On the modified Newton's approximation method for the solution of non-linear singular integral equations

S.M. Amer and A.S. Nagdy

(Received December 21, 1998)

Abstract

This paper produces sufficient conditions for the convergence of the modified Newton-Kantorovich method applied to a class of nonlinear singular integral equations with Cauchy kernel in generalized Holder space.

Key words: Cauchy singular integral equations, modified Newton-Kantorovich method, index of integral equations.

1. Introduction

There is a large literature on nonlinear singular integral equations with Hilbert and Cauchy kernel and on related Riemann-Hilbert boundary value problems for analytic functions, cf. the monograph by Pogorzelski [11], the other by Guseinov A.I. and Mukhtarov Kh. Sh. [4]. The approximate solution of singular integral equations on closed curves has been intensively investigated by many approximation methods, specially the method of modified Newton-Kantorovich, of reduction, of collocation and of mechanical quadratures, (see, [2], [3], [5], [7], [9], [12], [13] and others). For the singular integral equations on an interval mention, Musaev, [10]; Junghanns, et al. [5], [6] and Wolfersdorf [15]. Consider the following nonlinear singular integral equation (NSIE):

$$
\begin{equation*}
(P(u))(s)=F(s, u(s))-B[G(\cdot, u(\cdot))](s)=0 \tag{1.1}
\end{equation*}
$$

where

$$
B[G(\sigma, u(\sigma))](s)=\frac{1}{\pi} \int_{a}^{b} \frac{G(\sigma, u(\sigma))}{\sigma-s} d \sigma
$$

is a Cauchy principle value and $\mathrm{u}(\mathrm{s})$ is unknown function and the functions $F_{u^{i}}[s, u(s)], G_{u^{i}}[s, u(s)]$ are defined and continuous in the region

$$
D=\{a \leq s \leq b ; u \in(-\infty, \infty)\}, \quad i=0,1, \ldots, m-1
$$

The integral equation (1.1) is equivalent to the following RiemannHilbert problem: Find holomorphic function $w(z)=u(z)+i v(z), z=x+i y$ in the upper half-plane $y>0$ of the complex z-plane which is continuous in $y \geq 0$ and satisfies:

$$
\begin{array}{rlrl}
F(s, u(s))+v(s) & =0, & & \text { for } \\
& s \in[a, b] \\
u(s) & =0 & & \text { for }
\end{array} \quad s \notin[a, b] . ~ \$
$$

where

$$
w(z)=\frac{1}{\pi i} \int_{a}^{b} \frac{G(\xi, u(\xi))}{\xi-z} d \xi
$$

(cf. Gakhov, [1], Pogorzelski [11]. Wegert, [14] and wolfersdrof, [15]).

Definition 1.1

(i) We denote by $\Phi\left(a, \frac{b-a}{2}\right]$ to be the class of all continuous monotonic increasing functions ϕ defined on the interval ($\left.a, \frac{b-a}{2}\right]$ such that $\lim _{\delta \rightarrow 0^{+}} \phi(\delta)=0$, and $\phi(\delta) \delta^{-1}$ is a nondecreasing function.
(ii) the class Φ^{m} is the class of all functions $\phi \in \Phi$ such that $a<t_{1}<$ $t_{2}<\frac{b-a}{2}$ implies $t_{1}^{m} \phi\left(t_{2}\right) \leq c(m) t_{2}^{m} \phi\left(t_{1}\right)$, where m is a natural number.
(iii) we denote by $C=C[a, b]$ be the Banach space of all (real or complex-valued) continuous functions on $[a, b]$ with $\|u\|_{C}=\max _{s \in[a, b]}|u(s)|$.
(iv) For natural number m we define the generalized Holder space $H_{\phi, m}$ to be the set of all functions $u \in C$ such that $\omega_{u}^{m}(\delta)=O(\phi(\delta)) ; \omega_{u}^{m}(\delta)$ is the modulus of continuity of order m of u, and $\phi \in \Phi^{m}$. (cf. [4], [8], [12]).
(v) For $u \in H_{\phi, m}$, we define

$$
\|u\|_{\phi, m}=\|u\|_{C}+\sup _{a<\delta \leq \frac{b-a}{2}} \frac{\omega_{u}^{m}(\delta)}{\phi(\delta)} .
$$

In [4], [10] and others, the modified Newton-Kantorovich method is used to find the approximate solution for some classes of NSIE in Holder space $H_{\alpha},(0<\alpha<1)$. In the present paper we shall study the application of modified Newton-Kantorovich method to the solution of NSIE (1.1) with different cases of the index $\chi(\chi=0, \chi>0$ and $\chi<0)$ in the space $H_{\phi, m}$. For this aim, we introduce the following:

