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Pseudo vector bundles and quasifibrations
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Abstract. We prove a topological result concerning the kernel ker d of a morphism d :
Earrow F of holomorphic vector bundles over a complex analytic space. As a consequence,
we show that the projectivization P(ker d) is a quasifibration up to some dimension. We
give an application to the Abel-Jacobi map of a Riemann surface, and to the space of
rational curves in the symmetric product of a Riemann surface.
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1. Introduction

Let d : Earrow F be a morphism of (smooth) vector bundles over a
manifold M. If the rank of d_{m} : E_{m}arrow F_{m} is independent of m , the space

L=kerd=m\in M\cup ker d_{m}

is a subbundle of E . In general, however, the fibres of the map \pi : Larrow M

are vector spaces of varying dimensions, and the topological behaviour of \pi

can be very complicated; it will certainly not be locally trivial.
In the complex analytic category, the topological behaviour of \pi is more

predictable. We shall show that \pi “resembles” a vector bundle from the
viewpoint of homotopy theory, and in particular that the projectivization
P(\pi) : P(L)arrow M is a quasifibration up to some dimension (Theorem 2.3).

Our results are valid in the more general situation where d : E -

F is a morphism of holomorphic vector bundles over a complex analytic
space X , and we shall always work in this generality from now on, also
assuming that X is nonempty. The space L is an analytic subspace of
the total space of E , and we shall call the map \pi : Larrow X a pseudo vector
bundle. A classical example of a pseudo vector bundle is the Zariski tangent
space (to a singular complex algebraic variety). Pseudo vector bundles
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have been studied under the label “linear spaces” in analytic geometry (see
[7], [18], [19] ) and as (spectra of) “symmetric algebras” in commutative
algebra (see [10], [21]). There are still many open problems concerning these
objects –for example finding necessary and sufficient conditions for their
irreducibility or equidimensionality (see [12], [21]). It should be stressed
that L is conceptually different from the kernel sheaf of the induced map of
sheaves of sections of E and F . Indeed, the induced map may be injective
in cases when the map of vector bundles is not.

Theorem 1.1 below is our basic result on the topological structure of
pseudo vector bundles. Before stating it, let usjust remark that the concepts
of pullback, restriction and subbundle apply to pseudo vector bundles in the
obvious way.

Theorem 1.1 There exists a (unique) fifiltration of X by closed analytic
subsets:

X=X_{k}\supset X_{k+1}\supset \supset X_{l}=\emptyset ,

such that X_{k}\neq X_{k+1} and
\circ for each i , either X_{i}\backslash X_{i+1} is empty or the restriction L|_{X_{i}\backslash X_{i+1}} is a

vector bundle of rank i .
Furthermore, for each i there exists

\circ an open neighbourhood U_{i} of X_{i+1} in X_{i} ,
o a (strong) deformation retraction r_{i} : U_{i} – X_{i+1} ,
\circ a (strong) deformation retraction \rho_{i} : L|_{U_{i}}arrow L|_{X_{i+1}} ,

such that
\circ r_{i}^{t}o\pi=\pi 0\rho_{i}^{t} on L|_{U_{i}} , where r_{i}^{t} , \rho_{i}^{t} (respectively) are homotopies of

r_{i} , \rho_{i} to the identity maps of U_{i} , L|_{U_{i}} .
\circ

\rho_{i} restricted to each fifibre of L is a linear monomorphism.

The first statement of the theorem is easily proved by considering a local
model of d , that is a matrix A , whose entries are holomorphic functions on
an open subset of X . Then the sets X_{i} of the filtration are described as the
zero sets of ideals generated by minors (of the appropriate size) of A and
hence are automatically analytic. These ideals are known as Fitting ideals
and have been a subject of intensive study in commutative algebra (see e.g.
[6] ) . The remaining statements will be proved later in the paper.

Definition 1.2 We call the integer k appearing in Theorem 1.1 the \min-
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imal rank of L . If X_{k}\backslash X_{k+1} is dense in X., then we call k the generic rank
of L and say that L has a generic rank.

