug € HIM/2-1-[m/2-1 p in Lemma 2.3, we can apply
2.4 to obtain fooo etHoVuods = —iGoVuyg. According to (2.11) in the proof
of Lemma 2.4, the first term in the right hand side of vanishes as €
tends to 0. Hence, by letting ¢ — 0, we prove [Theorem 1.1 for rapidly
decreasing functions ¢. Note that ((I + GoV)™!,-) can be extended to the
operator in B(L'; C) (see in Lemma 2.3). Taking into account of the
L'-L™ estimates to e *# P, (H) and e~*HoW3} (see Remark 2.1) together
with the simple density argument, we obtain [Theorem 1.1 for any ¢ € L!.

Il
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