Local equivalence of Sacksteder and Bourgain hypersurfaces

Maks A. Akivis and Vladislav V. Goldberg

(Received June 12, 2000; Revised August 28, 2000)

Abstract

Finding examples of tangentially degenerate submanifolds (submanifolds with degenerate Gauss mappings) in an Euclidean space R^{4} that are noncylindrical and without singularities is an important problem of differential geometry. The first example of such a hypersurface was constructed by Sacksteder in 1960. In 1995 Wu published an example of a noncylindrical tangentially degenerate algebraic hypersurface in R^{4} whose Gauss mapping is of rank 2 and which is also without singularities. This example was constructed (but not published) by Bourgain.

In this paper, the authors analyze Bourgain's example, prove that, as was the case for the Sacksteder hypersurface, singular points of the Bourgain hypersurface are located in the hyperplane at infinity of the space R^{4}, and these two hypersurfaces are locally equivalent.

Key words: Gauss mapping, varieties with degenerate Gauss mappings, hypercubic, Sacksteder, Bourgain.

1. It is important to find examples of tangentially degenerate submanifolds in order to understand the theory of such manifolds. These examples prove the existence of tangentially degenerate submanifolds and help to illustrate the theory. The first known example of a tangentially degenerate hypersurface of rank 2 without singularities in R^{4} was constructed by Sacksteder [S60]. This example was examined from the differential geometry point of view by Akivis in [A87]. In particular, Akivis proved that the Sacksteder hypersurface has no singularities since they "went to infinity". In the same paper, Akivis presented a series of examples generalizing Sacksteder's example in R^{4}, constructed a new series of examples of three-dimensional submanifolds $V^{3} \subset P^{n}(\mathbb{R}), n \geq 4$, of rank 2 , whose focal surfaces are imaginary, and proved existence of submanifolds of this kind. Note that more examples of tangentially degenerate submanifolds without singularities can be found in [198, 199a, 199b]. The examples are essentially based on classical Cartan's hypersurfaces (see [C39]).

Mori [M94] claims that he constructed "a one-parameter family of com-

[^0]plete nonruled deformable hypersurfaces in R^{4} with rank $r=2$ almost everywhere". However, it follows immediately from his formulas that the hypersurfaces of his family are ruled hypersurfaces. Moreover, they are cylinders.

Also much progress on the study of tangentially degenerate submanifolds over the complex numbers has been made in [GH79], [L99], and [AGL]. In these papers and in the papers [FW95], [W95], and [WZ01], one can find more examples of tangentially degenerate submanifolds over the complex numbers.

Recently Wu [W95] published an example of a noncylindrical tangentially degenerate algebraic hypersurface in an Euclidean space R^{4} which has a degenerate Gauss mapping but does not have singularities. This example was constructed (but not published) by Bourgain (see also [198, I99a, I99b]). In the present paper, we investigate Bourgain's example from the point of view of the paper [A87] (see also Section 4.7 of our book [AG93]). In particular, we prove that, as was the case for the Sacksteder hypersurface, the Bourgain hypersurface has no singularities since they "went to infinity". Namely this analysis suggested an idea that Bourgain's and Sacksteder's examples must be equivalent. Moreover, this analysis showed that a hypersurface constructed in these examples is torsal, i.e., it is stratified into a one-parameter family of plane pencils of straight lines.

In addition, at the end of our paper we prove that the examples of Bourgain and Sacksteder are locally equivalent.
2. In Cartesian coordinates $x_{1}, x_{2}, x_{3}, x_{4}$ of the Euclidean space R^{4}, the equation of the Bourgain hypersurface B is

$$
\begin{equation*}
x_{1} x_{4}^{2}+x_{2}\left(x_{4}-1\right)+x_{3}\left(x_{4}-2\right)=0 \tag{1}
\end{equation*}
$$

