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Real hypersurfaces in a complex projective space
in which the reflections with respect to

\xi-curves are isometric

Setsuo NAGAI

(Received May 17, 2000)

Abstract. We completely classify the real hypersurfaces M in a complex projective
space CP_{n} in which the reflections with respect to integral curves of the structure vector
\xi are isometric. We conclude that the reflections with respect to integral curves of the
structure vector \xi are isometric in M if and only if M is locally congruent to one of
homogeneous real hypersurfaces of type (A) and (B).
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1. Introduction

In Riemannian Geometry the group of isometric transformations of a
manifold plays an important role. Riemannian symmetric space is defined
by the condition that any geodesic symmetry gives an isometric transfor-
mation of it. Weakly symmetric space which is introduced by A. Selberg
([12]) is a space whose any two points can be interchanged by a suitable
isometry of it. The concept of reflections of a manifold with respect to an
embedded submanifold is a generalization of geodesic symmetries (cf. [2]).
In the paper [1] J. Berndt and L. Vanhecke shows that homogeneous real
hypersurfaces of type (A) in a non-flat complex space form (for definitions
see Theorem T of \S 2) are weakly symmetric. In the paper [8] the author
gives a new examples of weakly symmetric spaces. Their examples are not
Riemannian symmetric. In both papers [1] and [8] they make use of reflec-
tions with respect to a totally geodesic submanifolds to construct suitable
isometric transformations.

Real hypersurfaces in a complex space form present many interesting
homogeneous Riemannian manifolds. So many differential geometers study
these spaces. There are many charactrizations of some homogeneous real
hypersurfaces in a complex space forms (cf. [11], [6], [4], [5], [3], [9]). Some
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of them are naturally reductive, some of them are weakly symmteric and
none of them are Riemannian symmetric.

The purpose of this paper is to give a geometric characterization of
homogeneous real hypersurfaces of type (A) and (B) in a complex projective
space. We consider the reflections of a real hypersurface with respect to the
integral curves of the structure vector field \xi , simply called \xi-curves in this
paper (for definition see \S 2). The main theorem is the following:

Theorem 4.1 Let M be a real hypersurface in CP_{n} . The reflections with
respect to \xi -curves are isometries of M if and only if M is locally congruent
to one of homogeneous real hypersurfaces of type (A) and (B).

2. Preliminaries

In this section we explain preliminary results concerning reflections with
respect to a submanifold in a Riemannian manifold and real hypersurfaces
of a complex projective space. In this paper all manifolds will be assumed
to be connected and of class C^{\infty} .

First, we explain some results concerning reflections. Let (M, g) be
a Riemannian manifold and B a connected embedded submanifold. Then
we define the following local diffeomorphism \phi_{B} of M which is called the
reflection with respect to the submanifold B :

\phi_{B} : p\mapsto\phi_{B}(p) , \exp_{m}(tu)\mapsto\exp_{m} (-tu)

for m\in B , u\in T_{m}^{\perp}B , ||u||=1 , (2.1)

where exp and T^{\perp}B denote the expornential mapping of M and the normal
bundle of B in M, respectively.

The necessary and sufficient conditions for \phi_{B} to be isometric are:

Theorem C-V ([2]) For analytic data the reflection \phi_{B} is a local isom-
etry if and only if
(i) B is totally geodesic;
(ii) (\nabla_{u\cdots u}^{2k}R)(v, u)u is normal to B ,

(\nabla_{u\cdots u}^{2k+1}R)(v, u)u is tangent to B , and
(\nabla_{u\cdots u}^{2k+1}R)(x, u)u is normal to B ,

for all normal vectors u , v of B , any tangent vector x of B and all k\in

N. Here \nabla and R denote the Levi Civita connecton and the Riemannian
curvature tensor of M, respectively.
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Secondly, we turn to some preliminaries concerning real hypersurfaces
of a complex projective space. Let CP_{n} be an n-dimensional complex pr0-

jective space with constant holomorphic sectional curvature 4 and let J and
\overline{g} be its complex structure and metric, respectively. Further, let M be a
connected submanifold of CP_{n} with real codimension 1, simply called a
real hypersurface in the following. We denote by g the induced Riemannian
metric of M and by \nu a local unit normal vector field of M in CP_{n} .