Lemma 1.1 [4], [12] Let the functions $F(s, u(s))$ and $G(s, u(s))$ are defined and continuous in the region D, have all partial derivatives up to order
$(m-1)$ and satisfy the following conditions respectively:

$$
\begin{align*}
& \left|\frac{\partial^{k} F\left(s_{2}, u_{2}\right)}{\partial s^{i} \partial u^{j}}-\frac{\partial^{k} F\left(s_{1}, u_{1}\right)}{\partial s^{i} \partial u^{j}}\right| \leq c_{0}(k) \phi\left(\left|s_{2}-s_{1}\right|\right)+\left|u_{2}-u_{1}\right|, \tag{1.2}\\
& \left|\frac{\partial^{k} G\left(s_{2}, u_{2}\right)}{\partial s^{i} \partial u^{j}}-\frac{\partial^{k} G\left(s_{1}, u_{1}\right)}{\partial s^{i} \partial u^{j}}\right| \leq \eta_{0}(k) \phi\left(\left|s_{2}-s_{1}\right|\right)+\left|u_{2}-u_{1}\right|, \tag{1.3}
\end{align*}
$$

for arbitrary $\left(s_{l}, u_{l}\right) \in D(l=1,2), i+j=k, k=0,1, \ldots, m-1$, where $\phi \in \Phi^{m}, c_{0}(k)$ and $\eta_{0}(k)$ are constants. If $u(s) \in H_{\phi, m}$ then $F(s, u)$ and $G(s, u)$ belong to $H_{\phi, m}$.

2. First Case: $(\chi=0)$

Lemma 2.1 If the functions $F(s, u(s))$ and $G(s, u(s))$ satisfy the conditions of Lemma 1.1 and

$$
G_{u^{i}}(a, u(a))=G_{u^{i}}(b, u(b))=0, \quad i=0,1,2
$$

Then the operator $P(u)$ is Frechet differentiable in the space $H_{\phi, m}$ and its derivative is given by:

$$
\begin{equation*}
P^{\prime}(u) h(s)=F_{u}^{\prime}(s, u(s)) h(s)-\frac{1}{\pi} \int_{a}^{b} \frac{G_{u}^{\prime}(\sigma, u(\sigma))}{\sigma-s} h(\sigma) d \sigma \tag{2.1}
\end{equation*}
$$

and satisfies Lipschitz condition:

$$
\left\|P^{\prime}\left(u_{2}\right)-P^{\prime}\left(u_{1}\right)\right\|_{\phi, m} \leq \xi_{0}\left\|u_{2}-u_{1}\right\|_{\phi, m}
$$

in the sphere

$$
N_{\phi, m}\left(u_{0}, \rho\right)=\left(u \in H_{\phi, m},\left\|u-u_{0}\right\|_{\phi, m}<\rho\right)
$$

where ξ_{0} is a constant.
Proof. Let $u(s)$ be any a fixed point in the space $H_{\phi, m}[a, b]$ and $h(s)$ be an arbitrary element in $H_{\phi, m}[a, b]$, then we obtain

$$
P(u+h)-P(u)=P^{\prime}(u) h(s)+\Omega_{1}(s)+\Omega_{2}(s)
$$

where

$$
\Omega_{1}(s)=\int_{0}^{1}(1-t) F_{u}^{\prime \prime}(s, u(s)+t h(s)) h^{2}(s) d t
$$

and

$$
\Omega_{2}(s)=-\frac{1}{\pi} \int_{a}^{b} \int_{0}^{1}(1-t) G_{u}^{\prime \prime}(\sigma, u(\sigma)+t h(\sigma)) h^{2}(\sigma) d t \frac{d \sigma}{\sigma-s}
$$

If $\psi(\sigma) \in H_{\phi, m}[a, b]$ and $\psi(a)=\psi(b)=0$, then

$$
\begin{equation*}
\left\|\frac{1}{\pi} \int_{a}^{b} \frac{\psi(\sigma)}{\sigma-s} d \sigma\right\| \leq R\|\psi\|_{\phi, m},[4] \tag{2.2}
\end{equation*}
$$

If $\psi, \tilde{\psi} \in H_{\phi, m}[a, b]$, then

$$
\begin{equation*}
\|\psi \tilde{\psi}\|_{\phi, m} \leq R\|\psi\|_{\phi, m}\|\tilde{\psi}\|_{\phi, m},[4] \tag{2.3}
\end{equation*}
$$

where R is a constant. Hence from (2.2) and (2.3) we obtain

$$
\lim _{\|h\| \rightarrow 0} \frac{\left\|\Omega_{1}(s)\right\|}{\|h\|}=0 \quad \text { and } \quad \lim _{\|h\| \rightarrow 0} \frac{\left\|\Omega_{2}(s)\right\|}{\|h\|}=0
$$

which proves the differentiability of $P(u)$ in the sense of Frechet and its derivative is given by (2.1). Moreover, the Frechet derivative $P^{\prime}(u)$ satisfies Lipschitz condition:

$$
\begin{aligned}
P^{\prime}\left(u_{2}\right)-P^{\prime}\left(u_{1}\right)= & \left(F_{u}^{\prime}\left(s, u_{2}(s)\right)-F_{u}^{\prime}\left(s, u_{1}(s)\right)\right) h(s) \\
& \quad-\frac{1}{\pi} \int_{a}^{b}\left(G_{u}^{\prime}\left(\sigma, u_{2}\right)-G_{u}^{\prime}\left(\sigma, u_{1}\right)\right) h(\sigma) \frac{d \sigma}{\sigma-s} \\
= & E(s)\left(u_{2}-u_{1}\right) h(s) \\
& \quad-\frac{1}{\pi} \int_{a}^{b} Y(\sigma)\left(u_{2}(\sigma)-u_{1}(\sigma)\right) h(\sigma) \frac{d \sigma}{\sigma-s}
\end{aligned}
$$