(see [W95] or [198, 199a, I99b]). Equation (1) can be written in the form

$$
\begin{equation*}
x_{1} x_{4}^{2}+\left(x_{2}+x_{3}\right) x_{4}-\left(x_{2}+2 x_{3}\right)=0 . \tag{2}
\end{equation*}
$$

Make in (2) the following admissible change of Cartesian coordinates:

$$
x_{2}+x_{3} \rightarrow x_{2}, \quad x_{2}+2 x_{3} \rightarrow x_{3} .
$$

Then equation (2) becomes

$$
\begin{equation*}
x_{1} x_{4}^{2}+x_{2} x_{4}-x_{3}=0 . \tag{3}
\end{equation*}
$$

Introduce homogeneous coordinates in R^{4} by setting $x_{i}=\frac{z_{i}}{z_{0}}, i=$ $1,2,3,4$. Then equation (3) takes the form

$$
\begin{equation*}
f=z_{1} z_{4}^{2}+z_{0} z_{2} z_{4}-z_{0}^{2} z_{3}=0 \tag{4}
\end{equation*}
$$

Equation (4) defines a cubic hypersurface F in the space $\bar{R}^{4}=R^{4} \cup P_{\infty}^{3}$ which is an enlarged space R^{4}, i.e., it is the space R^{4} enlarged by the hyperplane at infinity P_{∞}^{3} (whose equation is $z_{0}=0$).

Denote by $A_{\alpha}, \alpha=0,1,2,3,4$, fixed basis points of the space \bar{R}^{4}. Suppose that these points have constant normalizations, i.e., that $d A_{\alpha}=0$. An arbitrary point $z \in \bar{R}^{4}$ can be written in the form $z=\sum_{\alpha} z_{\alpha} A_{\alpha}$. We will take a proper point of the space \bar{R}^{4} as the point A_{0}, and take points at infinity as the points $A_{1}, A_{2}, A_{3}, A_{4}$.

Equation (4) shows that the proper straight line $A_{0} \wedge A_{4}$ defined by the equations $z_{1}=z_{2}=z_{3}=0$ and the plane at infinity defined by the equations $z_{0}=z_{4}=0$ belong to the hypersurface F defined by equation (4).

We write the equations of the hypersurface F in a parametric form. To this end, we set

$$
z_{0}=1, \quad z_{4}=p, \quad z_{1}=u, \quad z_{3}=p v
$$

Then it follows from (4) that

$$
z_{2}=v-p u
$$

This implies that an arbitrary point $z \in F$ can be written as

$$
\begin{equation*}
z=A_{0}+u A_{1}+v A_{2}+p\left(A_{4}-u A_{2}+v A_{3}\right) \tag{5}
\end{equation*}
$$

The parameters p, u, v are independent nonhomogeneous parameters on the hypersurface F.
3. Let us find singular points of the hypersurface F. Such points are defined by the equations $\frac{\partial f}{\partial z_{\alpha}}=0$. It follows from (4) that

$$
\left\{\begin{array}{l}
\frac{\partial f}{\partial z_{0}}=z_{2} z_{4}-2 z_{0} z_{3} \tag{6}\\
\frac{\partial f}{\partial z_{1}}=z_{4}^{2}, \quad \frac{\partial f}{\partial z_{2}}=z_{0} z_{4}, \quad \frac{\partial f}{\partial z_{3}}=-z_{0}^{2} \\
\frac{\partial f}{\partial z_{4}}=2 z_{1} z_{4}+z_{0} z_{2}
\end{array}\right.
$$

All these derivatives vanish simultaneously if and only if $z_{0}=z_{4}=0$. Thus the 2-plane at infinity $\sigma=A_{1} \wedge A_{2} \wedge A_{3}$ is the locus of singular points of the hypersurface F.