The Gauss and Weingarten formulas are:

\overline{\nabla}_{X}Y=\nabla_{X}Y+g(AX, Y)\nu , (2.2)

\overline{\nabla}_{X}\nu=-AX , (2.3)

where \overline{\nabla} and A denote the Levi Civita connection on CP_{n} and the shape
operator of M in CP_{n} , respectively.

We define an almost contact metric structure (\phi, \xi, \eta, g) of M as usual.
That is,

\xi=-JlJ , \eta(X)=g(X, \xi) , \phi X=(JX)^{T} , for X\in TM ,

where TM denotes the tangent bundle of M and ( )^{T} the tangential com-
ponent of a vector. These structure tensors satisfy the following relations:

\phi^{2}=-I+\eta\otimes\xi , \phi\xi=0 , \eta(\phi X)=0 , \eta(\xi)=1 ,

g(\phi X, \phi Y)=g(X, Y)-\eta(X)\eta(Y) , X , Y\in TM , (2.4)

where I denotes the identity mapping of TM.
From (2.2) we easily have

(\nabla_{X}\phi)Y=\eta(Y)AX-g(AX, Y)\xi , (2.5)

\nabla_{X}\xi=\phi AX (2.6)

for tangent vectors X, Y\in TM .
In our case the Gauss and the Codazzi equations of M become

R(X, Y)Z=g(Y, Z)X-g(X, Z)Y+g(\phi Y, Z)\phi X

-g(\phi X, Z)\phi Y-2g(\phi X, Y)\phi Z

+g(AY, Z)AX-g(AX, Z)AY, (2.7)

(\nabla_{X}A)Y-(\nabla_{Y}A)X=\eta(X)\phi Y-\eta(Y)\phi X-2g(\phi X, Y)\xi , (2.8)
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where X, Y, Z\in TM .
For the structure vector \xi we know the following lemmas:

Lemma 2.1 ([6] p.532 Lemma 2.1) The structure vector \xi is principal if
and only if the integral curves of \xi are geodesies.

Lemma 2.2 ([6] p.533 Lemma 2.4) If \xi is a principal curvature vector,
then the corresponding principal curvature \alpha is locally constant.

Lemma 2.3 ([6] p.532 Lemma 3.2) Assume that \xi is a principal curva-
ture vector. If X is a principal curvature vector of M with AX=\lambda X ,
then the equation (2\lambda-\alpha)A\phi X=(\alpha\lambda+2)\phi X is satisfied.

Typical examples of real hypersurfaces in CP_{n} are homogeneous ones
which are orbits under analytic subgroups of PU(n+l). The complete
classification of them is obtained by R. Takagi ([13]) as follows:

Theorem T([13]) Let M be a homogeneous real hypersurface of CP_{n} .
Then M is locally congruent to one of the following spaces:
(A) a tube of radius r over a totally geodesic CP_{k}(0\leq k\leq n-1) ,

0<r< \frac{\pi}{2} ;

(B) a tube of radius r over a complex quadric Q_{n-1},0<r< \frac{\pi}{4} ;

(C) a tube of radius r over CP_{1}\cross CP_{\frac{n-1}{2}} , n\geq 5 is odd, 0<r< \frac{\pi}{4} ;

(D) a tube of radius r over a complex Grassmann G_{2,5}(C) , n=9,
0<r< \frac{\pi}{4} ;

(E) a tube of radius r over a Hermitian symmetric space 5O(10)/[/(5) ,
n=15,0<r< \frac{\pi}{4} .

Here CP_{0} means a single point.

M. Kimura obtains the following characterization of homogeneous real
hypersurfaces:

Theorem K([4]) Let M be a real hypersurface in CP_{n} . Then M has
constant principal curvatures and \xi is a principal curvature vector if and
only if M is locally congruent to a homogeneous real hypersurface.

