Existence of $\delta_{\boldsymbol{m}}$-periodic points for smooth maps of compact manifold*

Grzegorz Graff
(Received September 9, 1998; Revised January 6, 1999)

Abstract

For a smooth self-map f of a compact manifold M we examine the connection between topological conditions put on M and differentials of a map f at periodic points.

Key words: periodic points, Lefschetz number, cohomological algebra.

1. Introduction

A classical example of the connection between global and local properties of a compact manifold M is Poincaré theorem: $\sum_{x \in C} \operatorname{ind}(T, x)=\chi(M)$, where $\chi(M)$ denotes the Euler characteristic of M, C is the set of critical points of the vector field T, and $\operatorname{ind}(T, x)$ the local index of T.

In 1983 Chow, Mallet-Paret and Yorke ($[$ CMY $]$) proved that the sequence $\operatorname{ind}\left(f^{n}, x_{0}\right)$ of isolated fixed point indices of iterated C^{1}-map f is an integral linear combination of elementary periodic sequences with the periods determined by the spectrum of the derivative $D f\left(x_{0}\right)$ of f at x_{0}.

Basing on this fact Matsuoka and Shiraki ([MS]) formulated for selfmaps of a compact manifold M with finitely many periodic points a global homological condition on M that forces an existence of a periodic point (so called a δ_{m}-periodic point) which satisfies a certain degeneracy condition.

On the other hand Marzantowicz and Przygodzki ([MP]) expressed a formula for $i_{m}(f)=\sum_{k \mid m} \mu(k) I\left(f^{m / k}\right)$, where $I(f)$ is the fixed point index of f, in terms of periodic points of a compact manifold. If $i_{m}(f) \neq 0$ then we say that m is an algebraic period of f.

The aim of this paper is to prove the theorem analogous to given in [MS] but formulated in the language of algebraic periods. This approach is more general: we show that both theorems are equivalent for the class of maps with finitely many periodic points, but by a use of algebraic periods it

[^0]is possible to find a δ_{m}-periodic point for maps with infinitely many periodic points as well.

We give an application of that observation to rational exterior spaces. For self-maps of such spaces the formula for Lefschetz number is known (cf. $[\mathrm{H}])$, which allows to draw additional information about algebraic periods (cf. [G]).

2. Algebraic periods and periodic points

Let f be a self-map of a topological space X. For $n \geq 1$ we define $P^{n}(f)=F i x\left(f^{n}\right)$ and $P_{n}(f)=P^{n}(f) \backslash \bigcup_{k<n} P^{k}(f)$ called the set of n periodic points. If $P_{n}(f) \neq 0$ then n is called a minimal period of f. The set of all minimal periods of f is denoted by $\operatorname{Per}(f)$.

Throughout the paper we assume that if $X=M$ is a compact manifold, then for every natural $n, P^{n}(f) \subset \operatorname{Int} X$ and $P^{n}(f)$ consists of isolated points only.

We begin with formulation of the results from [MS].
Definition 2.1 ([MS]) A periodic point x of f with minimal period n is said to be a δ_{m}-periodic point if $D f^{n}(x)$, the differential of f^{n} at x, has an eigenvalue which is an m^{\prime}-th primitive root of unity for some multiple m^{\prime} of m.

For integers $i \geq 0, n>0$, let $e_{i}(n)$ be the number of eigenvalues of $f_{* i}$: $H_{i}(M ; Q) \rightarrow H_{i}(M ; Q)$, which are n-th primitive roots of unity (counting multiplicity). Define

$$
e(n)=\sum_{i=0}^{\infty}(-1)^{i} e_{i}(n)
$$

Theorem 2.2 ([MS]) Let $f: M \rightarrow M$ be a C^{1}-map on a compact manifold M with finitely many periodic points. Let m be an odd prime number such that:
(i) $\quad e(n) \neq 0$ for some multiple n of m
(ii) the period of any periodic point is not a multiple of m.