Consider a point $B_{0}=A_{0}+p A_{4}$ on the straight line $A_{0} \wedge A_{4}$. By (4), to the point B_{0} there corresponds the straight line $a(p)$ in the 2-plane at infinity σ, and the equation of this straight line is

$$
\begin{equation*}
p^{2} z_{1}+p z_{2}-z_{3}=0 \tag{7}
\end{equation*}
$$

The family of straight lines $a(p)$ depends of the parameter p, and its envelope is the conic C defined by the equation

$$
\begin{equation*}
z_{2}^{2}+4 z_{1} z_{3}=0 \tag{8}
\end{equation*}
$$

The straight line $a(p)$ is tangent to the conic C at the point

$$
\begin{equation*}
B_{1}(p)=A_{1}-2 p A_{2}-p^{2} A_{3} \tag{9}
\end{equation*}
$$

Equation (9) is a parametric equation of the conic C. The point

$$
\begin{equation*}
\frac{d B_{1}}{d p}=-2\left(A_{2}+p A_{3}\right) \tag{10}
\end{equation*}
$$

belongs to the tangent line to the conic C at the point $B_{1}(p)$.
Consider the 2-planes $\tau=B_{0} \wedge B_{1} \wedge \frac{d B_{1}}{d p}$. Such 2-planes are completely determined by the location of the point B_{0} on the straight line $A_{0} \wedge A_{4}$, and they form a one-parameter family. All these 2-planes belong to the hypersurface F. In fact, represent an arbitrary point z of the 2-plane τ in the form

$$
\begin{align*}
z & =\alpha B_{0}+\beta B_{1}-\frac{1}{2} \dot{\gamma} \frac{d B_{1}}{d p} \tag{11}\\
& =\alpha A_{0}+\beta A_{1}+(-2 p \beta+\gamma) A_{2}+\left(-p^{2} \beta+p \gamma\right) A_{3}+p \alpha A_{4}
\end{align*}
$$

The coordinates of the point z are

$$
\begin{equation*}
z_{0}=\alpha, \quad z_{1}=\beta, \quad z_{2}=\gamma-2 p \beta, \quad z_{3}=p(\gamma-p \beta), \quad z_{4}=p \alpha \tag{12}
\end{equation*}
$$

Substituting these values of the coordinates into equation (4), one can see that equation (4) is identically satisfied. Thus the hypersurface F is foliated into a one-parameter family of 2-planes $\tau(p)=B_{0} \wedge B_{1} \wedge \frac{d B_{1}}{d p}$.

In a 2-plane $\tau(p)$ consider a pencil of straight lines with center at B_{1}. The straight lines of this pencil are defined by the point B_{1} and the point
$B_{2}=A_{2}+p A_{3}+q\left(A_{0}+p A_{4}\right)$. The straight lines $B_{1} \wedge B_{2}$ depend on two parameters p and q. These lines belong to the 2-plane $\tau(p)$, and along with this 2-plane they belong to the hypersurface F. Thus they form a foliation on the hypersurface F.

We prove that this foliation is a Monge-Ampère foliation. In the space \bar{R}^{4}, we introduce the moving frame formed by the points

$$
\left\{\begin{array}{l}
B_{0}=A_{0}+p A_{4} \tag{13}\\
B_{1}=A_{1}-2 p A_{2}-p^{2} A_{3} \\
B_{2}=A_{2}+p A_{3}+q A_{0}+p q A_{4} \\
B_{3}=A_{3} \\
B_{4}=A_{4}
\end{array}\right.
$$

It is easy to prove that these points are linearly independent, and the points A_{α} can be expressed in terms of the points B_{α} as follows

$$
\left\{\begin{array}{l}
A_{0}=B_{0}-p B_{4} \tag{14}\\
A_{1}=B_{1}+2 p B_{2}-p^{2} B_{3}-2 p q B_{0} \\
A_{2}=B_{2}-p B_{3}-q B_{0} \\
A_{3}=B_{3} \\
A_{4}=B_{4}
\end{array}\right.
$$