where

$$
\begin{aligned}
& E(s)=\int_{0}^{1} F_{u}^{\prime \prime}\left(s, u_{1}+t\left(u_{2}-u_{1}\right)\right) d t \quad \text { and } \\
& Y(\sigma)=\int_{0}^{1} G_{u}^{\prime \prime}\left(\sigma, u_{1}+t\left(u_{2}-u_{1}\right)\right) d t
\end{aligned}
$$

Obviously $E(s)$ and $Y(s)$ belong to $H_{\phi, m}$ hence, using inequalities (2.2) and
(2.3) we have

$$
\begin{aligned}
& \left\|P^{\prime}\left(u_{2}\right)-P^{\prime}\left(u_{1}\right)\right\|_{\phi, m} \\
& \quad=\sup _{\|h\|_{\phi, m}=1} \| E(s)\left(u_{2}-u_{1}\right) \\
& \quad \quad-\frac{1}{\pi} \int_{a}^{b} Y(\sigma)\left(u_{2}-u_{1}\right) h(\sigma) \frac{d \sigma}{\sigma-s} \|_{\phi, m} \\
& \quad \leq R\left(\|E(s)\|_{\phi, m}+R\|Y(s)\|_{\phi, m}\right)\left\|u_{2}-u_{1}\right\|_{\phi, m}
\end{aligned}
$$

where

$$
\|E(s)\|_{\phi, m} \leq c_{0}(2)\left(\left\|u_{1}\right\|_{c}+\left\|u_{2}-u_{1}\right\|_{c}\right)+\left\|F_{u}^{\prime \prime}(s, 0)\right\|_{c}+c\left(u_{1}, m\right)
$$

and

$$
\|Y(s)\|_{\phi, m} \leq \eta_{0}(2)\left(\left\|u_{1}\right\|_{c}+\left\|u_{2}-u_{1}\right\|_{c}\right)+\left\|G_{u}^{\prime \prime}(s, 0)\right\|_{c}+\eta\left(u_{1}, m\right)
$$

where $c\left(u_{1}, m\right)$ and $h\left(u_{1}, m\right)$ are constants. Hence;

$$
\left\|P^{\prime}\left(u_{2}\right)-P^{\prime}\left(u_{1}\right)\right\|_{\phi, m} \leq \xi_{0}\left\|u_{2}-u_{1}\right\|_{\phi, m}
$$

where

$$
\begin{gathered}
\xi_{0}=R\left(R \eta_{0}(2)+c_{0}(2)\right)\left(\left\|u_{1}\right\|_{c}+\left\|u_{2}-u_{1}\right\|_{c}\right)+R\left\|F_{u}^{\prime \prime}(s, 0)\right\|_{c} \\
+R^{2}\left\|G_{u}^{\prime \prime}(s, 0)\right\|_{c}+R c\left(u_{1}, m\right)+R^{2} \eta\left(u_{1}, m\right)
\end{gathered}
$$

then the lemma be valid.
Theorem 2.1 If the functions $F(s, u(s))$ and $G(s, u(s))$ satisfy the conditions of Lemma 2.1, ${F_{u}^{\prime}}^{2}(s, u(s)) \neq 0$ everywhere on $[a, b]$ and ${F_{u}^{\prime}}^{2}(s, u(s))+$ $G_{u}^{\prime 2}(s, u(s)) \neq 0$. Then the linear operator

$$
\begin{equation*}
L_{0} h=F_{u}^{\prime}\left(s, u_{0}(s)\right) h(s)-\frac{1}{\pi} \int_{a}^{b} \frac{G_{u}^{\prime}\left(\sigma, u_{0}(\sigma)\right)}{\sigma-s} h(\sigma) d \sigma \tag{2.4}
\end{equation*}
$$

has a bounded inverse L_{0}^{-1}, for any fixed point $u_{0} \in H_{\phi, m}$.
Proof. To find the operator L_{0}^{-1}, we investigate the solvability of the equation,

$$
\begin{equation*}
F_{u}^{\prime}\left(s, u_{0}(s)\right) h(s)-\frac{1}{\pi} \int_{a}^{b} \frac{G_{u}^{\prime}\left(\sigma, u_{0}(\sigma)\right)}{\sigma-s} h(\sigma) d \sigma=g(s) \tag{2.5}
\end{equation*}
$$

where $u_{0} \in H_{\phi, m}[a, b]$ be a fixed point and $g(s) \in H_{\phi, m}[a, b]$ be an arbitrary element. We introduce the following piecewise holomorphic function

$$
V(z)=\frac{1}{2 \pi i} \int_{a}^{b} \frac{G_{u}^{\prime}\left(\sigma, u_{0}(\sigma)\right)}{\sigma-z} h(\sigma) d \sigma, \quad V^{ \pm}(\infty)=0
$$

