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Real hypersurfaces in a complex projective space
in which the reflections with respect to
&-curves are isometric

Setsuo NAGAI

(Received May 17, 2000)

Abstract. We completely classify the real hypersurfaces M in a complex projective
space CP, in which the reflections with respect to integral curves of the structure vector
¢ are isometric. We conclude that the reflections with respect to integral curves of the
structure vector £ are isometric in M if and only if M is locally congruent to one of
homogeneous real hypersurfaces of type (A) and (B).
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1. Introduction

In Riemannian Geometry the group of isometric transformations of a
manifold plays an important role. Riemannian symmetric space is defined
by the condition that any geodesic symmetry gives an isometric transfor-
mation of it. Weakly symmetric space which is introduced by A. Selberg
(]12]) is a space whose any two points can be interchanged by a suitable
isometry of it. The concept of reflections of a manifold with respect to an
embedded submanifold is a generalization of geodesic symmetries (cf. [2]).
In the paper J. Berndt and L. Vanhecke shows that homogeneous real
hypersurfaces of type (A) in a non-flat complex space form (for definitions
see T of §2) are weakly symmetric. In the paper [8] the author
gives a new examples of weakly symmetric spaces. Their examples are not
Riemannian symmetric. In both papers [1]| and [8] they make use of reflec-
tions with respect to a totally geodesic submanifolds to construct suitable
isometric transformations.

Real hypersurfaces in a complex space form present many interesting
homogeneous Riemannian manifolds. So many differential geometers study
these spaces. There are many charactrizations of some homogeneous real

hypersurfaces in a complex space forms (cf. [11], [6], [4], [5], [3], [9]). Some
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of them are naturally reductive, some of them are weakly symmteric and
none of them are Riemannian symmetric.

The purpose of this paper is to give a geometric characterization of
homogeneous real hypersurfaces of type (A) and (B) in a complex projective
space. We consider the reflections of a real hypersurface with respect to the
integral curves of the structure vector field £, simply called &-curves in this
paper (for definition see §2). The main theorem is the following:

Theorem 4.1 Let M be a real hypersurface in CP,. The reflections with
respect to {-curves are isometries of M if and only if M is locally congruent
to one of homogeneous real hypersurfaces of type (A) and (B).

2. Preliminaries

In this section we explain preliminary results concerning reflections with
respect to a submanifold in a Riemannian manifold and real hypersurfaces
of a complex projective space. In this paper all manifolds will be assumed
to be connected and of class C*°.

First, we explain some results concerning reflections. Let (M,g) be
a Riemannian manifold and B a connected embedded submanifold. Then
we define the following local diffeomorphism ¢g of M which is called the
reflection with respect to the submanifold B:

¢B:p— ¢B(p), expy,(tu) — exp,(—tu)
for me B, weT:B, |u|=1, (2.1)

where exp and T+ B denote the expornential mapping of M and the normal
bundle of B in M, respectively.
The necessary and sufficient conditions for ¢g to be isometric are:

Theorem C-V ([2]) For analytic data the reflection ¢p is a local isom-
etry if and only if
(i) B is totally geodesic;
(ii) (V2 _,R)(v,u)u is normal to B,
(V2R R) (v, u)u is tangent to B, and
(V2k+1R)(x, w)u is normal to B,
for all normal vectors u, v of B, any tangent vector x of B and all k €

N. Here V and R denote the Levi Civita connecton and the Riemannian
curvature tensor of M, respectively.
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Secondly, we turn to some preliminaries concerning real hypersurfaces
of a complex projective space. Let C'P, be an n-dimensional complex pro-
jective space with constant holomorphic sectional curvature 4 and let J and
g be its complex structure and metric, respectively. Further, let M be a
connected submanifold of C' P, with real codimension 1, simply called a
real hypersurface in the following. We denote by g the induced Riemannian
metric of M and by v a local unit normal vector field of M in CPF,.

The Gauss and Weingarten formulas are:

VxY =VxY +g(AX,Y)v, (2.2)
Vxv =—-AX, (2.3)

where V and A denote the Levi Civita connection on C P, and the shape
operator of M in C P, respectively.