Of course, if X is irreducible then L always has a generic rank.
It should be noted that a pseudo vector bundle is not necessarily a

“direct sum” of vector bundles on analytic subsets of X . Indeed, even
in the complex analytic situation, the behaviour of the fibres of L|_{X_{i}\backslash X_{i+1}}

near X_{i+1} may be rather complicated. It is in general impossible to extend
the vector bundle L|_{X_{i}\backslash X_{i+1}} to a vector bundle K on X_{i} such that K is a
subbundle of L . The simplest example of such a situation is the kernel of
the morphism from a rank two trivial bundle to a rank one trivial bundle
over \mathbb{C}^{2} given by the matrix (x, y) .

It is an immediate consequence of Theorem 1.1 and the Dold-Thom cri-
terion [5] that P(\pi) is a quasifibration up to dimension 2k-1 ; this statement
appears later as Theorem 2.3. Quasifibrations have played an important but
narrowly focused role in algebraic topology (see for example [5], [14], [15],
[16], [20], [1] ) . Our result gives a simple but very general family of new
examples.

We shall give a brief review of the theory of quasifibrations in Section 2,
and then in Section 3 we give the proof of Theorem 1.1. In Section 4, we give
an application to the Abel-Jacobi map of a Riemann surface, and to spaces
of rational curves in symmetric products of Riemann surfaces. Finally, in
Section 5, we mention an example related to the theory of harmonic maps,
and also a counterexample to the statement of Theorem 1.1 in the category
of smooth vector bundles.

2. Quasifibrations

We begin by recalling the standard fact from homotopy theory that
“any continuous map is homotopic to a fibration” Let f : X -arrow Y be a
continuous map of topological spaces. The homotopy fifibre of f over y is
defined to be the space

H_{y}=\{(x, \gamma)|x\in X, \gamma : [0, 1]arrow Y, \gamma(0)=y, \gamma(1)=f(x)\} ,

i.e. (continuous) paths in Y from y to f(x) . This is the fibre over y of the
fibration

\tilde{f}:\{(x, \gamma)|x\in X, \gamma : [0, 1]arrow Y, \gamma(1)=f(x)\}arrow Y, (x, \gamma)\mapsto\gamma(0) .
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Since the domain of \tilde{f} is homotopy equivalent to X , it follows that –“up
to homotopy” –we may identify f with the fibration \tilde{f} .

There is a natural inclusion map f^{-1}(y) - H_{y} . If this is a homotopy
equivalence for all y\in Y , we say that f is a quasififibration. For reasonable
spaces X and Y , any fibration has this property, i.e. any fibration is a
quasifibration. But in general the property of being a quasifibration is
weaker than the property of being a fibration.

It is well known that there is a long exact sequence of homotopy groups

. (arrow\pi_{i}f^{-1}(y)arrow\pi_{i}Xarrow\pi_{i}Yarrow\pi_{i-1}f^{-1}(y)arrow

if f is a fibration. This remains true if f is a quasifibration, since we may
replace H_{y} by f^{-1}(y) in the long exact sequence of the fibration \tilde{f} .

In this paper we shall need the following weaker concept:

Definition 2.1 A map f : X - Y is a quasifibration up to dimension
p if the inclusion f^{-1}(y)arrow H_{y} is a (weak) homotopy equivalence up to
dimension p, i.e. if this inclusion map induces isomorphisms of homotopy
groups \pi_{i} for i<p , and a surjection for i=p.

Quasifibrations first appeared in [5]. More generally, the concept of “ho-

mology fibration (up to dimension p)” was introduced in [14] (Lemma 4.1)
and [16]. In all of these papers the main purpose was to study maps between
configuration spaces. However, there are other non-trivial applications, for
example an approach via quasifibrations to the Bott Periodicity Theorem
was suggested in [15] and carried out in [1], and homology fibrations (up to
dimension p) were used to study spaces of rational functions in [20].