Then f has a δ_{m}-periodic point.
Let us introduce the basic fact and results connected with algebraic periods. Let f be a self map of a compact manifold M and $I(f)=I(f, M)$
denotes the fixed point index of f, which is equal to $L(f)$ - the Lefschetz number of f. For every $n \in N$ let us define:

$$
i_{n}(f)=\sum_{k \mid n} \mu(k) I\left(f^{n / k}\right)
$$

where $\mu(k)$ denotes the classical Möbius function, (cf. [Ch]).
Definition 2.3 A natural number n is called an algebraic period if $i_{n}(f) \neq$ 0.

The following congruence (called Dold's relations) holds (cf. [D]):
Proposition 2.4 For every $n \in N$ we have $i_{n}(f) \equiv 0(\bmod n)$.
This formula has a clear interpretation for a self-map f of a discrete countable set X. We have in that case: $\left|P_{n}(f)\right|=i_{n}(f)$ and the congruence (2.4) result from the fact that $P_{n}(f)$ consists of n-orbits (cf. [D]).

The numbers $i_{n}(f)$ for C^{1} self-maps of a compact manifold M may be expressed by differentials at periodic points.

Define the subset of natural numbers $O(x)$ for $x \in P_{d}(f)$ as $O(x)=$ $\operatorname{Per}\left(D f^{d}(x)\right)$. Let σ_{-}denote the number of eigenvalues of $D f^{d}(x)$ (counted with multiplicity) smaller than -1 .

Theorem 2.5 (cf. [MP]) Let $f: M \rightarrow M$ be a C^{1} map of a compact manifold M. Then there exist integers $c_{k}(x)$ such that

$$
i_{n}(f)=\sum_{d k=n} \sum_{x \in P_{d}(f)} c_{k}(x)+\sum_{2 d k=n} \sum_{x \in P_{d}(f)}\left[(-1)^{\sigma_{-}(x) k}-1\right] c_{k}(x)
$$

with the convention that $c_{k}(x)=0$ if $k \notin O(x)$.
Lemma 2.6 The structure of the set $O(x)$ is as follows (cf. [CMY]), [MP]):

$$
O(x)=\left\{\operatorname{lcm}(K): K \subset \sigma_{(1)}\left(D f^{d}(x)\right)\right\} \cup\{1\}
$$

where $\sigma_{(1)}\left(D f^{d}(x)\right)$ is the set of degrees of primitive roots of unity contained in $\sigma\left(D f^{d}(x)\right)$-the spectrum of derivative at x.

Now we are in a position to use algebraic periods for finding δ_{m}-periodic points.

Theorem 2.7 Let $f: M \rightarrow M$ be a C^{1}-map of a compact manifold M.

Let m be an odd prime number such that:
(i) n is an algebraic period for some multiple n of m
(ii) the period of any periodic point is not a multiple of m.

Then f has a δ_{m}-periodic point.
Proof. By Theorem 2.5 we have:

$$
i_{n}(f)=\sum_{d k=n} \sum_{x \in P_{d}(f)} c_{k}(x)+\sum_{2 d k=n} \sum_{x \in P_{d}(f)} \alpha_{k}(x) c_{k}(x),
$$

where $\alpha_{k}(x)=(-1)^{\sigma_{-}(x) k}-1(k \in O(x))$ is an integer.
Let n be a multiple of $m: n=m s$. The first sum above extends over all $d k=m s$, the second over all $2 d k=m s$. It follows from (ii) that d is not a multiple of m thus $m \mid k$, because m is a prime number different from 2 .

Clearly, $i_{n}(f) \neq 0$ implies that there exists such k that $c_{k}(x) \neq 0$. Since $m \mid k$ and $k \in O(x)$, among elements of $\sigma_{1}\left(D f^{d}(x)\right)$ there is multiplicity of $m: m^{\prime}=m l$. This is equivalent that x is a δ_{m}-periodic point.

Roughtly speaking the formula of Theorem 2.5 says that the coefficient $i_{n}(f)$ is the sum of two kinds of components: one that comes from n periodic points and one from δ_{m}-periodic points, where $m \mid n$ and m is a prime number.

