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Weighted sharing and a result of Ozawa

Indrajit LAHIRI
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Abstract. We prove a uniqueness theorem for meromorphic functions sharing three
values with unit weight which improves a result of Ozawa.
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1. Introduction, Definitions and Results

Let f and g be two nonconstant meromorphic functions defined in the
open complex plane C . If for some a\in C\cup\{\infty\} the zeros of f-a and g-a
coincide in locations and multiplicities we say that f and g share the value
a CM (counting multiplicities) and if coincide in locations only we say that

f and g share a IM (ignoring multiplicities).
We do not explain the standard notations and definitions of the value

distribution theory as these are available in [2]. However, we explain some
notations and definitions which will be needed in the sequel. Throughout
the paper we denote by f and g two nonconstant meromorphic functions
defined on C unless otherwise stated.

Definition 1 [4] We denote by N(r, a;f|=1) the counting function of
simple a-points of f .

Definition 2 [4] We denote by \overline{N}(r, a;f|\geq 2) the counting function of
multiple a-points of f . where each a-point is counted only once.

Definition 3 [10] We define \delta_{2}(a;f)=1- lim \sup_{rarrow\infty}\frac{N_{2}(r,af)}{T(r,f)} , where
N_{2}(r, a;f)=\overline{N}(r, a;f)+\overline{N}(r, a;f|\geq 2) .

Clearly 0\leq\delta(a;f)\leq\delta_{2}(a;f)\leq\Theta(a;f)\leq 1 .
In order to investigate the influence of the distribution of zeros on the

uniqueness of entire functions M. Ozawa [5] proved the following theorem.
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Theorem A Let f and g be entire functions of finite order sharing 0, 1
CM. If \delta(0;f)>\frac{1}{2} then either f\equiv g or fg\equiv 1 .

H. Ueda [6, 7] extended Theorem A to meromorphic functions and re-
moved the order restriction on f and g . Later on H.X . Yi [8, 9] further
worked on the theorem of Ozawa and improved the same by relaxing the
restriction on the deficiency. Now it appears that the problem of relaxing
the nature of sharing of values in Theorem A is of interest to investigate.
However some attempt has been made in [3, 4] but there relaxation of the
nature of sharing of only one value (i.e. the value 0) was possible. In the
present paper we further investigate this problem and make a twofold im-
provement of Theorem A : firstly by relaxing the nature of sharing of all the
values and secondly by relaxing the restriction on deficiency.

To this end we explain the idea of weighted sharing as introduced in
[4].

Definition 4 [4] Let k be a nonnegative integer or infinity. For a\in C\cup

\{\infty\} we denote by E_{k}(a;f) the set of all a-points of f where an a-point of
multiplicity m is counted m times if m\leq k and k+1 times if m>k .

If E_{k}(a;f)=E_{k}(a;g) , we say that f , g share the value a with weight k .

The definition implies that if f . g share a value a with weight k then
z_{0} is a zero of f-a with multiplicity m(\leq k) if and only if z_{0} is a zero of
g-a with multiplicity m(\leq k) and z_{0} is a zero of f-a with multiplicity
m(>k) if and only if z_{0} is a zero of g-a with multiplicity n(>k) where
m is not necessarily equal to n .

We write f . g share (a, k) to mean that f , g share the value a with
weight k . Clearly if f , g share (a, k) then f . g share (a,p) for any integer
p, 0\leq p<k . Also we note that f , g share a value a IM or CM if and only
if f , g share (a, 0) or (a, \infty) respectively.

Now we state the main result of the paper.

Theorem 1 If f, g share (0, 1) , (1, 1) , (\infty, 1) and

2 \delta_{2}(0;f)+2\delta_{2}(\infty;f)+\min\{\sum_{a\neq 0,1,\infty}\delta_{2}(a;f),\sum_{a\neq 0,1,\infty}\delta_{2}(a;g)\}>3

then either f\equiv g or fg\equiv 1 . If f has at least one zero or pole, the case
fg\equiv 1 does not occur.
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Considering f=\exp(z)-1 and g=2-2/\exp(z) one can easily verify
that Theorem 1 is sharp. However, the author does not know whether in
Theorem 1 the weight of sharing of values can be reduced from unity to zero
and so it remains an open problem.

2. Lemmas

In this section we discuss some lemmas which will be needed in the
sequel.