About the decomposition of the tangent space into the eigenspaces of
the shape operator of a homogeneous real hypersurface, we know the fol-
lowing:
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Theorem 2.4 ([14]) The tangent space of the homogeneous real hyper-
surfaces can be decomposed as follows:
for type (A) : TM=R\xi\oplus T_{x}\oplus T_{-\frac{1}{x}} , A \xi=(x-\frac{1}{x})\xi , x>0 ;

for type (B) : TM=R\xi\oplus T_{x}\oplus T_{-\frac{1}{x}} , A \xi=(\frac{-4x}{x^{2}-1})\xi , 0<x<1 ;

for type (C), (D) and (E) : \{

TM=R\xi\oplus T_{x}\oplus T_{-\frac{1}{x}}\oplus T_{\frac{x+1}{1-x}}\oplus T_{\frac{x-1}{x+1}} ,

A \xi=(\frac{-4x}{x^{2}-1})\xi , 0<x<1 ,

where T_{\lambda} denotes the eigenspace of the shape operator with the principal
curvature \lambda . Further, for type (B)-(E) we have \phi T_{x}=T_{-\frac{1}{x}} (cf. [6]).

There are some charactarizations of homogeneous real hypersurfaces of
type (A). We know the following theorem:

Theorem 2.5 ([6], [11]) Let M be a real hypersurface in CP_{n} . Then the
following three conditions are equivalent:
(i) M is locally congruent to a homogeneous real hypersurface of type (A),
(ii) \phi A=A\phi ,
(iii) (\nabla_{X}A)Y=-\eta(Y)\phi X-g(\phi X, Y)\xi .

For a homogeneous real hypersurface of type (B) we have the following:

Proposition 2.6 ([3]) The shape operator of a homogeneous real hyper-
surface of type (B) satisfies the following:

( \nabla_{X}A)Y=-\frac{\alpha}{4}\{2\eta(X)(A\phi-\phi A)Y+\eta(Y)(A\phi-3\phi A)X

+g((A\phi-3\phi A)X, Y)\xi\} . (2.9)

Both homogeneous real hypersurfaces of type (A) and (B) are charac-
terized by the following:

Theorem K-M ([5]) Let M be a real hypersurface in CP_{n} . Then the
second fundamental form of M is \eta -parallel and \xi is a principal curvature
vector if and only if M is locally congruent to one of homogeneous real
hypersurfaces of type (A) and (B).

Here the second fundamental form of M is said to be \eta-parallel if
the equation g((\nabla_{X}A)Y, Z)=0 is satisfied for any X, Y, Z\in T^{0}M=

\{X\in TM : X\perp\xi\} .
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3. Lemmas

In this section we prove lemmas needed later.
First, we prove the following:

Lemma 3.1 In homogeneous real hypersurfaces of type (A) and (B) the
following relations are satisfied:

\{\begin{array}{l}(\nabla_{u\cdot\cdot u}^{2n+1}\phi)v\in Span\{\xi\}, (\nabla_{u\cdots u}^{2n}\phi)v\in T^{0}M,(\nabla_{u\cdot u}^{2n+1}\phi)\xi\in T^{0}M, (\nabla_{u\cdots u}^{2n}\phi)\xi\inSpan\{\xi\},(\nabla_{u\cdot\cdot u}^{2n+1}A)v\in Span\{\xi\}. (\nabla_{u\cdots u}^{2n}A)v\in T^{0}M,(\nabla_{u\cdot u}^{2n+1}A)\xi\in T^{0}M, (\nabla_{u\cdots u}^{2n}A)\xi\in Span\{\xi\},\nabla_{u\cdots u}^{2n+1}\xi\in T^{0}M, \nabla_{u\cdots u}^{2n}\xi\in Span\{\xi\},\end{array} (3.1)

for u , v\in T^{0}M=\{X\in TM : X\perp\xi\} and n\in N , where Span \{\xi\} is the
subspace of TM spanned by \xi over R.

Proof We prove the lemma by induction on n .
For n=0 the lemma can easily be verified by (2.4), (2.5), (2.6), (2.9),

Theorem 2.4 and Theorem 2.5.
Now we assume that the lemma holds for all natural numbers n\leq k-1 .

Then we are going to prove the lemma for n=k .
First, we prove the relation (\nabla_{u\cdots u}^{2k}\phi)v\in T^{0}M . From (2.5) we have

( \nabla_{u\cdots u}^{2k}\phi)v=\sum_{\iota/=0}^{2k-1} (2k \nu-1) g(v, \nabla_{u\cdots u}^{\nu}\xi)(\nabla_{u\cdots u}^{2k-1-\nu}A)u

- \sum_{\iota/=0}^{2k-1} (2k \nu-1) g((\nabla_{u\cdots u}^{\nu}A)u, v)\nabla_{u\cdots u}^{2k-1-\nu}\xi . (3.2)

By the induction hypothesis we can easily verify that the right-hand side of
(3.2) belongs to T^{0}M .