In order to establish the relation between Theorems 2.2 and Theorem 2.7 we need some lemmas.

Let ϕ be the Euler function. If $\varepsilon_{1}, \ldots, \varepsilon_{\phi(d)}$ are all d-th primitive roots of unity then define

$$
L^{d}=\varepsilon_{1}+\cdots+\varepsilon_{\phi(d)} .
$$

Lemma 2.8 $\quad L^{d}=\mu(d)$.
Proof. Induction by the number of primes in decomposition of d. The statement is true for $d=q$, where q is prime. Inductively we assume that the proposition is true for $d=p_{1} \cdots p_{r}$, where $p_{1} \cdots p_{r}$ are prime numbers (not necessarily different). Consider now the number $w=d p$. We have:

$$
L^{d p}=\varepsilon_{1}+\cdots+\varepsilon_{\phi(d p)} .
$$

On the other hand

$$
\varepsilon_{1}+\cdots+\varepsilon_{\phi(d p)}+\varepsilon_{\phi(d p)+1} \cdots+\varepsilon_{d p}=0
$$

where the sum above extends over all roots of unity of degree $d p$.
Thus by our inductive hypothesis:

$$
\varepsilon_{1}+\cdots+\varepsilon_{\phi(d p)}+\sum_{l \mid d p, l \neq d p} \mu(l)=0 .
$$

As $\sum_{l \mid d p} \mu(l)=0$ we obtain finally:

$$
\varepsilon_{1}+\cdots+\varepsilon_{\phi(d p)}-\mu(d p)=0
$$

which ends the proof.
Let $\varepsilon_{1}, \ldots, \varepsilon_{\phi(d)}$ be all d-th primitive roots of unity. Define

$$
i_{n}^{d}=\sum_{l \mid n} \mu(n / l)\left(\varepsilon_{1}^{l}+\cdots+\varepsilon_{\phi(d)}^{l}\right) .
$$

Lemma $2.9 L^{d}=\mu(d)$. The following equality holds:

$$
i_{n}^{d}=\left\{\begin{array}{cl}
0 & \text { if } n \nmid d \\
\sum_{k \mid n} \mu(d / k) \mu(n / k) \frac{\phi(d)}{\phi(d / k)} & \text { if } n \mid d .
\end{array}\right.
$$

Proof.

$$
i_{n}^{d}=\sum_{l \mid n} \mu(n / l)\left(\varepsilon_{1}^{l}+\cdots+\varepsilon_{\phi(d)}^{l}\right)=\sum_{l \mid n} \mu(n / l) \mu(d /(l, d)) \frac{\phi(d)}{\phi(d /(l, d))} .
$$

The last equality results from Lemma 2.8 and the fact that for $l \mid n$ the sum $\varepsilon_{1}^{l}+\cdots+\varepsilon_{\phi(d)}^{l}$ consists of $d /(l, d)$-primitive roots of unity, each taken $\frac{\phi(d)}{\phi(d /(l, d))}$ times. Observe that if $(n, d)=1, n>1$ then $i_{n}^{d}=\mu(d) \sum_{l \mid n} \mu(n / l)=0$ (cf. [Ch] $)$, otherwise

$$
\begin{aligned}
i_{n}^{d} & =\sum_{k \mid(n, d)} \sum_{\{l \mid n:(l, d)=k\}} \mu(n / l) \mu(d /(l, d)) \frac{\phi(d)}{\phi(d /(l, d))} \\
& =\sum_{k \mid(n, d)} \mu(d / k) \frac{\phi(d)}{\phi(d / k))} \sum_{\{l \mid n:(l, d)=k\}} \mu(n / l) .
\end{aligned}
$$

Let us calculate the sum: $\sum_{\{l \mid n:(l, d)=k\}} \mu(n / l)$. Notice that:

$$
\sum_{\{l \mid n:(l, d)=k\}} \mu(n / l)=\sum_{\{l \mid n:(n / l, d)=k\}} \mu(l)
$$