Lemma 1 [1] If f, g share (0, 0) , (1, 0) , (\infty, 0) then outside a set offinite
linear measure

\lim_{rarrow}\sup_{\infty}\frac{T(r,f)}{T(r,g)}\leq 3 and \lim_{rarrow}\sup_{\infty}\frac{T(r,g)}{T(r,f)}\leq 3 .

Lemma 2 Let f, g share (1, 0) and H= \frac{f’}{f}-g_{-}’g . If \overline{N}(r, 1;f)\neq S(r, f)

and H\equiv 0 then f\equiv g .

Proof. Since H\equiv 0 , it follows that f\equiv cg , where c is a constant. Since f .
g share (1, 0) and \overline{N}(r, 1;f)\neq S(r, f) , there exists z_{o}\in C such that f(z_{o})=

g(z_{o})=1 so that c=1 . Therefore f\equiv g . This proves the lemma. \square

Henceforth we shall denote by h a meromorphic function defined by

h=( \frac{f’}{f’}-\frac{2f’}{f-1})-(\frac{g’}{g’}-\frac{2g\prime}{g-1})

Lemma 3 If f, g share (1, 1) and h\not\equiv 0 then

N(r, 1;f|=1)=N(r, 1;g|=1)\leq N(r, h)+S(r, f)+S(r, g) .

Proof. Since f , g share (1, 1) , it follows that a simple 1-point of f is a
simple 1-point of 9 and conversely. If z_{o} is a simple 1-point of f and g , then
by a simple calculation we see that in some neighbourhood of z_{o}

h(z)=(z-z_{o})\psi(z) ,

where \psi is analytic at z_{o} .
Hence

N(r, 1;f|=1)\leq N(r, 0;h)

\leq T(r, h)+O(1)



682 I. Lahiri

=N(r, h)+m(r, h)+O(1)
=N(r, h)+S(r, f)+S(r, g) ,

by the first fundamental theorem and Milloux theorem {p.55 [2]}.
Since N(r, 1;f|=1)=N(r, 1;g|=1) , the lemma is proved. \square

Lemma 4 Let f. g share (0, 1) , (1, 1) , (\infty, 1) and a_{1} , a_{2} , , a_{n} be pair-
wise distinct complex numbers such that a_{i}\neq 0,1 , \infty (i=1,2, \ldots, n) . Then

N(r, h)\leq\overline{N}(r, 0;f|\geq 2)+\overline{N}(r, \infty;f|\geq 2)+\overline{N}(r, 1;f|\geq 2)

+ \sum_{i=1}^{n}\overline{N}(r, a_{i}; f|\geq 2)+\sum_{i=1}^{n}\overline{N}(r, a_{i}; g|\geq 2)

+\overline{N}_{o}(r, 0;f’)+\overline{N}_{o}(r, 0;g’) ,

where \overline{N}_{o}(r, 0;f’) is the reduced counting function of the zeros of f’ which
are not the zeros of f(f-1) \prod_{i=1}^{n}(f-a_{i}) .

The proof is omitted.

Lemma 5 If f, g share (0, 1) , (1, 1) , (\infty, 1) and f\not\equiv g then

(i) \overline{N}(r, 1;f|\geq 2)\leq\overline{N}(r, 0;f|\geq 2)+\overline{N}(r, \infty;f|\geq 2)+S(r, f) ,

(ii) \overline{N}(r, 1;g|\geq 2)\leq\overline{N}(r, 0;f|\geq 2)+\overline{N}(r, \infty;f|\geq 2)+S(r, f) .

Proof. Since \overline{N}(r, 1;f)=\overline{N}(r, 1;g) , the lemma is obvious if \overline{N}(r, 1;f)=

S(r, f) . So we suppose that \overline{N}(r, 1;f)\neq S(r, f) . Let

H= \frac{f’}{f}-\frac{g’}{g} .