We define an almost contact metric structure (¢,&,7,g) of M as usual.
That is,

E=—Jv, n(X)=g(X,6), ¢X=UX)T, for X eTM,

where T M denotes the tangent bundle of M and ( )T the tangential com-
ponent of a vector. These structure tensors satisfy the following relations:

$*=-I+n®E ¢£=0, n(8X)=0, n(&) =1,
9(¢X,0Y) = g(X,Y) —n(X)n(Y), X, Y cTM, (2.4)

where I denotes the identity mapping of T M.
From we easily have

(Vx@)Y =n(Y)AX — g(AX,Y)¢, (2.5)
Vxt = AX (2.6)

for tangent vectors X, Y € TM.
In our case the Gauss and the Codazzi equations of M become

R(X,Y)Z = g(Y,2)X — ¢(X, 2)Y + g(8Y, Z)p X

- 9(¢X,Z)pY —29(¢X,Y)pZ
+ g(AY, 2)AX — g(AX, Z)AY, (2.7)

(VxA)Y — (VyA)X =n(X)oY —n(Y)oX —29(¢X,Y)E, (2.8)
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where X, Y, Z € TM.
For the structure vector £ we know the following lemmas:

Lemma 2.1 ([6] p.532 Lemma 2.1) The structure vector £ is principal if
and only if the integral curves of £ are geodesics.

Lemma 2.2 ([6] p.533 Lemma 2.4) If £ is a principal curvature vector,
then the corresponding principal curvature o is locally constant.

Lemma 2.3 ([6] p.532 Lemma 3.2) Assume that £ is a principal curva-
ture vector. If X is a principal curvature vector of M with AX = AX,
then the equation (2\ — a)ApX = (aX + 2)pX is satisfied.

Typical examples of real hypersurfaces in C P, are homogeneous ones
which are orbits under analytic subgroups of PU(n + 1). The complete
classification of them is obtained by R. Takagi ([13]) as follows:

Theorem T ([13]) Let M be a homogeneous real hypersurface of CP,.

Then M is locally congruent to one of the following spaces:

(A) a tube of radius r over a totally geodesic CP, (0 <k <n —1),
0<r<3;

(B) a tube of radius r over a complex quadric Qn_1, 0 <7 < F;

(C) a tube of radius r over CPy X CPnT—l, n>5isodd, 0 <r<7%;

(D) a tube of radius T over a complex Grassmann Ga5(C), n =29,
O<r<7g;

(E) a tube of radius v over a Hermitian symmetric space SO(10)/U(5),
n=15 0<r<?%.

Here C Py means a single point.

M. Kimura obtains the following characterization of homogeneous real
hypersurfaces:

Theorem K ([4]) Let M be a real hypersurface in CP,. Then M has
constant principal curvatures and £ is a principal curvature vector if and
only if M is locally congruent to a homogeneous real hypersurface.

About the decomposition of the tangent space into the eigenspaces of
the shape operator of a homogeneous real hypersurface, we know the fol-
lowing:



The reflections with respect to £-curves 635

Theorem 2.4 ([14]) The tangent space of the homogeneous real hyper-
surfaces can be decomposed as follows:

for type (A) : TMzR{EBTzEBT_l, Agz(x—l)f x > 0;
for type (B): TM =R{DT, BT 1, A€ = ( )§ O<r<l;

TM Ré@T @T 1@T;c+1 @T:z: z—1,
t C), (D d (E): z+1
for type (C), (D) and (E) {Ag_( )€,0<x<1

where T denotes the eigenspace of the shape operator with the principal
curvature A. Further, for type (B)~(E) we have ¢T, =T_ 1 (cf. 16]).

There are some charactarizations of homogeneous real hypersurfaces of
type (A). We know the following theorem:

Theorem 2.5 ([6], [11]) Let M be a real hypersurface in CP,. Then the
following three conditions are equivalent:

(1) M is locally congruent to a homogeneous real hypersurface of type (A),
(i) ¢4 = Ag,
(i) (VxA)Y = —n(Y)$X - g(¢X,Y)E.

For a homogeneous real hypersurface of type (B) we have the following:

Proposition 2.6 ([3]) The shape operator of a homogeneous real hyper-
surface of type (B) satisfies the following:

(VxA)Y = ——{2n )(Ap — ¢A)Y +n(Y)(Ag — 39 A)X
+9((Ap —30A)X,Y)E}.

Both homogeneous real hypersurfaces of type (A) and (B) are charac-
terized by the following:

Theorem K-M ([5]) Let M be a real hypersurface in CP,. Then the
second fundamental form of M is n-parallel and £ is a principal curvature

vector if and only if M is locally congruent to one of homogeneous real
hypersurfaces of type (A) and (B).

Here the second fundamental form of M is said to be n-parallel if
the equation g((VxA)Y,Z) = 0 is satisfied for any X,Y,Z € T'M =
{XeTM:X L¢E}
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3. Lemmas

In this section we prove lemmas needed later.
First, we prove the following:

Lemma 3.1 In homogeneous real hypersurfaces of type (A) and (B) the
following relations are satisfied:

[ (VZilg)w € Span (¢}, (V2" ,¢)v e TOM,
(Vartle)E e TOM, (V2n_ ¢)¢ € Span {£},

 (VEntlA) € Span{¢}, (VI AweT°M, (3.1)

(VItlA)¢ e TOM, (V2" A)¢ € Span {£},

| VIl e TOM, V2 ¢ € Span {¢},

for u,v € T°M = {X € TM : X 1 ¢} and n € N, where Span {£} is the
subspace of T M spanned by & over R.