Secondly, we prove the relation (\nabla_{u\cdots u}^{2k}\phi)\xi\in Span\{\xi\} . From (2.6) we
have

( \nabla_{u\cdots u}^{2k}\phi)\xi=\sum_{\nu=0}^{2k-1} (2k \nu-1) g(\xi, \nabla_{u\cdots u}^{\nu}\xi)(\nabla_{u\cdots u}^{2k-1-\nu}A)u

- \sum_{\nu=0}^{2k-1} (2k \nu-1) g((\nabla_{u\cdots u}^{\nu}A)u, \xi)\nabla_{u\cdots u}^{2k-1-\nu}\xi . (3.3)
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By the induction hypothesis we can also check that the right-hand side of
(3.3) belongs to Span \{\xi\} .

Thirdly, we prove the relation (\nabla_{u\cdots u}^{2k}A)v\in T^{0}M . For a homogeneous
real hypersurface of type (A), using Theorem 2.5 (iii), we have

( \nabla_{u\cdots u}^{2k}A)v=-\sum_{\nu=0}^{2k-1} (2k \nu-1) g(v, \nabla_{u\cdots u}^{\nu}\xi)(\nabla_{u\cdots u}^{2k-1-\nu}\phi)u

- \sum_{\nu=0}^{2k-1} (2k \nu-1) g((\nabla_{u\cdots u}^{\nu}\phi)u, v)\nabla_{u\cdots u}^{2k-1-\nu}\xi . (3.4)

By induction hypothesis the right-hand side of (3.4) belongs to T^{0}M .
For a real hypersurface of type (B), using (2.9), we have

( \nabla_{u\cdots u}^{2k}A)v=-\frac{\alpha}{4}\{2\sum_{\nu=0}^{2k-1} (2k \nu-1) g(u, \nabla_{u\cdots u}^{\nu}\xi)(\nabla_{u\cdots u}B)v

+ \sum_{\nu=0}^{2k-1} (2k \nu-1) g(v, \nabla_{u\cdots u}^{\nu}\xi)(\nabla_{u\cdots u}^{2k-1-\nu}C)u

+ \sum_{\nu=0}^{2k-1} (2k \nu-1) g((\nabla_{u}^{\nu}\ldots {}_{u}C)u, v)\nabla_{u\cdots u}^{2k-1-\nu}\xi\} ,

(3.5)

where B=A\phi-\phi A and C=A\phi-3\phi A .
On the other hand we have

( \nabla_{u\cdots u}^{2n+1}B)v=\sum_{\nu=0}^{2n+1} (\begin{array}{l}2n+1\nu\end{array}) \{(\nabla_{u\cdots u}^{\nu}A)(\nabla_{u\cdots u}^{2n+1-\nu}\phi)v

-(\nabla_{u\cdots u}^{\nu}\phi)(\nabla_{u\cdots u}^{2n+1-\nu}A)v\} (3.6)

According to the induction hypothesis, the right-hand side of (3.6) belongs
to Span \{\xi\} for n\leq k-1 . We can deduce the relations (\nabla_{u\cdots u}^{2n}B)v\in T^{0}M .
(\nabla_{u\cdots u}^{2n+1}C)v\in Span\{\xi\} and (\nabla_{u}^{2n}\ldots {}_{u}C)v\in T^{0}M for n\leq k-1 analogously.
Using these facts and the induction hypothesis, we deduce that the right-
hand side of (3.5) belongs to T^{0}M .

Next we prove the relation \nabla_{u\cdots u}^{2k}\xi\in Span\{\xi\} . According to the relation
(2.6), we have
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\nabla_{u\cdots u}^{2k}\xi=\sum_{\nu=0}^{2k-1} (2k \nu-1) (\nabla_{u\cdots u}^{\nu}\phi)(\nabla_{u\cdots u}^{2k-1-\nu}A)u . (3.7)

By the hypothesis the right-hand side of (3.7) belongs to Span \{\xi\} .
The remainders can be proved analogously. The lemma is now proved

by all the above arguments. \square

Lemma 3.2 Let M be a real hypersurface in CP_{n} . If \xi is a principal
curvature vector with principal curvature 0, then for any principal curvature
function \lambda on M is constant along the integral curves of \xi .