Since f\not\equiv g , it follows from Lemma 2 that H\not\equiv 0 . Also since f , g share
(1, 1) , a multiple 1-point of f is a multiple 1-point of g and vice-versa and
so it is a zero of H . Hence

\overline{N}(r, 1;f|\geq 2)\leq N(r, 0;H)

\leq N(r, H)+m(r, H)+O(1)

=N(r, H)+S(r, f) , (1)

by Milloux theorem {p.55 [2]} and Lemma 1.
The possible poles of H occur at the zeros and poles of f , g . Clearly if

z_{o} is a zero or a pole of f and g with the same multiplicity then z_{o} is not a
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pole of H . Since all the poles of H are simple and f , g share (0, 1) , (\infty, 1) ,
it follows that

N(r, H)=\overline{N}(r, H)\leq\overline{N}(r, 0;f|\geq 2)+\overline{N}(r, \infty;f|\geq 2) . (2)

Now (i) follows from (1) and (2). Also (ii) follows from (i) because f ,
g share (1, 1) so that \overline{N}(r, 1;f|\geq 2)=\overline{N}(r, 1;g|\geq 2) . This proves the
lemma. \square

Lemma 6 Let a_{1} , a_{2} , \ldots , a_{n} be pairwise distinct complex numbers such
that a_{i}\neq 0,1 , \infty (i=1,2, \ldots, n) and \overline{N}_{o}(r, 0;f’) be defined as in Lemma 4.
Then

\overline{N}_{o}(r, 0;f’)+\sum_{i=1}^{n}\overline{N}(r, a_{i}; f|\geq 2)+\overline{N}(r, 1; f|\geq 2)

\leq\overline{N}(r, f)+\overline{N}(r, 0;f)+S(r, f) .

Proof. From the definition of \overline{N}_{o}(r, 0;f’) we see that

\overline{N}_{o}(r, 0;f’)+\sum_{i=1}^{n}\overline{N}(r, a_{i}; f|\geq 2)+N(r, 0; f)-\overline{N}(r, 0; f)

+\overline{N}(r, 1;f|\geq 2)

\leq N(r, 0;f’)\leq N(r, 0; \frac{f’}{f})+N(r, 0; f)-\overline{N}(r, 0; f)

\leq N (r, \frac{f’}{f} ) +N(r, 0;f)-\overline{N}(r, 0;f)+S(r, f)

\leq\overline{N}(r, 0;f)+\overline{N}(r, f)+N(r, 0;f)-\overline{N}(r, 0;f)+S(r, f) .

i.e.

\overline{N}_{o}(r, 0;f’)+\sum_{i=1}^{n}\overline{N}(r, a_{i}; f|\geq 2)+\overline{N}(r, 1; f|\geq 2)

\leq\overline{N}(r, 0;f)+\overline{N}(r, f)+S(r, f) .

This proves the lemma. \square

3. Proof of Theorem 1

Let f\not\equiv g . We shall show that fg\equiv 1 .
First we suppose that h\not\equiv 0 . Let a_{1} , a_{2} , \ldots , a_{n} be pairwise distinct
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complex numbers such that a_{i}\neq 0,1 , \infty for i=1,2 , \ldots , n . By the second
fundamental theorem we get

(n+1)T(r, f)\leq\overline{N}(r, 1; f)+\overline{N}(r, 0; f)+\overline{N}(r, f)

+ \sum_{i=1}^{n}\overline{N}(r, a_{i}; f)-N_{o}(r, 0; f’)+S(r, f) , (3)

where N_{o}(r, 0;f’) is the counting function of those zeros of f’ which are not
the zeros of f(f-1)y \prod_{i=1}^{n}(f-a_{i}) .

Now by Lemma 1, Lemma 3, Lemma 4, Lemma 5 and Lemma 6 we
obtain because f , g share (0, 1) , (1, 1) , (\infty, 1)

\overline{N}(r, 1;f)=N(r, 1;f|=1)+\overline{N}(r, 1;f|\geq 2)

\leq N(r, h)+\overline{N}(r, 1;f|\geq 2)+S(r, f)

\leq\overline{N}(r, 0;f|\geq 2)+\overline{N}(r, \infty;f|\geq 2)+\overline{N}(r, 1;f|\geq 2)

+ \sum_{i=1}^{n}\overline{N}(r, a_{i}; f|\geq 2)+\sum_{i=1}^{n}\overline{N}(r, a_{i}; g|\geq 2)+\overline{N}_{o}(r, 0; f’)

+\overline{N}_{o}(r, 0;g’)+\overline{N}(r, 1;f|\geq 2)+S(r, f)

\leq 2\overline{N}(r, 0;f|\geq 2)+2\overline{N}(r, \infty;f|\geq 2)+\sum_{i=1}^{n}\overline{N}(r, a_{i}; f|\geq 2)

+\overline{N}(r, 0;g)+\overline{N}(r, g)+\overline{N}_{o}(r, 0;f’)+S(r, f) . (4)