Proof. We prove the lemma by induction on n.

For n = 0 the lemma can easily be verified by (2.4), (2.5), (2.6), (2.9),
Theorem 2.4] and [I’heorem 2.5.

Now we assume that the lemma holds for all natural numbers n < k—1.
Then we are going to prove the lemma for n = k.

First, we prove the relation (V2*  ¢)v € T°M. From we have

2k—1

(VE =Y (Qky‘ 1) 9(v, V%, &) (VE I~ A
v=0
2k—1

_ Z (2’“‘ 1) (V2 A, v)VETI Ve (3.2)

By the induction hypothesis we can easily verify that the right-hand side of
(3.2) belongs to T°M.

Secondly, we prove the relation (V2% )¢ € Span {¢}. From we
have

(v?k ¢)§ . 2§1 (2k — 1) (é. \Vid é-)(VQk—l—UA)
U = U g\S, Vo wu Uu
v=0
2k—1

_ Z <2’“ - 1) Y WA, OV (3.3)
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By the induction hypothesis we can also check that the right-hand side of
(3.3) belongs to Span {¢}.

Thirdly, we prove the relation (V2%  A)v € T°M. For a homogeneous
real hypersurface of type (A), using [Theorem 2.5 (iii), we have

2k—1

(Vitad)y == (2'“; 1) 9(v, Vi ) (Vi T d)u
v=0
2k-1

_2(2’“*1> (V% B, ) VIV (3.4)

By induction hypothesis the right-hand side of (3.4) belongs to T°M.
For a real hypersurface of type (B), using (2.9), we have

(V2k A)v——g 22k2_1 2k -1 (u, V.. 6) (Vs Bl
U-u T ” glu, V... u-u

v=0
2k—1

> (2’“ - 1) 0, V2 &) (V21O
2k—1

+ Z (2k_ 1) (VY. ,Clu,v)V2k-1= ”5}

(3.5)

where B = A¢p — ¢pA and C = A¢ — 30A.
On the other hand we have

2n+1 9 1
SEETTED Dl G KAWL e
~ (VBTN (36)

According to the induction hypothesis, the right-hand side of (3.6) belongs
to Span {¢} for n < k — 1. We can deduce the relations (V2" B)v € T°M,
(V2r+1C)v € Span {¢} and (V2" ,C)v € T°M for n < k — 1 analogously.
Using these facts and the induction hypothesis, we deduce that the right-
hand side of (3.5) belongs to TVM.

Next we prove the relation V2% ¢ ¢ Span {¢ }. According to the relation
(2.6), we have
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(2% -1
Vb= ( V ) (Vhu®) (Vara ™ A)u. (3.7)
v=0
By the hypothesis the right-hand side of (3.7) belongs to Span {¢}.

The remainders can be proved analogously. The lemma is now proved
by all the above arguments. O

Lemma 3.2 Let M be a real hypersurface in CP,. If & is a principal
curvature vector with principal curvature 0, then for any principal curvature
function A on M is constant along the integral curves of §.

Proof. Let u € T°M be a unit principal curvature vector and A the corre-
sponding principal curvature. By our assumption A{ = 0 and the Codazzi
equation (2.8), we have

0=V (AE) = (V,A)E + ApAu
= (Ved)u — du + ApAu
= (EXN)u+ (M — A)Veu — gu + AgAu. (3.8)
Taking inner product both sides of with u, we have
EX=0. (3.9)
Combining with Lemma 2.2, we prove the lemma. O

4. Proof of the theorem
Now we prove the theorem.

Theorem 4.1 Let M be a real hypersurface in CP,. The reflections with
respect to &-curves are isometries of M if and only if M 1is locally congruent
to one of homogeneous real hypersurfaces of type (A) and (B).

Proof. First, we prove that the reflections with respect to {-curves are
isometric in homogeneous real hypersurfaces of type (A) and (B).

By we have the following relations:

e =33 (1) (T o)) (Vi e
v=0

_ ,,Zi;) (Z) (V2 A)v,u)(VEr A
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+Y (Z) 9(Vi A, u) (Ve i Au,  (4.1)
v=0

2k+1

VR u=3 Y (%) (VL utn T
v=0
2k+1
5 () ol i (T A
v=0

2k+1
Py (2’” 1) 9((VE,.. A)u,u) (VL™ A)e,

14
v=0

(4.2)

where u,v € TOM.
Using and the right-hand side of (4.1) and (4.2), we have

(VE+IR) (v, u)u € Span{¢}, (V2 R)(v,u)u € T°M,
(VE+IR) (€, u)u € TOM.
So by [Lemma 2.1 and [Theorem| C-V, we have our assertion.
Secondly, we prove that only homogeneous real hypersurfaces of type
(A) and (B) satisfy the condition of the theorem. So in the following we as-
sume that the reflections of M with respect to £-curves are isometric. Under
the assumption, £ is always principal by C-V (i) and Lemma 2.1.