Proof Let u\in T^{0}M be a unit principal curvature vector and \lambda the corre-
sponding principal curvature. By our assumption A\xi=0 and the Codazzi
equation (2.8), we have

0=\nabla_{u}(A\xi)=(\nabla_{u}A)\xi+A\phi Au

=(\nabla_{\xi}A)u-\phi u+A\phi Au

=(\xi\lambda)u+(\lambda I-A)\nabla_{\xi}u-\phi u+A\phi Au . (3.8)

Taking inner product both sides of (3.8) with u , we have

\xi\lambda=0 . (3.9)

Combining (3.9) with Lemma 2.2, we prove the lemma. \square

4. Proof of the theorem

Now we prove the theorem.

Theorem 4.1 Let M be a real hypersurface in CP_{n} . The reflections with
respect to \xi -curves are isometries of M if and only if M is locally congruent
to one of homogeneous real hypersurfaces of type (A) and (B).

Proof First, we prove that the reflections with respect to \xi curves are
isometric in homogeneous real hypersurfaces of type (A) and (B).

By (2.7) we have the following relations:

( \nabla_{u\cdots u}^{n}R)(v, u)u=3\sum_{\nu=0}^{n} (\begin{array}{l}n\nu\end{array}) g((\nabla_{u\cdots u}^{\nu}\phi)u, v)(\nabla_{u\cdots u}^{n-\nu}\phi)u

- \sum_{\nu=0}^{n} (\begin{array}{l}n\nu\end{array}) g((\nabla_{u\cdots u}^{\nu}A)v, u)(\nabla_{u\cdots u}^{n-\nu}A)u
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+ \sum_{\nu=0}^{n} (\begin{array}{l}n\nu\end{array}) g((\nabla_{u\cdots u}^{\nu}A)u, u)(\nabla_{u\cdots u}^{n-\nu}A)v , (4.1)

( \nabla_{u\cdots u}^{2k+1}R)(\xi, u)u=3\sum_{\nu=0}^{2k+1} (\begin{array}{l}2k+1\nu\end{array}) g((\nabla_{u\cdots u}^{\nu}\phi)u, \xi)(\nabla_{u\cdots u}^{2k+1-\nu}\phi)u

- \sum_{\nu=0}^{2k+1} (2k \nu+1) g((\nabla_{u\cdots u}^{\nu}A)\xi, u)(\nabla_{u\cdots u}^{2k+1-\nu}A)u

+ \sum_{\nu=0}^{2k+1} (2k \nu+1) g((\nabla_{u\cdots u}^{\nu}A)u, u)(\nabla_{u\cdots u}^{2k+1-\nu}A)\xi ,

(4.2)

where u , v\in T^{0}M .
Using Lemma 3.1 and the right-hand side of (4.1) and (4.2), we have

(\nabla_{u\cdots u}^{2k+1}R)(v, u)u\in Span\{\xi\} , (\nabla_{u\cdots u}^{2k}R)(v, u)u\in T^{0}M ,

(\nabla_{u\cdots u}^{2k+1}R)(\xi, u)u\in T^{0}M .

So by Lemma 2.1 and Theorem C-V. we have our assertion.
Secondly, we prove that only homogeneous real hypersurfaces of type

(A) and (B) satisfy the condition of the theorem. So in the following we as-
sume that the reflections of M with respect to \xi-curves are isometric. Under
the assumption, \xi is always principal by Theorem C-V (i) and Lemma 2.1.

We discuss dividing into the following two cases:
Case 1 \alpha\neq 0 ; Case 2 \alpha=0 .