Let us now consider two cases (a) $n \not \backslash d$ and (b) $n \mid d$.
(a) If $n \not \backslash d$ then there exist: a prime number q and a natural number α such that $q^{\alpha} \mid n$ and $q^{\alpha} \nmid d$. We have in this case:

$$
\sum_{\{l \mid n:(n / l, d)=k\}} \mu(l)=\sum_{\{\tilde{l}: q V \tilde{l} \mid n,(n / \tilde{l}, d)=k\}} \mu(\tilde{l})+\sum_{\left\{l^{\prime}: q\left|l^{\prime}\right| n,\left(n / l^{\prime}, d\right)=k\right\}} \mu\left(l^{\prime}\right)
$$

Define the following function:
$b:\{\tilde{l}: q \nmid \tilde{l} \mid n,(n / \tilde{l}, d)=k, \mu(\tilde{l}) \neq 0\} \rightarrow\left\{l^{\prime}: q\left|l^{\prime}\right| n,\left(n / l^{\prime}, d\right)=k, \mu\left(l^{\prime}\right) \neq\right.$ $0\}, b(\tilde{l})=q \tilde{l}$. Then b is bijection and $\mu(\tilde{l})=-\mu(b(\tilde{l}))$. As a consequence we obtain $\sum_{\{l \mid n:(n / l, d)=k\}} \mu(l)=0$.
(b) If $n \mid d$ then $(n / l, d)=n / l$, but the sum is taken over l such that $(n / l, d)=k$, thus $n / l=k$ and

$$
\sum_{\{l \mid n:(n / l, d)=k\}} \mu(l)=\sum_{l=n / k} \mu(l)=\mu(n / k)
$$

We now return to the calculation of i_{n}^{d}. We have: if $n \not \backslash d$ then by (a) $i_{n}^{d}=0$, if $n \mid d$ then $(n, d)=n$ so by (b) $i_{n}^{d}=\sum_{k \mid n} \mu(d / k) \mu(n / k) \frac{\phi(d)}{\phi(d / k)}$. This completes the proof.

Lemma $2.10 \quad i_{n}^{n}=n$.
Proof. We have by Lemma 2.9:

$$
i_{n}^{n}=\sum_{k \mid n} \mu(n / k) \mu(n / k) \frac{\phi(n)}{\phi(n / k)}=\phi(n) \sum_{k \mid n} \frac{\mu^{2}(k)}{\phi(k)}
$$

Let $n=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}$ then $\phi(n)=n\left(1-\frac{1}{p_{1}}\right) \cdots\left(1-\frac{1}{p_{r}}\right)=n \frac{\left(p_{1}-1\right) \cdots\left(p_{r}-1\right)}{p_{1} \cdots p_{r}}$

$$
\begin{aligned}
i_{n}^{n} & =n \frac{\left(p_{1}-1\right) \cdots\left(p_{r}-1\right)}{p_{1} \cdots p_{r}}\left(1+\sum_{1 \leq l_{1}<\cdots<l_{h} \leq r} \frac{1}{\left(p_{l_{1}}-1\right) \cdots\left(p_{l_{h}}-1\right)}\right) \\
& =\frac{n}{p_{1} \cdots p_{r}}\left(1+\sum_{1 \leq l_{1}<\cdots<l_{h} \leq r}\left(p_{l_{1}}-1\right) \cdots\left(p_{l_{h}}-1\right)\right)
\end{aligned}
$$

$$
=\frac{n}{p_{1} \cdots p_{r}} \sum_{k \mid p_{1} \cdots p_{r}} \phi(k)=n
$$

The last equality is the consequence of well known fact: $\sum_{k \mid s} \phi(k)=s$ (cf. [Ch]).

Proposition 2.11 Theorem 2.2 and Theorem 2.7 are equivalent for smooth maps with finitely many periodic points.