Then according to Sokhotski-plemelj Formula [1] equation (2.5) leads to the following Riemann boundary value problem

$$
\begin{equation*}
V^{+}(s)=B(s) V^{-}(s)+A(s) \tag{2.6}
\end{equation*}
$$

where

$$
B(s)=\frac{F_{u}^{\prime}\left(s, u_{0}(s)\right)+i G_{u}^{\prime}\left(s, u_{0}(s)\right)}{F_{u}^{\prime}\left(s, u_{0}(s)\right)-i G_{u}^{\prime}\left(s, u_{0}(s)\right)}
$$

$B(s) \neq 0$ everywhere on $[a, b]$ and belongs to $H_{\phi, m}$, and

$$
A(s)=\frac{i g(s) G_{u}^{\prime}\left(s, u_{0}(s)\right)}{F_{u}^{\prime}\left(s, u_{0}(s)\right)-i G_{u}^{\prime}\left(s, u_{0}(s)\right)}
$$

The index $\chi=-\left(\lambda_{1}+\lambda_{2}\right)$, where λ_{1} and λ_{2} are integers which defined from the following relations:

$$
-1<\lambda_{1}+\theta(a)<1, \quad-1<\lambda_{2}+\theta(b)<1
$$

where $\theta(s)=\mp \frac{1}{2 \pi i} \ln B(s)$. Putting

$$
\begin{equation*}
B(s)=\frac{X_{0}^{+}(s)}{X_{0}^{-}(s)} \tag{2.7}
\end{equation*}
$$

where

$$
X_{0}(z)=\exp (\Gamma(z))=\exp \left(\frac{1}{2 \pi i} \int_{a}^{b} \frac{\ln B(\sigma)}{\sigma-z} d \sigma\right)
$$

From the equation (2.7) the boundary condition (2.6) has the form

$$
\frac{V^{+}(s)}{X_{0}^{+}(s)}-\frac{V^{-}(s)}{X_{0}^{-}(s)}=\frac{A(s)}{X_{0}^{+}(s)}
$$

here, we obtain

$$
V(z)=\frac{X_{0}(z)}{2 \pi i} \int_{a}^{b} \frac{A(\sigma)}{X_{0}^{+}(\sigma)(\sigma-z)} d \sigma
$$

Hence the solution of the equation (2.5) has the following form

$$
\begin{aligned}
h(s) & =\frac{1}{K_{0}(s)}\left(F_{u}^{\prime}\left(s, u_{0}\right) g(s)+W_{0}(s) \frac{1}{\pi} \int_{a}^{b} \frac{G_{u}^{\prime}\left(\sigma, u_{0}(\sigma)\right)}{W_{0}(\sigma)(\sigma-s)} g(\sigma) d \sigma\right) \\
& =L_{0}^{-1}(g(s))
\end{aligned}
$$

where

$$
K_{0}(s)=F_{u}^{\prime 2}\left(s, u_{0}(s)\right)+G_{u}^{\prime 2}\left(s, u_{0}(s)\right)
$$

and

$$
W_{0}(s)=X_{0}^{+}(s)\left(F_{u}^{\prime}\left(s, u_{0}(s)\right)-G_{u}^{\prime}\left(s, u_{0}(s)\right)\right)
$$

From inequalities (2.2) and (2.3), we have

$$
\left\|L_{0}^{-1}\right\|_{\phi, m} \leq D_{0} \quad \text { and } \quad\left\|P_{0}(u)\right\| \leq N_{0}
$$

where D_{0} and N_{0} are constants. Hence all the conditions of applicability and convergence of modified Newton's method are satisfied, thus the following theorem is valid.

Theorem 2.2 Let the conditions of Theorem 2.1 are satisfied and $u_{0} \in$ $H_{\phi, m}$ be the initial approximation of equation (1.1), then if $\left\|L_{0}^{-1} P\left(u_{0}\right)\right\| \leq$ $M_{0}, \epsilon_{0}=M_{0} D_{0} \xi_{0}<\frac{1}{2}$. Then the equation (1.1) has a unique solution u^{*} in the sphere

$$
\left\|u-u_{0}\right\|_{\phi, m} \leq \rho_{0}, \quad \rho>\rho_{0}=M_{0}\left(1-\sqrt{1-2 \epsilon_{0}}\right) / \epsilon_{0}
$$

to which the successive approximations:

$$
u_{n+1}=u_{n}-L_{0}^{-1} P\left(u_{n}\right)
$$

of modified Newton's method converges and the rate of convergence is given by the inequality

$$
\left\|u_{n}-u^{*}\right\|_{\phi, m} \leq \frac{M_{0}\left(1-\sqrt{1-2 \epsilon_{0}}\right)^{n}}{\sqrt{1-2 \epsilon_{0}}}
$$

