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The discrete and nondiscrete subgroups of
SL(2,R) and SL(2,C)\star

Yuming CHU and Xiantao WANG
(Received June 5, 2000)

Abstract. It is shown in this paper that some special subsets of tr(G)=\{tr(f):f\in G\}

are sufficient to determine whether G is discrete or not when G\subset SL(2, R) or SL(2, C)
is nonelementary. One of Beardon’s open problems is affirmatively answered.
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1. Introduction

In [1], Beardon tried to determine whether a group G of SL(2, R) is
discrete or not by using some subset of tr(G)=\{tr(f):f\in G\} when G is
finitely generated and contains parabolic elements.

The main aim of this paper is twofold. The first is to generalize Bear-
don’s discussion as mentioned above. Our main results are Theorems 3.1
and 3.2. The second is to give an affirmative answer to one of the open
problems raised by Beardon in [1].

2. Some concepts and notations

Let G be a subgroup of SL(2, C) . G is called elemetary if G has a finite
orbit in \overline{H}^{3} , i.e., there is z\in\overline{H}^{3} such that G_{z}= \{ \overline{f}(z):f\in G\} is finite,
where \overline{f} denotes the Poincar\’e extension of f (cf. [2]). Otherwise G is called
nonelementary.

From [7], the following is obvious.

Lemma 2.1 Two elliptic elements f, g\in SL(2, R) , whose orders are not
both equal to 2, generate a nonelementary group if and only if f and g have
no common fixed points in \overline{C} .

For any nonelementary group G\in SL(2, R) , let
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H(G, G)=\{[f, g]:f , g hyperbolic elements of G

with no common fixed points};

TH(G, G)=\{tr(Q)-2: Q\in H(G, G)\} .

If G contains parabolic elements, then

P(G, G)=\{[f, g] : f , g\in G parabolic elements
with no common fixed point};

TH(G, G)=\{tr(Q)-2: Q\in P(G, G)\} .

If G contains elliptic elements, then

E(G, G)=\{[f, g]:f , g\in G elliptic elements with
\langle f, g\rangle being nonelementary};

TE(G, G)=\{tr(Q)-2: Q\in E(G, G)\} .

By a sequence in G we will always mean an infinite sequence of distinct
elements of G .

For f\in SL(2, R) , fix(/) =\{x\in\overline{C} : f(x)=x\};ord(f)=the order of f
when f is regarded as a M\"obius transformation.

3. Discrete and nondiscrete subgroups of SL(2,R)

In [1], Beardon proved

Theorem A Let G\subset SL(2, R) be nonelementary and finitely generated.

If G contains parabolic elements, then
(1) G is discrete if and only if TP(G, G) is a discrete subset of [1, \infty) ;
(2) G is nondiscrete if and only if TP(G, G) is dense in [0, \infty) .

We will prove

Theorem 3.1 Let G\subset SL(2, R) be nonelementary. Then
(1) G is discrete if and only if either E(G, G)=\emptyset or \inf\{TE(G, G)\}\geq c_{0} ,

where c_{0}=2-2 \cos\frac{\pi}{7} ;
(2) G is not discrete if and only if TE(G, G) is dense in [0, \infty) .

Proof. The necessity of (1) follows from [6-7]. For the proof of the suf-
ficiency, by [4], we may assume that E(G, G)\neq\emptyset , i.e., G contains some
elliptic elements of order at least 3, cf. [7, Corollary 2.3].
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Assume that \inf\{TE(G, G)\}\geq c_{0} , but G is not discrete. Then by [3,
Corollary p.199], there is a sequence \{h_{n}\} of G such that each h_{n} is elliptic
and

h_{n}arrow I(narrow\infty) ,

where I denotes the unit element. Then there are an elliptic element g_{1} of
order at least 3 and a suitable subsequence of \{h_{n}\} (denoted by the same
manner) (cf. [7]) in G such that

fifix(g_{1})\cap fifix(h_{n})=\emptyset .

The assumptions imply that for large n , \langle g_{1}, h_{n}\rangle is elementary. By
Lemma 2.1, it is impossible. So G is discrete.

The proof of (1) is completed.
The sufficiency of (2) follows from (1). For the proof of the necessity,

since G is nonelementary, by [3], we can find two sequences \{f_{n}\} and \{g_{n}\}\subset

G such that each f_{n} is elliptic, each g_{n} is hyperbolic and

f_{n}arrow I , g_{n}arrow I(narrow\infty) .