Proof. Define

$$
L_{C}(f)=\sum_{\lambda \in C \cap \sigma(f)}(-1)^{\operatorname{dim} \lambda} \lambda
$$

where C is the set of all roots of unity, $\sigma(f)$ is the spectrum of the map induced by f on homology, $\operatorname{dim} \lambda=i$ if λ is an eigenvalue for $H_{i}(M ; Q)$.

Let us notice now that if $\left\{L\left(f^{n}\right)\right\}_{n=1}^{\infty}$ is bounded then $L\left(f^{n}\right)=L_{C}\left(f^{n}\right)$, (cf. $[\mathrm{BB}],[\mathrm{Ma}])$. On the other hand for smooth maps with finitely many periodic points, $\left\{L\left(f^{n}\right)\right\}_{n=1}^{\infty}$ is bounded (cf. [SS], [CMY]).

Thus, using our terminology we obtain for maps with finitely many periodic points: $L(f)=\sum_{d} \frac{e(d)}{\phi(d)} L^{d}$, where the sum extends over the degrees of all primitive roots of unity in $C \cap \sigma(f)$.

As a consequence we have:

$$
i_{n}(f)=\sum_{d} \frac{e(d)}{\phi(d)} \sum_{l \mid n} \mu(n / l)\left(\varepsilon_{1}^{l}+\cdots+\varepsilon_{\phi(d)}^{l}\right)=\sum_{d} \frac{e(d)}{\phi(d)} i_{n}^{d}
$$

Let us assume now that $e(k m) \neq 0$ and m is an odd prime number. Define $n_{0}=\max \{n m: e(n m) \neq 0\}$. Consider $i_{n_{0}}(f)=\sum_{d} \frac{e(d)}{\phi(d)} i_{n_{0}}^{d}$. By Lemma $2.9 i_{n_{0}}^{d}=0$ if $d<n_{0}$. This implies that $i_{n_{0}}(f)=\frac{e\left(n_{0}\right)}{\phi\left(n_{0}\right)} i_{n_{0}}^{n_{0}}$. Now Lemma 2.10 gives: $i_{n_{0}}(f)=\frac{e\left(n_{0}\right)}{\phi\left(n_{0}\right)} n_{0} \neq 0$. This ends the proof of the first part of the equivalence. To prove the adverse implication let us assume that for some n, multiplicity of prime odd m we have: $i_{n}(f)=\sum_{d} \frac{e(d)}{\phi(d)} i_{n}^{d} \neq 0$. Then there exists d_{0} such that $\frac{e\left(d_{0}\right)}{\phi\left(d_{0}\right)} i_{n}^{d_{0}} \neq 0$. From Lemma 2.9 we deduce that $n \mid d_{0}$, on the other hand $m \mid n$ finally $m \mid d_{0}$ and $e\left(d_{0}\right) \neq 0$ which ends the proof.

3. $\boldsymbol{\delta}_{\boldsymbol{m}}$-Periodic points on rational exterior spaces

For a given space X and an integer $r \geq 0$ let $H^{r}(X ; Q)$ be the r-th singular cohomology space with rational coefficients. Let next $H^{*}(X ; Q)=$ $\oplus_{0}^{s} H^{r}(X ; Q)$ be the algebra of cohomology with the multiplication given by the cup product.

An element $x \in H^{r}(X ; Q)$ is decomposable if there are some pairs of elements $\left(x_{i}, y_{i}\right) \in H^{p}(X ; Q) \times H^{q}(X ; Q) p, q>0, p+q=r>0$ so that $x=\sum x_{i} \cup y_{i}$, where \cup is the cup product in $H^{*}(X ; Q)$. Let $A^{r}(X)=H^{r}(X) / D^{r}(X)$, where D^{r} is the subspace over Q consisting of all decomposable elements. Then $A^{r}(X)$ is a vector space over Q. For a continuous map $f: X \rightarrow X$ let f^{*} be the induced homomorphism on the cohomology spaces and $A(f)$ the induced homomorphism on $A(X)$.