3. Second Case: $(\chi>0)$

Definition 3.1 We denote by $H_{\phi, m}^{*}$ to the class of all functions $u(s)$, represented in the form $u(s)=|s-c|^{-\alpha_{0}} u_{*}(s)$ in the neighborhood of the end
points a and b, where $-1 \leq \alpha_{0}<1, c=a$ or b and $u_{*}(s) \in H_{\phi, m}[a, b]$. The set of all possible solutions of equation (1.1) can be divided into the following subclasses;

- $H_{\phi, m}^{*}(0)$ is the subclass of the functions from $H_{\phi, m}^{*}[a, b]$ not limiting near the end points a and b.
- $H_{\phi, m}^{*}(a)\left(H_{\phi, m}^{*}(b)\right)$ is the subclass of the functions from $H_{\phi, m}^{*}[a, b]$ bounded near the end point $a(b)$.
- $H_{\phi, m}^{*}(a, b)$ is the subclass of the functions from $H_{\phi, m}^{*}[a, b]$ bounded near the end points a and b, vanishing at these points.
Now we are looking for the solution of equation (1.1) in the class $H_{\phi, m}^{*}(a, b)$.
Lemma 3.1 If the functions $F(s, u)$ and $G(s, u)$ satisfy the conditions of Lemma 1.1 and $G(a, u(a))=G(b, u(b))=0$, Then the operator $P(u)$ is Frechet differentiable in the space $H_{\phi, m}^{*}(a, b)$ and its derivative is given by:

$$
\begin{equation*}
P^{\prime}(u) h(s)=F_{u}^{\prime}(s, u(s)) h(s)-\frac{1}{\pi} \int_{a}^{b} \frac{G_{u}^{\prime}(\sigma, u(\sigma))}{\sigma-s} h(\sigma) d \sigma \tag{3.1}
\end{equation*}
$$

where $h(s)$ be an arbitrary element in $H_{\phi, m}^{*}(a, b)$, and satisfies Lipschitz condition

$$
\left\|P^{\prime}\left(u_{2}\right)-P^{\prime}\left(u_{1}\right)\right\|_{H_{\phi, m}^{*}} \leq \xi_{0}\left\|u_{2}-u_{1}\right\|_{H_{\phi, m}^{*}}
$$

in the sphere

$$
N_{H_{\phi, m}^{*}}\left(u_{0}, \rho\right)=\left(u \in H_{\phi, m}^{*},\left\|u-u_{0}\right\|_{H_{\phi, m}^{*}}<\rho\right)
$$

Proof. Similarly as Lemma 2.1.
Theorem 3.1 If the functions $F(s, u(s))$ and $G(s, u(s))$ satisfy the conditions of Lemma 3.1, $\frac{G_{u}^{\prime}(c, u(c))}{F_{u}^{\prime}(c, u(c))}>0$ and ${F_{u}^{\prime}}^{2}(s, u(s))+G_{u}^{\prime 2}(s, u(s)) \neq 0$. Then the linear operator

$$
\begin{equation*}
L_{0} h=F_{u}^{\prime}\left(s, u_{0}(s)\right) h(s)-\frac{1}{\pi} \int_{a}^{b} \frac{G_{u}^{\prime}\left(\sigma, u_{0}(\sigma)\right)}{\sigma-s} h(\sigma) d \sigma \tag{3.2}
\end{equation*}
$$

has a bounded inverse L_{0}^{-1} for any fixed point $u_{0} \in H_{\phi, m}^{*}(a, b)$.
Proof. To find the operator L_{0}^{-1}, we investigate the solvability of the
equation,

$$
\begin{equation*}
F_{u}^{\prime}\left(s, u_{0}(s)\right) h(s)-\frac{1}{\pi} \int_{a}^{b} \frac{G_{u}^{\prime}\left(\sigma, u_{0}(\sigma)\right)}{\sigma-s} h(\sigma) d \sigma=g(s) \tag{3.3}
\end{equation*}
$$

where $u_{0} \in H_{\phi, m}^{*}(a, b)$ be a fixed point and $g(s) \in H_{\phi, m}^{*}(a, b)$ be an arbitrary element. As the above case, we obtain the boundary condition (2.6). The canonical function $X_{1}(z)$ which is the solution of the homogeneous Riemann problem of equation (2.6), near and at c is bounded and having finite degree at infinity has the form:

$$
X_{1}(z)=(a-z)^{\lambda_{1}}(b-z)^{\lambda_{2}} \exp \left(\int_{a}^{b} \frac{\theta(\sigma)}{\sigma-z} d \sigma\right)
$$

where

$$
\theta(s)=\frac{1}{\pi} \arctan \frac{G_{u}^{\prime}\left(s, u_{0}(s)\right)}{F_{u}^{\prime}\left(s, u_{0}(s)\right)}
$$

and λ_{1}, λ_{2} are selecting integers satisfying the conditions

$$
0<\lambda_{1}-\theta(a)<1, \quad 0<\lambda_{2}+\theta(b)<1
$$

The number $\chi=-\left(\lambda_{1}+\lambda_{2}\right)$ is called the index of the equation (3.3). Hence