From (3) and (4) we get

(n+1)T(r, f)\leq 2N_{2}(r, 0; f)+2N_{2}(r, \infty;f)

+ \sum_{i=1}^{n}N_{2}(r, a_{i;}f)+S(r, f) . (5)

Similarly we can prove that

(n+1)T(r, g)\leq 2N_{2}(r, 0; f)+2N_{2}(r, \infty;f)

+ \sum_{i=1}^{n}N_{2}(r, a_{i}; g)+S(r, f) . (6)

Combining (5) and (6) we get
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(n+1)T(r)\leq 2N_{2}(r, 0; f)+2N_{2}(r, \infty;f)

+ \max\{\sum_{i=1}^{n}N_{2}(r, a_{i}; f) , \sum_{i=1}^{n}N_{2}(r, a_{i;} _{g})\}+S(r, f) ,

(7)

where T(r)= \max\{T(r, f), T(r, g)\} .
Let S= {a : a\in C , a\neq 0,1 , \infty and \delta_{2}(a;f)+\delta_{2}(a;g)>0 }. Since S is

countable, we suppose that S=\{a_{i} : i\in N_{+}\} , where N_{+} is a set of positive
integers.

Let \sum_{a\neq 0,1,\infty}\delta_{2}(a;f)<\sum_{a\neq 0,1,\infty}\delta_{2}(a;g) . Then there exists a positive
integer n_{o} such that

[mathring]_{\sum_{i=1}^{n}}\delta_{2}(a_{i}; f)\leq[mathring]_{\sum_{i=1}^{n}}\delta_{2}(a_{i}; g) and [mathring]_{\sum_{i=1}^{n}}\delta_{2}(a_{i}; f)> \sum \delta_{2}(a;f)-\epsilon ,
a\neq 0,1,\infty

where \epsilon(>0) is given.
Then from (7) we get

n_{o}+1<4+n_{o}-2\delta_{2}(0;f)-2\delta_{2}(\infty;f)- \sum \delta_{2}(a;f)+\epsilon

a\neq 0,1,\infty

i.e.

2 \delta_{2}(0;f)+2\delta_{2}(\infty;f)+\sum_{a\neq 0,1,\infty}\delta_{2}(a;f)<3+\epsilon
.

Since \epsilon (>0) is arbitrary, it follows that

2 \delta_{2}(0;f)+2\delta_{2}(\infty;f)+\sum_{a\neq 0,1,\infty}\delta_{2}(a;f)\leq 3
. (8)

If \sum_{a\neq 0,1,\infty}\delta_{2}(a;g)<\sum_{a\neq 0,1,\infty}\delta_{2}(a;f) , similarly we can prove that

2 \delta_{2}(0;f)+2\delta_{2}(\infty;f)+\sum_{a\neq 0,1,\infty}\delta_{2}(a;g)\leq 3
. (9)

If \sum_{a\neq 0,1,\infty}\delta(a;f)=\sum_{a\neq 0,1,\infty}\delta(a;g) then from (5) we obtain (8).
Now (8) and (9) contradict the given condition. Therefore h\equiv 0 and

so

f \equiv\frac{Ag+B}{Cg+D}, (10)



686 I. Lahiri

where A , B , C , D are constants and AD-BC\neq 0 .
Let C=0. Then from (10) we get

f\equiv ag+b , (11)

where a= \frac{A}{D} , b= \frac{B}{D} and AD\neq 0 .
Let 0, \infty be Picard’s exceptional values (e.v.P.) of f and so of g . Then

from (11) we see that b is also an e.v.P. of f which is impossible unless
b=0 . So from (11) we get f\equiv ag , Since f\not\equiv g , it follows that a\neq 1 and so
1 becomes an e.v.P. of f because f , g share (1, 1) . This is again impossible.

Let \infty be an e.v.P. of f and g but 0 be not an e.v.P. of f and g . Since

f , g share (0, 1) , from (11) we get b=0 and so f\equiv ag . Since f\not\equiv g , a\neq 1

and so 1 becomes an e.v.P. of f and g . Hence \sum_{t\neq 1,\infty}\delta_{2}(t;f)=0 . This
contradicts the given condition.