Consider a displacement of the straight lines $B_{1} \wedge B_{2}$ along the hypersurface F. Suppose that Z is an arbitrary point of this straight line,

$$
\begin{equation*}
Z=B_{1}+\lambda B_{2} \tag{15}
\end{equation*}
$$

Differentiating (15) and taking into account (14) and $d A_{\alpha}=0$, we find that

$$
\begin{equation*}
d Z \equiv(2 q d p+\lambda d q) B_{0}+\lambda d p\left(B_{3}+q B_{4}\right) \quad\left(\bmod B_{1}, B_{2}\right) \tag{16}
\end{equation*}
$$

It follows from relation (16) that

1. A tangent hyperplane to the hypersurface F is spanned by the points B_{1}, B_{2}, B_{0}, and $B_{3}+q B_{4}$. This hyperplane is fixed when the point Z moves along the straight line $B_{1} \wedge B_{2}$. Thus the hypersurface F is tangentially degenerate of rank 2 , and the straight lines $B_{1} \wedge B_{2}$ form a Monge-Ampère foliation on F.
2. The system of equations

$$
\left\{\begin{align*}
2 q d p+\lambda d q & =0 \tag{17}\\
\lambda d p & =0
\end{align*}\right.
$$

defines singular points on the straight line $B_{1} \wedge B_{2}$, and on the hypersurface F it defines torses. The system of equations (17) has a nontrivial solution with respect to $d p$ and $d q$ if and only if its determinant vanishes: $\lambda^{2}=0$. Hence by (15), a singular point on the straight line $B_{1} \wedge B_{2}$ coincides with the point B_{1}. For $\lambda=0$, system (17) implies that $d p=0$, i.e., $p=$ const. Thus it follows from (9) that the point $B_{1} \in C$ is fixed, and as a result, the torse corresponding to this constant parameter p is a pencil of straight lines with center at B_{1} located in the 2-plane $\tau(p)=B_{0} \wedge B_{1} \wedge B_{2}$.
3. All singular points of the hypersurface F belong to the conic $C \subset P^{\infty}$ defined by equation (8). Thus if we consider the hypersurface F in an Euclidean space R^{4}, then on F there are no singular points in a proper part of this space.
4. The hypersurface F considered in the proper part of an Euclidean space is not a cylinder since its rectilinear generators do not belong to a bundle of parallel straight lines. A two-parameter family of rectilinear generators of F decomposes into a one-parameter family of plane pencils of parallel lines.
4. No one of properties 1-4 characterizes Bourgain's hypersurfaces completely: they are necessary but not sufficient for these hypersurfaces. The following theorem gives a necessary and sufficient condition for a hypersurface to be of Bourgain's type.

Theorem 1 Let l be a proper straight line of an Euclidean space R^{4} enlarged by the plane at infinity P_{∞}^{3}, and let C be a conic in the 2-plane σ. Suppose that the straight line l and the conic C are in a projective correspondence. Let $B_{0}(p)$ and $B_{1}(p)$ be two corresponding points of l and C, and let τ be the 2-plane passing through the point B_{0} and tangent to the conic C at the point B_{1}. Then
(a) when the point B_{0} is moving along the straight line l, the plane τ describes a Bourgain hypersurface, and
(b) any Bourgain hypersurface satisfies the above construction.

Proof. The necessity (b) of the theorem hypotheses follows from our previous considerations. We prove the sufficiency (a) of these hypotheses. Take a fixed frame $\left\{A_{u}\right\}, u=0,1,2,3,4$, in the space R^{4} enlarged by the plane at infinity P_{∞}^{3} as follows: its point A_{0} belongs to l, the point A_{4} is the point at infinity of l, and the points A_{1}, A_{2}, and A_{3} are located at the 2-plane at infinity σ in such a way that a parametric equation of the straight line l is $B_{0}=A_{0}+p A_{4}$, and the equation of C has the form (9). The plane τ is defined by the points B_{0}, B_{1}, and $\frac{d B_{1}}{d p}$. The parametric equations of this plane have the form (12). Excluding the parameters α, β, γ, and p from these equations, we will return to the cubic equation (4) defining the Bourgain hypersurface B in homogeneous coordinates.