$$
\begin{aligned}
& X_{1}(s)=(a-s)^{\alpha}(b-s)^{\beta} \exp \{(\theta(a)-\theta(s) \ln (a-s) \\
&\left.\left.+(\theta(s)-\theta(b)) \ln (b-s)+\int_{a}^{b} \frac{\theta(\sigma)-\theta(s)}{\sigma-s} d \sigma\right)\right\}
\end{aligned}
$$

where $\alpha=\lambda_{1}-\theta(a)$ and $\beta=\lambda_{2}+\theta(b)$.
The unique solution of equation (3.3) is obtained in the subclass $\tilde{H}_{\phi, m}^{*}(a, b)$ of $H_{\phi, m}^{*}(a, b)$ where

$$
\begin{array}{r}
\tilde{H}_{\phi, m}^{*}(a, b)=\left\{h \in H_{\phi, m}^{*}(a, b): \int_{a}^{b} \sigma^{k-1} G_{u}^{\prime}\left(\sigma, u_{0}(\sigma)\right) h(\sigma) d \sigma=0\right. \\
k=1, \ldots, \chi-1\}
\end{array}
$$

and this solution has the form

$$
\begin{aligned}
h(s) & =\frac{1}{K_{1}(s)}\left(F_{u}^{\prime}\left(s, u_{0}\right) g(s)+W_{1}(s) \frac{1}{\pi} \int_{a}^{b} \frac{G_{u}^{\prime}\left(\sigma, u_{0}(\sigma)\right)}{W_{1}(\sigma)(\sigma-s)} g(\sigma) d \sigma\right) \\
& =\left[L_{0}^{-1}\left(u_{0}\right)\right] g(s)
\end{aligned}
$$

where

$$
K_{1}(s)=F_{u}^{\prime 2}\left(s, u_{0}(s)\right)+G_{u}^{\prime 2}\left(s, u_{0}(s)\right)
$$

and

$$
W_{1}(s)=X_{1}^{+}(s)\left(F_{u}^{\prime 2}\left(s, u_{0}(s)\right)-G_{u}^{\prime 2}\left(s, u_{0}(s)\right)\right)
$$

As the preceding case we have $\left\|L_{0}^{-1}\right\|_{\phi, m} \leq D_{1}$ and $\left\|P_{0}(u)\right\| \leq N_{1}$. Thus the following theorem is valid.

Theorem 3.2 Let the conditions of Theorem 3.1 are satisfied and $u_{0} \in$ $\widetilde{H}_{\phi, m}^{*}(a, b)$ be the initial approximation of equation (1.1), then, if

$$
\left\|L_{0}^{-1} P\left(u_{0}\right)\right\| \leq M_{1}, \quad \epsilon_{1}=M_{1} D_{1} \xi_{0}<\frac{1}{2} .
$$

Then the equation (1.1) has a unique solution $u^{* *}$ in the sphere

$$
\left\|u-u_{0}\right\|_{\phi, m} \leq \rho_{1}, \quad \rho>\rho_{1}=M_{1}\left(1-\sqrt{1-2 \epsilon_{1}}\right) / \epsilon_{1}
$$

to which the successive approximations: $u_{n+1}=u_{n}-L_{0}^{-1} P\left(u_{n}\right)$ of modified Newton's method converges and the rate of convergence is given by the inequality

$$
\left\|u_{n}-u^{* *}\right\|_{\phi, m} \leq \frac{M_{1}\left(1-\sqrt{1-2 \epsilon_{1}}\right)^{n}}{\sqrt{1-2 \epsilon_{1}}} .
$$

4. Third Case: $(\chi<0)$

Theorem 4.1 If the functions $F(s, u(s))$ and $G(s, u(s))$ satisfy the conditions of Lemma 3.1, $\frac{G_{u}^{\prime}(c, u(c))}{F_{u}^{\prime}(c, u(c))}<0$ and $F_{u}^{\prime 2}(s, u(s))+G_{u}^{\prime 2}(s, u(s)) \neq 0$. Then the linear operator (3.2) has abounded inverse from the space Q into $H_{\phi, m}^{*}(a, b)$, where $Q=\left\{q: q=\left(u, c_{0}, c_{1}, \ldots, c_{-\chi-1}\right) ; u \in H_{\phi, m}^{*}(a, b)\right.$ and $c_{0}, c_{1}, \ldots, c_{-\chi-1}$ are complex numbers $\}$.