Definition 3.1 A connected topological space X is called rational exterior if it is possible to find some homogeneous elements $x_{i} \in H^{\text {odd }}(X ; Q)$, $i=1, \ldots, k$ such that the inclusions $x_{i} \hookrightarrow H^{*}(X ; Q)$ give rise to a ring isomorphism $\Lambda_{Q}\left(x_{1}, \ldots, x_{k}\right)=H^{*}(X ; Q)$.

One of the simplest example of a rational exterior space is T^{2} : if x_{1}, x_{2} are generators of $H^{1}\left(T^{2} ; Q\right)$ then $x_{1} \cup x_{2}$ is a generator for $H^{2}\left(T^{2} ; Q\right)$. Thus $H^{*}\left(T^{2} ; Q\right)=\Lambda\left(x_{1}, x_{2}\right)$ - exterior algebra with two generators.

Among rational exterior spaces there are: finite H-spaces, including all finite dimensional compact Lie groups and some real Stiefel manifolds.

Definition 3.2 Let f be a self-map of a space X and let $I: A(X) \rightarrow A(X)$ be the identity morphism. The polynomial

$$
A_{f}(t)=\operatorname{det}(t I-A(f))=\prod_{r \geq 1} \operatorname{det}\left(t I-A^{r}(f)\right)
$$

will be called the characteristic polynomial of f. The zeros of this polynomial: $\lambda_{1}(f), \ldots, \lambda_{k}(f), k=\operatorname{rank} X$, where $\operatorname{rank} X$ is the dimension of $A(X)$ over Q, will be called the quotient eigenvalues of f.
Theorem $3.3([\mathrm{H}])$ Let f be a self-map of a rational exterior space, A denotes the matrix of $A(f)$, and let $\lambda_{1}, \ldots, \lambda_{k}$ be quotient eigenvalues of f. Then $L\left(f^{n}\right)=\operatorname{det}\left(I-A^{n}\right)=\prod_{i=1}^{k}\left(1-\lambda_{i}^{n}\right)$.

Let us introduce the following definition:
Definition 3.4 A map f will be called essential providing it satisfies the
conditions:
(a) 1 is not its quotient eigenvalue
(b) at least one quotient eigenvalue is neither zero nor a primitive root of unity.

We have the following characterization of essential maps:
Proposition 3.5 (cf. [G]) A self-map f of a rational exterior space is essential iff $\left\{L\left(f^{m}\right)\right\}_{m=1}^{\infty}$ is unbounded.

Basing on some nontrivial inequalities for algebraic numbers proved in [JL] it is possible to observe the presence of large algebraic periods for essential self-maps of rational exterior spaces.

Let $T_{A}=\left\{n \in N: \operatorname{det}\left(I-A^{n}\right) \neq 0\right\}, A$ denotes the matrix of $A(f)$.
Theorem 3.6 ([G]) Let X be a rational exterior space. Then there exists a number n_{X} which depends only on the space X, and is independent of the choice of f, such that for every essential self-map f of X and all $n>n_{X}$, $n \in T_{A}, n$ is an algebraic period of f.

Theorems 3.6 makes possible to find δ_{m}-periodic points of self-maps of rational exterior spaces.

Theorem 3.7 Let M be a rational exterior compact manifold and f : $M \rightarrow M$ be a C^{1} essential map. Let m be an odd prime number such that:
(i) neither of quotient eigenvalues is an m-th primitive root of unity
(ii) the period of any periodic point is not a multiple of m. Then f has a δ_{m}-periodic point.

Proof. Let us notice that $n \in T_{A}$ iff $\operatorname{det}\left(I-A^{n}\right) \neq 0$. On the other hand, by Theorem 3.3 we have: $\operatorname{det}\left(I-A^{n}\right)=\prod_{i=1}^{k}\left(1-\lambda_{i}^{n}\right)=L\left(f^{n}\right)$. If among $\lambda_{i},(i=1, \ldots, k)$ there is no m-th primitive root of unity then $L\left(f^{m l}\right)$ is different from zero for infinitely many l. Thus, by Theorem 3.6 for sufficiently large l we obtain $i_{m l}(f) \neq 0$, which proves the statement due to Theorem 2.7.