To prove that a map is a quasifibration, the “Dold-Thom Criterion” of
[5] is often used. This criterion may be modified in an obvious way to prove
that a map is a quasifibration up to dimension p. The following weaker
version of the result of [5] will be sufficient for our purposes.

Theorem 2.2 Let f : Y - X be a map, p a positive integer. Assume
that X has a filtration by closed subsets:

X=X_{k}\supset X_{k+1}\supset \supset X_{l}=\emptyset ,

such that
\circ for each i , the restriction of f to f^{-1}(X_{i}\backslash X_{i+1}) is a fifibration.

Assume further that for each i there exists
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o an open neighbourhood U_{i} of X_{i+1} in X_{i} ,
\circ a (strong) deformation retraction r_{i} : U_{i}arrow X_{i+1} ,
\circ a (strong) deformation retraction \rho_{i} : f^{-1}(U_{i})arrow f^{-1}(X_{i+1}) ,

such that
o r_{i}^{t}of=fo\rho_{i}^{t} on f^{-1}(U_{i}) , where r_{i}^{t} , \rho_{i}^{t} (respectively) are homotopies

of r_{i} , \rho_{i} to the identity maps of U_{i} , f^{-1}(U_{i}) .
\circ

\rho_{i} restricted to each fifibre of f is a homotopy equivalence up to dimen-
sion p .

Then f is a quasififibration up to dimension p .

Combining this with Theorem 1.1, we obtain the statement in the in-
troduction concerning a projectivized pseudo vector bundle P(\pi) :

Theorem 2.3 Let k= \min\{\dim_{\mathbb{C}}kerd_{x}|x\in X\} . Then the map

P(\pi) : P(L)=P(kerd) -arrow X

is a quasififibration up to dimension 2k-1 .

Proof By Theorem 1.1, the “attaching map” P(\rho_{i}|_{kerd_{x}}) is a linear inclu-
sion of the form \mathbb{C}P^{s}arrow \mathbb{C}P^{t} , with k-1\leq s\leq t . It is well known that any
such map is a homotopy equivalence up to dimension 2s+1 (for example,
because \mathbb{C}P^{t} may be constructed topologically from \mathbb{C}P^{s} by adjoining cells
of dimensions 2s+2,2s+4, . , 2t). \square

3. Pseudo vector bundles

This section is devoted to the proof of the remaining parts of TheO-
rem 1.1. For simplicity, we shall write V=X_{k}\backslash X_{k+1} and S=X_{k+1}(S for
“singular set”).

It is well known that one can simplify the structure of L by an appropri-
ate blowing-up procedure (see [18] or [19]), known as the Nash modification.
For our purposes we shall need the following result.

Lemma 3.1 Suppose L has a generic rank. Then there exists an analytic
space X’ and a proper surjective analytic map \nu : X’arrow X , such that

o the inverse image \nu^{-1}V is dense in X’ ,
o the restriction \nu|_{\nu^{-1}V} : \nu^{-1}V - V is a biholomorphism,
\circ there exists a vector bundle L’ . which is a subbundle of the pseudo
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bundle \nu^{*}L , such that

L’|_{\nu^{-1}V}=\nu^{*}L|_{\nu^{-1}V} .

Actually, \nu becomes unique if we require an additional minimality con-
dition, which we do not need here. The pair (X’, \nu) may be constructed as
follows. The morphism d defines a section of the Grassmannian bundle:

\sigma : Varrow Grass_{k}(E) ,

x – ker d_{x} .

This section is defined over V only. We define X’ to be the closure of
the image of \sigma and the mapping \nu : X’ - X to be the restriction of the
natural projection Grass_{k}(E) – X\tau All conditions of Lemma 3.1 are now
satisfied. In particular, the bundle L’ may be taken to be the restriction
of the tautological bundle on the Grassmannian bundle. For the details,
we refer to [18]. We just mention that the analyticity of X’ is proved by
doing a simple calculation in Pl\"ucker coordinates, which shows that X’ is
the closure of an analytically constructible set.