Proof. In this case the function $X_{1}(z)$ has at infinity a pole of order $(-\chi)$, to obtain a solution of equation (3.3) we must using the following conditions:

$$
\int_{a}^{b} \frac{\sigma^{m-1} A(\sigma)}{X_{1}^{ \pm}(\sigma)} d \sigma=0, \quad m=1, \ldots,-\chi .
$$

Then $L_{0}\left(u_{0}\right): H_{\phi, m}^{*}(a, b) \rightarrow H_{\phi, m}^{*}(a, b)$ in general has no inverse for arbitrary element $g(s) \in H_{\phi, m}^{*}(a, b)$. From [10] consider the equation

$$
\begin{equation*}
T(q)=P(u)-\sum_{k=0}^{-\chi-1} c_{k} s^{k} \tag{4.1}
\end{equation*}
$$

where $s^{k}, k=0,1, \ldots,-\chi-1$, are linear independence solutions of the equation $L_{0}^{-1} g=0$. We define

$$
\|q\|_{Q}=\|u\|_{H_{\phi, m}^{*}}+\sum_{k=0}^{-\chi-1}\left|c_{k}\right|
$$

The Frechet derivative of the operator $T(q)$ at arbitrary point q is given by

$$
T^{\prime}(q) f=P^{\prime}(u) h+\sum_{k=0}^{-\chi-1} d_{k} s^{k}, \quad f=\left(h, d_{0}, d_{1}, \ldots, d_{-\chi-1}\right) .
$$

Moreover, $T^{\prime}(q)$ satisfies Lipschitz condition in the sphere $N\left(q_{0}, \delta^{*}\right)$ of the form

$$
\left\|T^{\prime}\left(q_{1}\right)-T^{\prime}\left(q_{2}\right)\right\|_{Q \rightarrow H_{\phi, m}^{*}} \leq \xi_{0}\left\|q_{1}-q_{2}\right\| ; \quad q_{1}, q_{2} \in N\left(q_{0}, \delta^{*}\right)
$$

The linear singular integral equation

$$
T^{\prime}\left(q_{0}\right) f=L_{0}(h)+\sum_{k=0}^{-\chi-1} d_{k} s^{k}=g(s)
$$

has a unique solution $f=\left(h, d_{0}, d_{1}, \ldots, d_{-\chi-1}\right) \in Q$ for arbitrary right part $g(s) \in H_{\phi, m}^{*}(a, b)$. Hence there exists inverse operator.

$$
\left[T^{\prime}\left(q_{0}\right)\right]^{-1}: H_{\phi, m}^{*}(a, b) \rightarrow Q
$$

The unknowns $d_{0}, d_{1}, \ldots, d_{-\chi-1}$ are defined from the following relation

$$
d_{K}=\sum_{m=0}^{-\chi-1} \frac{\triangle_{k, m}(-\chi)}{\triangle(-\chi)} D_{m}, \quad k=0,1, \ldots,-\chi-1
$$

where

$$
\begin{aligned}
D_{m} & =\int_{a}^{b} \frac{G_{u}^{\prime}\left(\sigma, u_{0}(\sigma)\right) g(\sigma)}{W_{1}(\sigma)} \sigma^{m} d \sigma, \Delta(-\chi) \\
& =\operatorname{det}\left[\tau_{m, 0}, \tau_{m, 1}, \ldots, \tau_{m,-\chi-1}\right]_{m=0}^{-\chi-1} \neq 0
\end{aligned}
$$

where

$$
\tau_{m, k}=\int_{a}^{b} \frac{G_{u}^{\prime}\left(\sigma, u_{0}(\sigma)\right) \sigma^{k}}{W_{1}(\sigma)} \sigma^{m} d \sigma
$$

and $\triangle_{k, m}(-\chi)$ be the cofactor of the element in the k th row and m th column in the determinant $\triangle(-\chi)$. Therefore the following theorem is valid.

Theorem 4.2 Let the conditions of Theorem 4.1 are satisfied and $u_{0} \in$ $H_{\phi, m}^{*}(a, b), q_{0}=\left(u_{0}, c_{0,0}, \ldots, c_{-\chi-1,0}\right)$,

$$
\begin{aligned}
& \left\|T^{\prime}\left(q_{0}\right)^{-1}\right\|_{H_{\phi, m}^{*}(a, b) \rightarrow Q}<D_{2} \quad \text { and } \\
& \left\|\left[T^{\prime}\left(q_{0}\right)\right]^{-1} T\left(q_{0}\right)\right\|_{Q \rightarrow Q} \leq M_{2}
\end{aligned}
$$

If $\epsilon_{2}=M_{2} D_{2} \xi_{0}<\frac{1}{2}$. Then the equation (4.1) has a unique solution $q^{*}=$ $\left(u^{* *}, c_{0}^{*}, \ldots, c_{-\chi-1}^{*}\right) \in N\left(q_{0}, \delta_{0}\right)$ to which the iteration process converges

$$
q_{n+1}=q_{n}-\left[T^{\prime}\left(q_{0}\right)\right]^{-1} T\left(q_{n}\right), \quad n=0,1, \ldots
$$

where

$$
\delta^{*} \geq \delta_{0}=M_{2}\left(1-\sqrt{1-2 \epsilon_{2}}\right) / \epsilon_{2}
$$

Moreover, the rate of convergence of $q_{n} \in Q$ to $q^{*} \in Q$ given by the inequality

$$
\begin{equation*}
\left\|q_{n}-q^{*}\right\|_{Q} \leq \frac{M_{2}\left(1-\sqrt{1-2 \epsilon_{2}}\right)^{n}}{\sqrt{1-2 \epsilon_{2}}} \tag{4.2}
\end{equation*}
$$

Lemma 4.1 Let the conditions of Theorem 4.2 are satisfied then the values $c_{0, n}, \ldots, c_{-\chi-1, n}$ tends to zero as n tends to infinity iff when $u^{* *} \in H_{\phi, m}^{*}(a, b)$ is the solution of equation (1.1).