Case 1: Using (2.5) and (2.7), we have the following relation for u\in T^{0}M :

(\nabla_{u}R)(\xi, u)u=-3g(Au, u)\phi u-g(\phi Au, (\alpha I-A)u)Au

+g(Au, u)(\alpha I-A)\phi Au+\alpha g((\nabla_{u}A)u, u)\xi . (4.3)

By Theorem C-V (ii) the right-hand side of (4.3) must be belonging to T^{0}M .
So we have

g((\nabla_{u}A)u, u)=0 , u\in T^{0}M . (4.4)

Here we use the condition \alpha\neq 0 .
Using polarization, we can lead that (4.4) reduces to the following:

g((\nabla_{u}A)v, w)=0 , u , v , w\in T^{0}M . (4.5)
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This means that M has an \eta-parallel second fundamental form. So by TheO-
rem K-M a real hypersurface M is locally congruent to one of homogeneous
real hypersurfaces of type (A) and (B).

Case 2: First, we prove that M is homogeneous. On account of TheO-
rem K, Lemma 2.2 and Lemma 3.2, we only need to prove that any principal
curvature function in the direction of a principal curvature vector in T^{0}M

is constant.
Using (2.5) and (2.7), we have

(\nabla_{u}R)(v, u)u=3g(\phi v, u)g(Au, u)\xi-g((\nabla_{u}A)v, u)Au

-g(Av, u)(\nabla_{u}A)u+g((\nabla_{u}A)u, u)Av

+g(Au, u)(\nabla_{u}A)v , (4.6)

where u , v\in T^{0}M .

By our assumption and Theorem C-V (ii) the right-hand side of (4.6)
must belong to Span \{\xi\} . So we have

g((\nabla_{u}A)v, u)Au+g(Av, u)(\nabla_{u}A)u

-g((\nabla_{u}A)u, u)Av-g(Au, u)(\nabla_{u}A)v\in Span\{\xi\}1 (4.7)

On the other hand we have the following relation by (2.7):

(\nabla_{u,u}^{2}R)(v, u)u=3\{g(\phi u, v)(\nabla_{u,u}^{2}\phi)u+2g((\nabla_{u}\phi)u, v)(\nabla_{u}\phi)u

+g((\nabla_{u,u}^{2}\phi)u, v)\phi u\}-g(Av, u)(\nabla_{u,u}^{2}A)u

-2g((\nabla_{u}A)v, u)(\nabla_{u}A)u-g((\nabla_{u,u}^{2}A)v, u)Au

+g(Au, u)(\nabla_{u,u}^{2}A)v+2g((\nabla_{u}A)u, u)(\nabla_{u}A)v

+g((\nabla_{u,u}^{2}A)u, u)Av , (4.8)

for u , v\in T^{0}M .
Using our assumption \alpha=0 and (2.5), we have

(\nabla_{u}\phi)v=-g(Au, v)\xi , (4.9)

(\nabla_{u,u}^{2}\phi)v=g(\phi Au, v)Au-g((\nabla_{u}A)u, v)\xi-g(Au, v)\phi Au , (4.10)

(\nabla_{u}A)\xi=-A\phi Au , (4.11)

(\nabla_{u,u}^{2}A)\xi=-2(\nabla_{u}A)\phi Au-A\phi(\nabla_{u}A)u . (4.12)

Substituting the right-hand sides of (4.9)-(4.12) into the right-hand side of
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(4.8) and using Theorem C-V (ii), we have the following equation:

0=g((\nabla_{u,u}^{2}R)(v, u)u, \xi)

=3g((\nabla_{u}A)u, u)g(\phi v, u)+g(Av, u)g(A\phi(\nabla_{u}A)u, u)

-g(Au, u)g(A\phi(\nabla_{u}A)u, v)+2g(Av, u)g((\nabla_{u}A)\phi Au, u)

-2g(Au, u)g((\nabla_{u}A)\phi Au, v)+2g((\nabla_{u}A)v, u)g(A\phi Au, u)

-2g((\nabla_{u}A)u, u)g(A\phi Au, v) . (4.13)

Owing to (4.7), we have

g(Av, u)(\nabla_{u}A)u-g(Au, u)(\nabla_{u}A)v

=-g((\nabla_{u}A)v, u)Au+g((\nabla_{u}A)u, u)Au+ ( \xi-component). (4.14)

Due to (4.14) the equation (4.13) reduces to

3g((\nabla_{u}A)u, u)g(\phi v, u)+g(Av, u)g(A\phi(\nabla_{u}A)u, u)

-g(Au, u)g(A\phi(\nabla_{u}A)u, v)=0 . (4.15)