To find the i-th neighbourhood and retractions in Theorem 1.1, one
only cares about what goes on inside X_{i} . Therefore, one may assume i=k
and the theorem will follow from the next statement.

Lemma 3.2 Let \pi : L - X be a pseudo vector bundle on an analytic
space X and let S be an analytic subset of X, V=X\backslash S . Assume, that
L|_{V} is a vector bundle of rank k . Then there exists

\circ a neighbourhood U of S in X,
\circ a (strong) deformation retraction r:U - S,
\circ a (strong) deformation retraction \rho : L|_{U}arrow L|s ,

such that
\circ r^{t}\circ\pi=\pi 0\rho^{t} on L|u , where r^{t} . \rho^{t} (respectively) are homotopies of r,

\rho to the identity maps of U, L|_{U} .
o \rho restricted to each fifibre of L is a linear monomorphism.

Proof. We shall prove the above lemma in three steps.

Step 1. Lemma 3.2 is true in the case when L itself is a vector bundle.

The existence of U and r is obvious (for example by choosing compatible
triangularizations of X and S). It is a standard fact concerning vector
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bundles (see [2], Lemma 1.4.3) that we have the following isomorphism (of
C^{0} vector bundles)

L|_{U}\cong r^{*}(L|s) .

Then \rho can be constructed as the composition of this isomorphism with the
natural map r^{*}(L|_{S}) - L|s .

Step 2. Lemma 3.2 is true in the case when L has a generic rank.

The assumption allows us to use Lemma 3.1 to produce X’ . \nu and L’ .
Now, L’ is a true vector bundle. Hence we can apply the result of Step 1
to the space X’ with the subset S’=\nu^{-1}(S) and the vector bundle L’ to
obtain U’., r’ and \rho’ . Next, consider the subbundle inclusion

\iota : L’|_{S’}\subset\nu^{*}L|_{S’}

and

\rho’ : L’|_{U’}arrow L’|_{S’} .

Glue \iota\circ\rho’ (defined on L’|_{U’} ) with the identity on \nu^{*}L|_{S’} to obtain a retraction

\rho^{\prime/}: \nu^{*}L|_{U’}arrow\nu^{*}L|_{S’} .

The map thus defined is continuous, because we have constructed it as the
glueing of maps on two closed sets, which agree on their intersection (L’|_{S’}) .

We now have suitable retractions on the pullback of L by \nu . The re-
maining problem is to push them forward back again.

First of all, since \nu is proper and surjective, by elementary analytic
topology one proves that the image of U’ contains a neighbourhood of S (we
leave this to the reader). Since \nu is a homeomorphism on the complement of
S’ , the image U=\nu(U’) is actually an open neighbourhood of S . Shrinking
U if necessary, we may suppose that U’=\nu^{-1}(U) . Then \nu|_{U’} : U’ -arrow U is
also proper.

It is now easy to find the retraction r . Notice that \nu|_{S’}or’ is constant
on each fibre of \nu|_{U’} . Since \nu|_{U’} : U’arrow U is surjective, this implies the
existence of a unique map r : U - S, such that

r\circ\nu|_{U’}=\nu|_{S’}\circ r’

The continuity of r easily follows from the fact that \nu|_{U’} : U’arrow U is proper
and surjective and the other properties are immediately transferred from
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those of r’ .

The construction of \rho from \rho’ follows along the same lines. Instead of
\nu , we use the induced map \tilde{\nu} : \nu^{*}Larrow L and remark that it is proper and
surjective as the base change (fibred product) of the proper surjective map
\nu by the projection \pi : Larrow X . Again, \rho is the unique map which satisfies
\rho 0\tilde{\nu}|_{\nu^{*}L|_{U’}}=\tilde{\nu}|_{\nu^{*}L|s’}0\rho’ .

Step 3. The general case.