Let 0 be an e.v.P. of f and g but \infty be not. If 1 is an e.v.P. of f then
\sum_{t\neq 0,1}\delta_{2}(t;f)=0 , which contradicts the given condition. Hence there
exists z_{o}\in C such that f(z_{o})=g(z_{o})=1 and so from (11) we get a+b=1
and so

f\equiv ag+1-a . (12)

Since f , g share (0, 1) and 0 is an e.v.P. of f and g , it follows from (12) that
l-a is an e.v.P. of f and (a-1)/a is an e.v.P. of g . Since f\not\equiv g , from (12)
we see that a\neq 1 and it follows that \delta_{2}(\infty;f)=0 and \sum_{t\neq 0,1,\infty}\delta_{2}(t;g)=1 ,

which contradicts the given condition.
Let 0, \infty be not e.v.P. of f and so of g . Then from (11) we get f\equiv

ag because f . g share (0, 1) . Since f\not\equiv g , it follows that a\neq 1 and so
1 becomes an e.v.P. of f and g because f , g share (1, 1) . Hence by the
deficiency relation we get

\delta_{2}(0;f)+\delta_{2}(\infty;f)+ \sum \delta_{2}(t;f)\leq 1

t\neq 0,1,\infty

and so

2 \delta_{2}(0;f)+2\delta_{2}(\infty;f)+\sum_{t\neq 0,1,\infty}\delta_{2}(t;f)

\leq 1+\delta_{2}(0;f)+\delta_{2}(\infty;f)\leq 2 ,

a contradiction to the given condition.
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Let C\neq 0 . From (10) we get

f- \frac{A}{C}\equiv\frac{B-\frac{AD}{c}}{Cg+D} . (13)

Since f , g share (\infty, 1) , it follows from (13) that \frac{A}{c} , \infty are e.v.P. of f and
- \frac{D}{c} , \infty are e.v .P. of g .

Let A=0. Then from (13) we get

f \equiv\frac{1}{\alpha g+\beta}, (14)

where \alpha=\frac{c}{B} , \beta=\frac{D}{B} and B\neq 0 .
Since 0, \infty are e.v.P. of f and f . g share (1, 1) , it follows that there

exists z_{o}\in C such that f(z_{o})=g(z_{o})=1 . So from (14) we get \alpha+\beta=1

and hence

f \equiv\frac{1}{\alpha g+1-\alpha} . (15)

Since f . g share (0, 1) , (\infty, 1) and 0, \infty are e.v.P. of f , it follows from
(15) that 0, \infty , \frac{\alpha-1}{\alpha} are e.v.P. of g , which is impossible unless \alpha=1 . Hence
from (15) we get fg\equiv 1 .

Let A\neq 0 . Since \frac{A}{c} , \infty are e.v.P. of f , it follows that \delta_{2}(0;f)=0 and
\sum_{t\neq 0,1,\infty}\delta_{2}(t;f)\leq 1 , which contradicts the given condition. This proves
the theorem. \square

References

[1 ] Gundersen G.G., Meromorphie functions that share three or four values. J. London
Math. Soc. (2), 20 (1979), 457-466.

[2] Hayman W.K., Meromorphie Functions. The Clarendon Press, Oxford (1964).
[3] Lahiri I., On uniqueness of meromorphie functions. Math. Balkanica (N.S.), 12,

Fasc. 1-2 (1998), 119-125.
[4] Lahiri I., Weighted sharing and uniqueness of meromorphie functions. Nagoya Math.

J. 161 (2001), 193-206.
[5] Ozawa M., Unicity theorems for entire functions. J. d’Anal. Math. 30 (1976), 411-

420.
[6] Ueda H., Unicity theorems for meromorphie or entire functions II. Kodai Math. J.

6 (1983), 26-36.
[7] Ueda H., On the zerO-One-pole set of a meromorphie function II. Kodai Math. J.

13 (1990), 134-142.



688 I. Lahiri

[8] Yi H.X. Meromorphic functions that share three values. Chin. Ann. Math., 9A
(1988), 434-439.

[9] Yi H.X., Meromorphic functions that share two or three values. Kodai Math. J. 13
(1990), 363-372.

[10] Yi H.X., On characteristic function of a meromorphic function and its derivative.
Indian J. Math. 33, N0.2 (1991), 119-133.

Department of Mathematics
University of Kalyani
West Bengal 741235, India
E-mail: indrajit@ca12.vsn1.net.in


	1. Introduction, Definitions ...
	Theorem A ...
	Theorem 1 ...

	2. Lemmas
	3. Proof of Theorem 1
	References