Let u\in T^{0}M be a unit principal curvature vector with Au=\lambda u and
v=\phi u , then (4.15) becomes

4g((\nabla_{u}A)u, u)=0 . (4.16)

So we have

u\lambda=0 . (4.17)

Let v be a principal curvature vector with Av=\mu v which is perpen-
dicular to both u and \phi u . Further we define w=\phi v . Then (4.15) becomes

\lambda\mu g((\nabla_{u}A)u, w)=0 . (4.18)

Owing to Lemma 2.3, \lambda\mu\neq 0 is satisfied in our case. So using (4.18) and
the Codazzi equation (2.8), we have

w\lambda=g(u, (\nabla_{w}A)u)=g(u, (\nabla_{u}A)w)=0 . (4.19)

Further, from Lemma 2.3 and (4.17) we have

0= \phi u(\frac{1}{\lambda})=-\frac{(\phi u)\lambda}{\lambda^{2}} . (4.20)

By (4.17), (4.19) and (4.20) we conclude that \lambda is constant.
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In homogeneous real hypersurfaces only the real hypersurface of type
(A) with r= \frac{\pi}{4} attains \alpha=0 . So in Case 2 M must be congruent to the
homogeneous real hypersurface of type (A). The theorem is now proved by
all the above arguments. \square

Acknowledgement The author would like to express his sincere grati-
tude to Professor L. Vanhecke for his varuable suggestions and encourage-
ment.

References

[1 ] Berndt J. and Vanhecke L., Geometry of weakly symmetnc spaces. J. Math. Soc.
Japan 48 (1996), 745-760.

[2] Chen B.Y. and Vanhecke L., Isometric, holomorphic and symplectic reflections.
Geometriae Dedicata 29 (1989), 259-277.

[3] Ki U-H., Kim H.S. and Nakagawa H., A charactenzation of a real hypersurface of
type B. Tsukuba J. Math. Vol. 14 No.l (1990), 9-26.

[4] Kimura M., Real hypersurfaces and complex submanifolds in complex projective
space. Trans. A. M. S. 296 (1986), 137-149.

[5] Kimura M. and Maeda S., On real hypersurfaces of a complex projective space.
Math. Z. 202 (1989), 299-311.

[6] Maeda Y., On real hypersurfaces of a complex projective space. J. Math. Soc. Japan
28 (1976), 529-540.

[7] Nagai S., Naturally reductive Riemannian homogeneous structure on a homogeneous
real hypersurface in a complex space form. Bollettino U. M. I. (7) 9-A (1995), 391-
400.

[8] Nagai S., Weakly symmetric spaces in complex and quaternionic space forms. Arch.
Math. 65 (1995), 342-351.

[9] Nagai S., The classification of naturally reductive homogeneous real hypersurfaces
in complex projective space. Arch. Math. 69 (1997), 523-528.

[10] O’Neill B., The fundamental equations of a submersion. Michigan Math. J. 13
(1966), 459-469.

[11] Okumura M., On some real hypersurfaces of a complex projective space. Trans. A.
M. S. 212 (1975), 355-364.

[12] Selberg A., Harmonic analysis and discontinuous groups in weakly symmetric spaces
with applications to Dirichlet series. J. Indian Math. Soc. 20 (1956), 47-87.

[13] Takagi R., On homogeneous real hypersurfaces in a complex projective space. Osaka
J. Math. 10 (1973), 495-506.

[14] Takagi R., Real hypersurfaces in a complex projective space with constant principal
curvatures. J. Math. Soc. Japan 27 (1975), 43-53.

[15] Tricerri F. and Vanhecke L., Homogeneous structures on Riemannian manifolds.
London Math. Soc. Lecture Note Ser. 83 (1983).



The reflections with respect to \xi -curves 643

Department of Mathematics
Faculty of Education
Toyama University
3190 Gofuku, Toyama 930-8555
Japan
E-mail: snagai@edu.toyama-u.ac.jp


	1. Introduction
	Theorem 4.1 ...

	2. Preliminaries
	Theorem C-V ...
	Theorem T([13]) ...
	Theorem K([4]) ...
	Theorem 2.4 ...
	Theorem 2.5 ...
	Theorem K-M ...

	3. Lemmas
	4. Proof of the theorem
	Theorem 4.1 ...

	References