Remark 3.8 By Proposition 3.5, Theorem 3.7 refers only to maps with infinitely many periodic points. Moreover, for a given self-map of a rational exterior compact manifold M there is such number N_{f} (although usually very large) that for all prime $m>N_{f}$ there is always a point with minimal period m (cf. [G]). As a result Theorem 3.7 acts effectively only for $m<N_{f}$.

For every odd prime m we may formulate the following alternative.
Theorem 3.9 Let M be a rational exterior compact manifold. Then there exists a number s_{M}, such that for every essential C^{1} self-map f of M and all natural $s>s_{M}, m^{s} \in T_{A}$ either there is a δ_{m}-periodic point or there are points of minimal period m^{s}.

Proof. Let us take s_{M} such that $m^{s_{M}}>n_{M}$, where $n_{M}=n_{X}$ is taken from Theorem 3.6. Then for every $s>s_{M}$ we have:

$$
\begin{aligned}
i_{m^{s}}(f)= & \sum_{x \in P_{1}(f)} c_{m^{s}}(x) \\
& +\sum_{x \in P_{m}(f)} c_{m^{s-1}}(x)+\cdots+\sum_{x \in P_{m^{s}}(f)} c_{1}(x) \neq 0
\end{aligned}
$$

If there is no δ_{m}-periodic point then from the convention of Theorem 2.5 and Lemma 2.6 we conclude that for $1 \leq r \leq s$ we have $c_{m^{r}}(x)=0$. As a result $\sum_{x \in P_{m}(f)} c_{1}(x) \neq 0$ which gives the thesis.

References

[BB] Babenko I.K. and Bogatyi C.A., The behaviour of the index of periodic points under iterations of a mapping. Math. USSR lzv. 38 (1992), 1-26.
[Ch] Chandrasekharan K., Introduction to Analytic Number Theory. Springer-Verlag, Berlin, Heidelberg, New York, 1968.
[CMY] Chow S.N., Mallet-Paret J. and Yorke J.A., A bifurcation invariant: Degenerate orbits treated as a cluster of simple orbits. Geometric Dynamics: the Proceedings of a Dynamic Meetings at IMPA in Rio de Janeiro (August 1981) Vol. 1007 (1983), Springer-Verlag Lect. Notes math., 109-131.
[D] Dold A., Fixed point indices of iterated maps. Inventiones Math. 74 (1985), 419435.
[G] Graff G., Minimal periods of maps of rational exterior spaces. to appear in Fundamenta Mathematicae.
[H] Haibao D., The Lefschetz number of iterated maps. Top. Appl. 67 (1995), 71-79.
[JL] Jiang B. and Llibre J., Minimal sets of periods for torus maps. Discrete Contin. Dynam. Systems 4 (1998), 301-320.
[MS] Matsuoka T. and Shiraki H., Smooth maps with finitely many periodic points. Mem. Fac. Sci., Kochi Univ. (Math), Vol. 11 (1990), 1-6.
[Ma] Marzantowicz W., Determination of the periodic points of smooth mappings using Lefschetz numbers and their powers. Russian Math. lzv. 41 (1997), 80-89.
[MP] Marzantowicz W. and Przygodzki P., Finding periodic points of a map by use of a k-expansion. Discrete Contin. Dynam. Systems 5 (1999), 495-514.
[SS] Shub M. and Sullivan P., A remark on the Lefschetz fixed point formula for differentiable maps. Topology 13 (1974), 189-191.

Faculty of Applied
Physics and Mathematics
Technical University of Gdansk
ul G. Narutowicza 11/12
80-952 Gdansk, Poland
E-mail: graff@mifgate.mif.pg.gda.pl

[^0]: 1991 Mathematics Subject Classification : Primary 58F20, 55M20; Secondary 58F08.
 *Research supported by KBN grant No. 2 PO3A 03315 . This work was partially done at the Intitute of Mathematics of Polish Academy of Sciences.