Then for any r_{1} , r_{2} : 0<r_{1}<r_{2} , there is a hyperbolic element f\in G

with the multiplier r^{2} which satisfies

1<r^{2}<2\beta(\alpha+\beta)^{-1}

where \alpha=\sqrt{[(p+1)r_{1}+r_{2}]p^{-1}} , \beta=\sqrt{[(p-1)r_{2}-r_{1}]p^{-1}} , p> \frac{2(r_{1}+r_{2})}{r_{2}-r_{1}} .
Without loss of generality, suppose that

f=(\begin{array}{ll}r 00 r^{-1}\end{array})

By passing to a subsequence we assume that fifix(f_{n}) tends in the Haus-
dorff metric toward a one or two point set X . Since G is nonelementary, we
may further assume that for large n and t(t>T_{0}) ,

fifix(f_{n})\cap fifix(f^{t}f_{n}f^{-t})=\emptyset .

Let

f_{n}=(\begin{array}{ll}a_{n} b_{n}c_{n} d_{n}\end{array})
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Then

a_{n} , d_{n}arrow 1 , b_{n} , c_{n}arrow 0(narrow\infty) .

An elementary calculation shows that for each t\in N .

tr [f_{n}, f^{t}f_{n}f^{-t}]-2

=[b_{n}^{2}c_{n}^{2}+(a_{n}-d_{n})^{2}b_{n}c_{n}(r^{t}+r^{-t})^{-2}](r^{2t}-r^{-2t})^{2}

Let r^{2t}-r^{-2t}=s_{t} , (r^{t}+r^{-t})^{2}=q_{t} . Then for large n and t(t>T_{0}) ,

tr [f_{n}, f^{t}f_{n}f^{-t}]-2=[b_{n}^{2}c_{n}^{2}+(a_{n}-d_{n})^{2}b_{n}c_{n}q_{t}^{-1}]s_{t}^{2}\in TE(G, G) .

Since a_{n} , d_{n}arrow 1(narrow\infty) , there is M>0 such that for all n>M ,

(a_{n}-d_{n})^{2}<(r_{1}+r_{2})p^{-1}\beta^{-1} .

For large enough T. the union of intervals

( \frac{\alpha}{s_{T}} , \frac{\beta}{s_{T}} ) \cup(\frac{\alpha}{s_{T+1}}, \frac{\beta}{s_{T+1}})\cup .

is connected and so contains some interval of the form (0, q) , where q>0 .
Since b_{n}c_{n}arrow 0 (n -\infty) , for large n(n>M) , |b_{n}c_{n}|\in(0, q) . Then

there is t(t\geq T_{0}) such that

\frac{\alpha}{s_{t}}<|b_{n}c_{n}|<\frac{\beta}{s_{t}} .

Since n>M , we have

\frac{r_{1}}{s_{t}^{2}}<b_{n}^{2}c_{n}^{2}+(a_{n}-d_{n})^{2}b_{n}c_{n}q_{t}^{-1}<\frac{r_{2}}{s_{t}^{2}} ,

i.e.,

tr [f_{n}, f^{t}f_{n}f^{-t}]-2\in(r_{1}, r_{2}) .

Since [f_{n}, f^{t}f_{n}f^{-t}]\in E(G, G) , by the arbitrariness of r_{1} , r_{2}(0<r_{1}<

r_{2}) , we know TE(G, G) is dense in [0, \infty) . \square

By [5] and Theorem 3.1, the following is obvious.

Corollary 3.1 Let G\subset SL(2, R) be nonelementary and finitely gener-
oc). Then
(1) G is discrete if and only if either TE(G, G)=\emptyset or TE(G, G) is dis-

crete in [0, \infty) ;
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(2) G is nondiscrete if and only if TE(G, G) is dense in [0, \infty) .

Theorem 3.2 Let G\subset SL(2, R) be nonelementary. Then
(1) G is discrete if and only if \inf\{|A|:A\in TH(G, G)\}\geq c_{0} ;
(2) G is nondiscrete if and only if TH(G, G) is dense in R .

Proof. By [6], the necessity of (1) is obvious. For the sufficiency, we sup-
pose that \inf\{|A|:A\in TH(G, G)\}\geq c_{0} , but G is not discrete.

Let h_{j} (j=1,2, 3)\in G be hyperbolic such that

fifix(h_{i})\cap fifix(h_{j})=\emptyset(i\neq j, i, j=1,2, 3) .

By [3], there is a sequence \{g_{n}\} of G satisfying that each g_{n} is hyperbolic
and

g_{n}arrow I(narrow\infty) .

Then for large enough n , \langle h_{j}, g_{n}\rangle (j=1,2, 3) are elementary by the
assumptions. It is impossible. So G is discrete.

The sufficiency of (2) follows from (1). For the necessity of (2), let
f\in G be hyperbolic and

f=(\begin{array}{ll}r 00 r^{-1}\end{array}) (r>1) . (3.1)

Then for any g=(\begin{array}{ll}a bc d\end{array}) \in G , we have

tr [f, g]-2=-(r-r^{-1})^{2}bc .