Let \tilde{S}=\overline{V}\cap S . Now \overline{V} (the closure of V) is an analytic set, as the
closure of a constructible analytic set. We can now apply the result of the
previous step to \overline{V}\supset\tilde{S} and the restriction of L . Taking the union of the
neighbourhood with S and extending the retractions by the identity on S
and on L|s one obtains the desired neighbourhood and retractions in the
general case. \square

With a little more effort (essentially Lemma 3.2 applied inductively)
one can prove a stronger result, which we do not need here, but which is
perhaps worth noticing:

Remark 3.3 Lemma 3.2 is true wthout the assumption that L|_{V} is a
vector bundle.

4. The Abel - Jacobi Map

Let M be a compact Riemann surface of genus g , and let J(M) be the
Jacobian variety of M (a complex torus of dimension g). Let Sp(dM) be
the d-th symmetric product of M, i.e. Sp(dM)=M^{d}/\Sigma_{d} where \Sigma_{d} is the
symmetric group. Although the action of \Sigma_{d} is not free, it is known that
Sp(dM) has the structure of a complex manifold of dimension d (see [9],
\S 3).

The Abel-Jacobi map j : Sp(dM) -arrow J(M) is a holomorphic map, which
may be described as follows: if \{m_{1}, \ldots, m_{d}\} is an element of Spd(M) , then
j(\{m_{1}, \ldots, m_{d}\}) is the isomorphism class of the holomorphic line bundle
L\otimes L_{0} on M, where L is a line bundle corresponding to the divisor \sum_{i=1}^{d}m_{i}

and L_{0} is a fixed line bundle of degree -d.
It is a result of Mattuck that j is a holomorphic fibre bundle, with

fibre \mathbb{C}P^{d-g} , if d\geq 2g-1 . A proof of Mattuck’s theorem, together with a
more explicit description of j , may be found in [9] (see also [17]). It can be
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shown from this description that j is in fact a projectivized pseudo vector
bundle, for any d\geq g . (If d<g , j cannot be surjective.) Moreover, for
g\leq d\leq 2g-2 , this pseudo vector bundle has generic rank d-g+1 . Hence
we obtain:

Theorem 4.1 For g\leq d\leq 2g-2 , the Abel-Jacobi map j : Sp(dM)arrow

J(M) is a quasififibration up to dimension 2(d-g)+1 .

This result may also be verified by a direct (but unilluminating) calcu-
lation since the homotopy types of Sprf (M), J(M) , and the fibres of j are
all well-known (see [17]).

Let Ho1_{k}(S^{2}, Sp(dM)) denote the space of holomorphic maps f : S^{2}arrow

Sp(dM) whose homotopy class [f]\in\pi_{2}Sp(dM)\cong \mathbb{Z} is k(\geq 0) . Taking the
induced topology from the corresponding space Map_{k}(S^{2d}, Sp(M)) of con-
tinuous maps, we have a continuous inclusion map i_{k} : Ho1_{k}(S^{2}, Sp(dM)) -arrow

Map_{k}(S^{2d}, Sp(M)) . There are many examples of compact complex mani-
folds X for which the analogous inclusion map Ho1(S^{2}, X)arrow Map(S^{2}, X)

is a homotopy equivalence up to some dimension (where the dimension de-
pends on the homotopy class). A detailed explanation of this type of result
and its significance can be found, for example, in [8] and [11]. We shall
prove that the space X=Sp(dM) is another such example, in fact one
which is rather different from those considered so far in the literature. The
main tool is the following extension of Theorem 4.1:

Theorem 4.2 For g\leq d\leq 2g-2 , the map j_{k} : Ho1_{k}(S^{2}, Sp(dM))arrow

J(M) , defifined by j_{k}(f)=jof , is a quasififibration up to dimension 2(d-
g)-1 .