The method of construction of the Bourgain hypersurface used in the proof of Theorem 1 goes back to the classical methods of projective geometry developed by Steiner [St32] and Reye [R68].
5. In conclusion we prove the following theorem.

Theorem 2 The Sacksteder hypersurface S and the Bourgain hypersurface B are locally equivalent, and the former is the standard covering of the latter.

Proof. In an Euclidean space R^{4}, in Cartesian coordinates $x_{1}, x_{2}, x_{3}, x_{4}$, the equation of the Sacksteder hypersurface S (see [S60]) has the form

$$
\begin{equation*}
x_{4}=x_{1} \cos x_{3}+x_{2} \sin x_{3} . \tag{18}
\end{equation*}
$$

The right-hand side of this equation is a function on the manifold $M^{3}=$ $\mathbb{R}^{2} \times S^{1}$ since the variable x_{3} is cyclic. Equation (18) defines a hypersurface on the manifold $M^{3} \times \mathbb{R}$. The circumference $S^{1}=\mathbb{R} / 2 \pi \mathbb{Z}$ has a natural projective structure of P^{1}. In the homogeneous coordinates $x_{3}=\frac{u}{v}$, the mapping $S^{1} \rightarrow P^{1}$, can be written as $x^{3} \rightarrow(u, v)$. By removing the point $\{v=0\}$ from S^{1}, we obtain a 1-to-1 correspondence

$$
\begin{equation*}
S^{1}-\{v=0\} \longleftrightarrow \mathbb{R}^{1} \tag{19}
\end{equation*}
$$

Now we can consider the Sacksteder hypersurface S in R^{4} or, if we enlarge R^{4} by the plane at infinity P_{∞}^{3}, in the space P^{4}.

Next we show how by applying the mapping $S^{1} \rightarrow P^{1}$, we can transform equation (18) of the Sacksteder hypersurface S into equation(4) of the

Bourgain hypersurface B. We write this mapping in the form

$$
\begin{equation*}
x_{3}=2 \arctan \frac{u}{v}, \quad \frac{u}{v} \in R, \quad\left|x_{3}\right|<\pi . \tag{20}
\end{equation*}
$$

It follows from (20) that

$$
\left\{\begin{array}{l}
\frac{u}{v}=\tan \frac{x_{3}}{2} \tag{21}\\
\cos x_{3}=\frac{1-\tan ^{2} \frac{x_{3}}{2}}{1+\tan ^{2} \frac{x_{3}}{2}}=\frac{v^{2}-u^{2}}{v^{2}+u^{2}} \\
\sin x_{3}=\frac{2 \tan \frac{x_{3}}{2}}{1+\tan ^{2} \frac{x_{3}}{2}}=\frac{2 u v}{v^{2}+u^{2}}
\end{array}\right.
$$

Substituting these expressions into equation (18), we find that

$$
x_{4}\left(u^{2}+v^{2}\right)=x_{1}\left(v^{2}-u^{2}\right)+2 x_{2} u v
$$

i.e.,

$$
\begin{equation*}
\left(x_{4}+x_{1}\right) u^{2}+\left(x_{4}-x_{1}\right) v^{2}-2 x_{2} u v=0 \tag{22}
\end{equation*}
$$

Make a change of variables

$$
z_{1}=x_{4}-x_{1}, \quad z_{2}=-2 x_{2}, \quad z_{3}=x_{1}+x_{4}, \quad z_{0}=u, \quad z_{4}=v
$$

As a result, we reduce equation (22) to equation (4). It follows that the Sacksteder hypersurface S defined by equation (18) is locally equivalent to the Bourgain hypersurface defined by equation (4).

Note also that if the cyclic parameter x_{3} changes on the entire real axis \mathbb{R}, then we obtain the standard covering of the Bourgain hypersurface B by means of the Sacksteder hypersurface S.