Since G is nondiscrete and nonelementary, there is a sequence \{f_{n}\} of
G such that each f_{n} is hyperbolic,

f_{n}arrow I(narrow\infty)

and for each n ,

fifix(f)\cap fifix(f_{n})=\emptyset .

Then [f, f_{n}]\in H(G, G) . Hence there is a sequence \{x_{n}\}\in TH(G, G)

such that

x_{n}arrow 0 (n- \infty) . (3.2)
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For every t\in N , if f_{n}=(\begin{array}{ll}a_{n} b_{n}c_{n} d_{n}\end{array}) , then

tr [f^{t+1}, f_{n}]-2=-(r-r^{-1})^{2}b_{n}c_{n}s_{t} ,

where s_{t}=(r^{t+1}-r^{-(t+1)})^{2}(r-r^{-1})^{-2} .
Obviously

s_{t}arrow\infty(tarrow\infty) .

Thus if x_{n}\in H(G, G) , then s_{t}x_{n}\in H(G, G) for each t\in N . (3.3)
For any v_{1} , v_{2}(0<v_{1}<v_{2}) , by [3], we may assume in (3.1) that

1<r^{4}<(p_{2}p_{1}^{-1})^{\frac{1}{4}} ,

where p_{1}= \frac{2v_{1}+v_{2}}{3} , p_{2}= \frac{v_{1}+2v_{2}}{3} .
Then there is T_{1} such that for all T>T_{1} , the unions of intervals

( \frac{v_{1}}{s_{T}} , \frac{v_{2}}{s_{T}} ) \cup(\frac{v_{1}}{s_{T+1}}, \frac{v_{2}}{s_{T+1}})\cup

and

( \frac{v_{1}}{s_{T}^{2}} , \frac{v_{2}}{s_{T}^{2}} ) \cup(\frac{v_{1}}{s_{T+1}^{2}}, \frac{v_{2}}{s_{T+1}^{2}})\cup\ldots

are connected and so contains intervals with the forms (0, p) (p>0) .
If there is a subsequence of \{f_{n}\} (still denoted by the same manner)

such that for each n , b_{n}c_{n}<0 , then, by (3.2), there is M_{2}(>M_{1}) such that
for all n>M_{2} ,

-(r-r^{-1})^{2}b_{n}c_{n}\in(0,p) .

Hence, there is t\in N such that

\frac{v_{1}}{s_{t}}<-(r-r^{-1})^{2}b_{n}c_{n}<\frac{v_{2}}{s_{t}} .

Then

v_{1}<-(r-r^{-1})^{2}b_{n}c_{n}s_{t}<v_{2} .

(3.3) implies that there is Q\in H(G, G) such that

tr(Q)-2\in(v_{1}, v_{2}) .
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Thus we assume that for each n , b_{n}c_{n}>0 , then there is M_{3}(>M_{2})

such that for all n>M_{3} ,

(r-r^{-1})^{4}b_{n}c_{n}(1+b_{n}c_{n})\in(0,p) .

Hence there is t\in N such that

\frac{v_{1}}{s_{t}^{2}}<(r-r^{-1})^{4}b_{n}c_{n}(1+b_{n}c_{n})<\frac{v_{2}}{s_{t}^{2}} .

Then

v_{1}<(r-r^{-1})^{4}b_{n}c_{n}(1+b_{n}c_{n})s_{t}^{2}<v_{2} .

Since for large n , [/, f_{n}]\in H(G, G) if and only if [/, f_{n}ff_{n}^{-1}]\in H(G, G) ,
this implies that there is Q\in H(G, G) such that

tr(Q)-2\in(v_{1}, v_{2}) .

Now we prove that TH(G, G) \cap[0, \infty) is dense in [0, \infty) .
In the same way as above we can show that TH(G, G) \cap(-\infty, 0] is

dense in (-\infty, 0] .
Hence TH(G, G) is dense in R. \square

Corollary 3.2 Let G be nonelementary and finitely generated, then
(1) G is discrete if and only if TH(G, G) is discrete in (-\infty, -c_{0}]\cup[c_{0}, \infty) ;
(2) G is nondiscrete if and only if TH(G, G) is dense in R .

For any nonelementary subgroup G\subset SL(2, R) and nontrivial f\in G ,
let

G_{f}(G, G)= { [f, gfg^{-1}] : \langlef, gfg^{-1}\rangle nonelementary for f, g\in G};

TG_{f}(G, G)=\{tr(Q)-2:Q\in G_{f}(G, G)\} .

Then, by the proofs of Theorems 3.1, 3.2 and [7], we get

Theorem 3.3 Let G be nonelementary.
(1) If G contains an elliptic element f of order at least 3, then G is

discrete if and only if \inf\{TG_{f}(G, G)\}\geq c_{0} .
(2) G is discrete if and only if for any fixed hyperbolic element f,

\inf\{|A|:A\in TG_{f}(G, G)\}\geq c_{0} .