Proof. The map is well defined as any holomorphic map jof : S^{2}arrow J(M)

is necessarily constant. Hence, the image of f lies entirely in the fibre of
j over the point j\circ f . To prove the theorem, exactly the same argument
may be used as in the case k=0, except that for k\geq 1 we need to know
that, if d-g\leq s\leq t , the inclusion Ho1_{k}(S^{2}, \mathbb{C}P^{s}) - Ho1_{k}(S^{2}, \mathbb{C}P^{t}) is a
homotopy equivalence up to dimension at least 2(d-g)-1 . This follows (for
example) from Segal’s theorem ([20]) that the inclusion Ho1_{k}(S^{2}, \mathbb{C}P^{N}) -

Map_{k}(S^{2}, \mathbb{C}P^{N}) is a homotopy equivalence up to dimension (2N-1)k , be-
cause the map Map_{k}(S^{2}, \mathbb{C}P^{s}) - Map_{k}(S^{2}, \mathbb{C}P^{t}) is a homotopy equivalence
up to dimension at least 2(d-g)-1 (by the argument in the proof of The-
over 2.3). \square
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Corollary 4.3 For g\leq d\leq 2g-2 and k\geq 1 , the natural inclusion map
i_{k} : Ho1_{k}(S^{2}, Sp(dM)) – Map_{k}(S^{2}, Sp(dM)) is a homotopy equivalence up
to dimension 2(d-g)-1 .

Proof. From Theorem 4.1, the map j_{k}’ : Map_{k}(S^{2}, Sp(dM)) arrow

Map(S^{2}, J(M)) , defined by j_{k}’(f)=jof , is a quasifibration up to di-
mension 2(d-g)-1 . The space Map(S^{2}, J(M)) is homotopy equivalent
to J(M) itself, so we may compare the long exact sequences of homotopy
groups of j_{k} and j_{k}’ ; the desired result then follows from the Five Lemma
and the result of Segal quoted in the proof of Theorem 4.2. \square

For d>2g –2 all relevant maps in the proof of the corollary are
quasifibrations, and so i_{k} is a homotopy equivalence up to dimension [2 (d-g)
-1]k in this case. Thus, the “approximation” improves as k - \infty , as
in all other previously known examples of this type. But in the range
g\leq d\leq 2g-2 no such improvement appears to be possible.

Corollary 4.3 may be relevant to the quantum cohomology of Sp(dM)
–see the recent article [3].

5. Further examples

Many examples of pseudo vector bundles may be constructed explicitly
by writing down matrix-valued complex analytic functions. It is less easy to
find examples where the total space is a smooth variety –the Abel-Jacobi
map being one such case. Another case arises naturally in connection with
the theory of harmonic maps in differential geometry. It is well known that
all harmonic maps from \mathbb{C}P^{1} to \mathbb{C}P^{2} may be constructed from holomorphic
maps, and it was proved in [4] that each component of the space of harmonic
maps \mathbb{C}P^{1}arrow \mathbb{C}P^{2} is a smooth variety. The description of this space makes
use of a pseudo vector bundle whose total space is smooth; this is described
in detail in Section 3 of [13].

Finally, we note that Theorem 1.1 is false in the smooth category. There
is no guarantee that a suitable neighbourhood U_{i} of X_{i} can found; for ex-
ample the 1 \cross 1 matrix-valued function

d(u)=\{
e^{-_{u}W^{1}} \sin\frac{1}{u} if

0 if

u\neq 0

u=0
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has rank zero on the subset

X=\{u=0 or \frac{1}{\pi n}, n\in \mathbb{Z}\backslash \{0\}\}

of \mathbb{R} , and this set admits no neighbourhood of which it is a deformation
retract. Even when a suitable neighbourhood U_{i} of X_{i} exists, the following
example shows that the fibres of the pseudo vector bundle can behave badly
near X . Consider the smooth map

d : M\cross \mathbb{R}^{2}arrow M\cross \mathbb{R} ,
d(m, (x, y))=(m, xf(m)\cos(m^{-1})+yf(m)\sin(m^{-1}))

where M=\mathbb{R} , and where f is a smooth function which vanishes to all
orders at zero. Over {0} the fibre of ker d is \mathbb{R}^{2} , and over M\backslash \{0\} the space
ker d is a locally trivial bundle with fibre \mathbb{R} . But clearly the conclusions of
Theorem 1.1 do not hold.
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