References

[A87] Akivis M.A., On multidimensional strongly parabolic surfaces. (Russian) Izv. Vyssh. Uchebn. Zaved. Mat. 1987, No. 5 (311), 3-10. English translation: Soviet Math. (Iz. VUZ) 31 (1987), No.5, 1-11.
[AG93] Akivis M.A. and Goldberg V.V., Projective differential geometry of submanifolds. North-Holland, Amsterdam, 1993, xii+362 pp.
[AGL] Akivis M.A., Goldberg V.V. and Landsberg J., On the structure of varieties with degenerate Gauss mappings. Preprint 2001, 4 pp., arXiv: math. AG/9908079.
[C39] Cartan É., Sur des familles remarquables d'hypersurfaces isoparamétriques dans les espaces sphériques. Math. Z. 45, 335-367; see also Euvres complètes, Partie III, Géométrie différentielle. Divers, pp. 1447-1479, Editions du C. N. R. S., Paris, 1984.
[FW95] Fischer G. and Wu H., Developable complex analytic submanifolds. Internat. J. Math. 6 (1995), No.2, 229-272.
[GH79] Griffiths P.A. and Harris J., Algebraic geometry and local differential geometry. Ann. Sci. École Norm. Sup. (4) 12 (1979), 355-452.
[198] Ishikawa G., Developable hypersurfaces and algebraic homogeneous spaces in a real projective space. Homogeneous structures and theory of submanifolds (Kyoto, 1998). Sūrikaisekikenkyūsho Kōkyūroku No. 1069 (1998), 92-104.
[199a] Ishikawa G., Singularities of developable surfaces. Singularity theory (Liverpool, 1996), xxii-xxiii, 403-418, London Math. Soc. Lecture Note Ser. 263, Cambridge Univ. Press, Cambridge, 1999.
[199b] Ishikawa G., Developable hypersurfaces and homogeneous spaces in a real projective space. Lobachevskii J. Math. 3 (1999), 113-125.
[IM97] Ishikawa G. and Morimoto T., Solution surfaces of Monge-Ampère equations. Hokkaido Univ. Preprint Series 376 (1997), 16 pp.
[L99] Landsberg J.M., Algebraic geometry and projective differential geometry. Lecture Notes Series, No. 45, Seoul National Univ., Seoul, Korea, 1999, 85 pp.
[M94] H. Mori, Remarks on complete deformable hypersurfaces in R^{4}. J. Differential Geom. 40 (1994), No.1, 1-6.
[R68] Reye Th., Geometrie der Lage. 2nd ed., 2 vol., Rümpler, Hannover, 1868; English transl.: Lectures on the geometry of positions, The Macmillan Comp., New York, 1898.
[S60] Sacksteder R, On hypersurfaces with no negative sectional curvature. Amer. J. Math. 82 (1960), No.3, 609-630.
[St32] Steiner J., Systematische Entwickelung der Abhängigkeit geometrischer Gestalten von einander. Teil I und II, Berlin, 1832; 2nd ed., W. Engelmann, Leipzig, 1896, 126 pp. \& 162 pp.; see also in Steiner, J., Gesammelte Werke, B. I, G. Reimer, Berlin, 1881.
[W95] Wu H., Complete developable submanifolds in real and complex Euclidean spaces. Internat. J. Math. 6 (1995), No.3, 461-489.
[WZ01] Wu H. and Zheng P., On complete developable submanifolds in complex Euclidean spaces. Comm. Anal. Geom. 9 (2001), (to appear).

Maks A. Akivis

Department of Mathematics
Jerusalem College of Technology-Mahon Lev
Havaad Haleumi St., P.O.B. 16031
Jerusalem 91160, Israel
E-mail: akivis@avoda.jct.ac.il

Vladislav V. Goldberg
Department of Mathematical Sciences
New Jersey Institute of Technology University Heights
Newark, N.J. 07102, U. S. A.
E-mail: vlgold@m.njit.edu

[^0]: 2000 Mathematics Subject Classification : Primary 53A20; Secondary 14M99.