We also can get the following form of (1) of Theorem A (i.e., TheO-
rem 4.1 in [1] ) as follows.
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Theorem 3.4 Let G\subset SL(2, R) be nonelementary and f\in G be para-
bolic. Then
(1) G is discrete if and only if \inf\{TG_{f}(G, G)\}\geq 1 ;

Furthermore, if G is finitely generated, then
(2) G is discrete if and and if TG_{f}(G, G) is discrete in [1, \infty) .

Proof The proof of (2) follows from (1) and [5], we need only prove
(1). The necessity of (1) is obvious. For the sufficiency, we suppose that
\inf\{TG_{f}(G, G)\}\geq 1 , but G is not discrete, contrary to our assertion.

Without loss of generality, let

f=(\begin{array}{ll}1 10 1\end{array})

Since G is nonelementary, there is a hyperbolic element g=(\begin{array}{ll}a bc d\end{array}) \in

G with c\neq 0 . Let G_{\infty} be the stabilizer of \infty of G . Then for every parabolic
element q\in G_{\infty} ,

q=(\begin{array}{ll}\epsilon s0 \epsilon\end{array}) (s\neq 0, \epsilon=\pm 1) .

We deduce from [f, gfg^{-1}]\in G_{f}(G, G) that

|s|\geq|c|^{-\frac{1}{2}} .

Fixing g and varying s , the above inequality shows that there is s_{0}\neq 0

such that for any parabolic element q=(\begin{array}{ll}\epsilon s0 \epsilon\end{array}) \in G_{\infty} ,

|s|\geq|s_{0}|>0 .

By our assumptions and [3], there is a squence \{f_{n}\}\subset G such that each
f_{n} is hyperbolic and

f_{n}arrow I(narrow\infty) .

Let

f_{n}=(\begin{array}{ll}a_{n} b_{n}c_{n} d_{n}\end{array})
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If c_{n}\neq 0 , then

tr [f, f_{n}ff_{n}^{-1}]\geq 3 .

This implies that c_{n}^{4}\geq 1 if c_{n}\neq 0 . This contradiction shows that
for large enough n , \infty\in fifix(f_{n}) . So either [f, f_{n}]=I or [f, f_{n}]\in G_{\infty} is
parabolic. Hence

|1-a_{n}^{2}|\geq|s_{0}|>0 or a_{n}^{2}=1 .

These are impossible. Hence G is discrete. \square

Remark By using the method in the proof of theorem 3.1 in [8], we can
get a different proof of theorem 3.4.

4. Discrete and nondiscrete subgroups in SL(2, C)

Given a point z\in C and a set F\subset\overline{C} , we call F is quasi-dense about
z if S\cap F\neq\emptyset for any annulus S=\{x\in\overline{C}:a<|x-z|<b\}(0<a<b) .

By using similar discussions as in Section 3 and [1,8] , we can get

Theorem 4,1 Let G\subset SL(2, C) be nonelementary. If G contains para-
bolic elements, then
(1) G is discrete if and only if \inf\{|A|:A\in TP(G, G)\}\geq 1 ;
(2) G is nondiscrete if and only if TP(G, G) is quasi-dense about the point

(0, 0) .

5. On one of Beardon’s problems

As in [1], let

A=(\begin{array}{ll}1 \tau 0 1\end{array}) , B=(\begin{array}{ll}1 0\tau 1\end{array}) ,

G=\langle A, B\rangle ,

where \tau is an indeterminate in \overline{C} .

For any t\in C , G_{t}=\langle A_{t}, B_{t}\rangle , where A_{t}=(\begin{array}{ll}1 l0 1\end{array}) , B_{t}=(\begin{array}{ll}1 0t 1\end{array}) .

After showing when two non-commuting parabolic elements of G gen-
erate G , Beardon raised the following problem:

A and B are not conjugate in G , but can A_{t} and B_{t} ever be conjugate
in G_{t} ?
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In the following, we show that the answer to this problem is affirmative.
Let \tau=i(i^{2}=-1) . Then

A_{i}=(\begin{array}{ll}1 i0 1\end{array}) . B_{i}=(\begin{array}{ll}1 0i 1\end{array})

By taking h=A_{i}B_{i} , we know

A_{i}h=hB_{i} .

This shows that A_{t} and B_{t} are conjugate in G_{t} when t=i .
Let

G_{AB}=\{F\in G : AF=FB\} .

Obviously

G_{\sqrt{2}}=\langle A_{\sqrt{2}}, B_{\sqrt{2}}\rangle

=\{ ( \sqrt{2}ca
\sqrt{2}bd ) : a , b , c , d\in Z , ad-2bc=1\}

Then G_{A_{\sqrt{2}}B_{\sqrt{2}}}=\emptyset . This implies that A and B are not conjugate in G.
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