We discuss dividing into the following two cases:
Case 1 a #0; Case 2 a=0.

Case 1: Using and [2.7), we have the following relation for u € T°M:

(Vo R)(& u)u = —3g(Au, u)pu — g(pAu, (o — A)u)Au
+ g(Au, u)(al — A)pAu + ag((VuA)u,u)é. (4.3)

By C-V (ii) the right-hand side of (4.3) must be belonging to T°M.
So we have

g(VyAu,u) =0, u€ TOM. (4.4)

Here we use the condition a # 0.
Using polarization, we can lead that reduces to the following:

9(VuA)v,w) =0, u,v,weT'M. (4.5)
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This means that M has an n-parallel second fundamental form. So by Theo-
rem K-M a real hypersurface M is locally congruent to one of homogeneous
real hypersurfaces of type (A) and (B).

Case 2: First, we prove that M is homogeneous. On account of Theo-
rem K, [Lemma 2.2 and [Lemma 3.2, we only need to prove that any principal
curvature function in the direction of a principal curvature vector in TOM
is constant.

Using and [2.7), we have
(VuR) (v, u)u = 3g(pv, u)g(Au, u)é — g((VuA)v,u)Au
— 9(Av,u)(VyA)u + g((VuA)u, u) Av
+ g(Au, u)(VyA)v, (4.6)

where u,v € TVM.

By our assumption and C-V (ii) the right-hand side of
must belong to Span {£}. So we have
9((V,A)v,u)Au + g(Av, u)(VyA)u
- 9((VuA)u, u)Av — g(Au,u)(V,A)v € Span {£}. (4.7)
On the other hand we have the following relation by [2.7):
(ViuR) (v, u)u = 3{g(¢u,v)(VZ ,8)u + 20((Vud)u, v)(Vuo)u
+9((V u0)u,v)pu} — g(Av,u)(VE , A)u
—29((VyA)v,u)(Vy A)u — g((Vg’uA)v, u)Au
+ g(Au, u)(V?L,uA)v +29((VyA)u,u)(V, A

+ g((Vi,uA)u, u)Av, (4.8)
for u,v € TOM.
Using our assumption o = 0 and , we have
(Vud)v = —g(Au, v)¢, (4.9)
(Vaud)v = g(¢Au,v) Au — g((VuA)u, v)€ — g(Au,v)¢Au, (4.10)
(VuA)§ = —AgAu, (4.11)
(V2 ,A)E = —2(V,A)pAu — Ap(V,A)u. (4.12)

Substituting the right-hand sides of [4.9)}{4.12) into the right-hand side of
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and using C-V (ii), we have the following equation:

0= g((ViuR) (v, u)u,§)
= 39((VuA)u, u)g(¢v,u) + g(Av, u)g(Ad(VuA)u, u)
— 9(Au, u)g(Ad(VuA)u,v) + 29(Av, u)g((VuA)pAu, u)
—29(Au, u)g((V,A)pAu,v) + 29((VuA)v, u)g(AdAu, u)
—29((VyA)u,u)g(ApAu,v). (4.13)
Owing to [4.7), we have
9(Av,u)(VyA)u — g(Au,u)(V,A)v
= —g((V,A)v,u)Au + g((V A)u, u)Av + (€-component). (4.14)
Due to (4.14) the equation reduces to
39((Vud)u, u)g(dv, u) + g(Av,u)g(Ad(VuA)u,u)
— g(Au,u)g(Ad(Vy,A)u,v) = 0. (4.15)

Let u € T°M be a unit principal curvature vector with Au = Au and

v = ¢u, then becomes

49((V,A)u,u) = 0. (4.16)
So we have

A = 0. (4.17)

Let v be a principal curvature vector with Av = pv which is perpen-
dicular to both u and ¢u. Further we define w = ¢v. Then (4.15) becomes

Aug((VyA)u, w) = 0. (4.18)

Owing to Lemma 2.3, Ay # 0 is satisfied in our case. So using [4.18) and
the Codazzi equation (2.8), we have

wA = g(u, (VyAu) = g(u, (V,A)w) = 0. (4.19)
Further, from [Lemma 2.3/ and (4.17) we have
1 (pu) A

By [(4.17), (4.19) and (4.20) we conclude that A is constant.
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In homogeneous real hypersurfaces only the real hypersurface of type

i

(A) with 7 = 7 attains a = 0. So in Case 2 M must be congruent to the
homogeneous real hypersurface of type (A). The theorem is now proved by
all the above arguments. U
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