Proof. Let $q^{*}=\left(u^{* *}, c_{0}^{*}, \ldots, c_{-\chi-1}^{*}\right) \in Q$ is the solution of equation (4.1), if $u^{* *}$ is the solution of equation (1.1), then $\sum_{k=0}^{-\chi-1} c_{k}^{*} s^{k}=0$ from here $c_{0}^{*}=$ $c_{1}^{*}=\cdots=c_{-\chi-1}^{*}=0$ by the linearly independence of the functions s^{k}, $k=0,1, \ldots,-\chi-1$. Then it follows from the inequality (4.2) that the values $c_{0, n}, \ldots, c_{-\chi-1, n}$ tend to zero as n tends to infinity. If the values
$c_{0, n}, \ldots, c_{-\chi-1, n}$ tend to zero as n tends to infinity, then by the inequality

$$
\sum_{k=0}^{-\chi-1}\left|c_{k, n}-c_{k}^{*}\right| \leq \frac{M_{2}\left(1-\sqrt{1-2 \epsilon_{2}}\right)^{n}}{\sqrt{1-2 \epsilon_{2}}} .
$$

it follows that $c_{0}^{*}=c_{1}^{*}=\cdots=c_{-\chi-1}^{*}=0$. Then $u^{* *}$ is the solution of equation (1.1). From Theorem 4.2 and Lemma 4.1 we have q^{*} is the solution of equation (4.1), $q_{n}=\left(u_{n}, c_{0, n}, \ldots, c_{-\chi-1, n}\right)$ is its approximate solution and $u^{* *}$ is the solution of equation (1.1), then the sequence $\left\{u^{n}\right\}$ is naturally taken as the approximate solution of equation (1.1). Moreover, the following inequality is valid

$$
\left\|u_{n}-u^{* *}\right\| \leq \frac{M_{2}\left(1-\sqrt{1-2 \epsilon_{2}}\right)^{n}}{\sqrt{1-2 \epsilon_{2}}}
$$

References

[1] Gakhov F.D., Boundary value problems. English Edition Pergamon Press Ltd. (1966).
[2] Gabdulkhaev B.G. and Gorlov V.E., The solution of Nonlinear Singular Integral Equations by Reduction Method. Izv Vyss. Ucehn. Zaved Mat. Vol. 165 No. 2 (1976), 3-13.
[3] Gorlov, V.E., On the approximate Solution of Nonlinear Singular Integral Equations. Izv Vyss. Ucehn. Zaved Mat. Vol. 167 No. 4 (1976), 122-125.
[4] Guseinov A.I. and Mukhtarov Kh. Sh., Introduction to the theory of Nonlinaer Singular Integral Equations (In Russian). Nauk, Moscow (1980).
[5] Junghanns, P., Capobianco, M.R., Luther U. and Mastroianni G., Weighted Uniform Convergence of the Quadrature Method for Cauchy Singular Integral Equations. Operator theory Advances and Applications, Vol. 90, Birkhauser Verlarg (1996), 153-181.
[6] Junghanns P. and Weber U., On the solvability of Nonlinear Singular Integral Equations. ZAA, 12 (1993), 683-698.
[7] Ladopoulos E.G. and Zisis, Nonlinear Singular Integral Approximations in Banach spaces. Nonlinear Analysis, theory, Methods Applications, Vol. 26 No. 7 (1996), 1293-1299.
[8] Lorentz G.G., Approximation of Functions. Holt, Rinehart and Winston, Inc. (1966).
[9] Mikhlin S.G. and Prossdorf S., Singular Integral Operator. Akademie-Verlag, Berlin 1986.
[10] Musaev, B.I., On approximate solution of the Singular Integral Equations. Aka. Nauk. Az. SSR. Institute of physics Preprint No. 17, (1986).
[11] Pogorzelski, W., Integral Equations and their Applications. Vol. I. Oxford, Pergamon

Press, and Warszawa; PWN, (1966).
[12] Saleh M.H. and Amer S.M., Approximate solution of a certain class of Nonlinear Singular Integral Equations. Collect Math. 38 (1987), 161-175.
[13] Amer S.M., On the Approximate solution of Nonlinear Singular Integral Equations with Positive Index. Internat. J. Math. Math. Sci. Vol. 19 No. 2 (1996), 389-396.
[14] Wegert E., Nonlinear Boundary Value Problems for Holomorphic Functions and Singular Integral Equations. Akademie Verlag, 1992.
[15] Wolfersdorf L.v., On the theory of Nonlinear Singular Integral Equations of Cauchy type. Math. Meth. Appl. Sci., 7 (1985), 493-517.

S.M. Amer
Dept. of Mathematics
Faculty of Science
Zagazig University
Zagazig, Egypt
E-mail: s_nigm@hotmail.com

A.S. Nagdy

Dept. of Mathematics
Faculty of Science
Zagazig University
Zagazig, Egypt

