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Semilinear heat equations with distributions
in Morrey spaces as initial data

Masao YAMAZAKI\dagger and Xiaofang ZHOU

(Received March 17, 1999)

Abstract. This paper is a continuous study to the paper [27]. Here we consider in Mor-
rey spaces the Cauchy problem of the general semilinear heat equation with an external
force. Both the external force and initial data belong to suitable Morrey spaces. When
the norm of the external force is small, we proved the unique existence of small solution
to the corresponding stationary problem. Moreover, if the initial data is close enough
to the stationary solution, we verified the time-global solvability of the Cauchy problem,
which leads to the stability of the small stationary solution.
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1. Introduction

Let us consider the Cauchy problem of the following semilinear heat
equation with an external force f(x) in R^{n} for n\geq 3 :

\frac{\partial v}{\partial t}(t, x)=\triangle v(t, x)+v(t, x)|v(t, x)|^{\nu-1}+f(x) in (0, \infty) \cross R^{n} ,

(1.1)

v(0, x)=a(x) on R^{n} . (1.2)

where \nu>\frac{n}{n-2} , \nu\in R .
The corresponding stationary problem of the above equation is as fol-

lows:

-\triangle w(x)=w(x)|w(x)|^{\iota/-1}+f(x) on R^{n} . (1.3)

There have been many researches on the Cauchy problem (1.1)-(1.2)
without external forces, i.e . f(x)\equiv 0 . Fujita [6] first showed that the
Cauchy problem admits a time-global strong solution with lJ >1+2/n ,
provided that ||a(x)||_{C^{2}(R^{n})} is sufficiently small. At the same time he also
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showed that the condition lJ >1+2/n is necessary for the existence
of a time-global solution for nonnegative nontrivial initial data (also see
Haraux and Weissler [10], Hayakawa [11], Kobayashi, Sirao and Tanaka
[14] ) . Furthermore, Weissler [25] proved the global existence of the solution
when ||a(x)||_{L^{p}(R^{n})} with p=n(\nu-1)/2>1 is sufficiently small.

On the other hand, many authors have also studied on the Cauchy
problem with measures as initial data. Brezis and Friedman [5] proved that
a time-local solution exists with initial data \delta(x) if and only if lJ <1+
2/n . Baras and Pierre [2] studied various capacities of the Radon measures
with which as the initial data the Cauchy problem is solvable. Niwa [19] ob-
tained a sufficient condition for the local well-posedness and the global well-
posedness of the Cauchy problem with initial data in the measure spaces
of the Morrey type. Kozono and Yamazaki [16] obtained time-local and
time-global solutions as initial data in the Besov-type Morrey spaces.

In this paper, we are interested in studying the Cauchy problem (1.1)-
(1.2) in the Morrey spaces. Zhou [27] has obtained the stability of small
stationary solutions in Morrey spaces when lJ \geq 3 is an integer. This paper
will generalize these results to the general case \nu>\frac{n}{n-2} , lJ \in R with more
stationary solutions.

First, in the same way as in Zhou [27], we obtain the unique existence
of small stationary solutions for the stationary problem (1.3) by using the
Banach inverse mapping theorem.

Theorem 1.1 Suppose that n\geq 3 , \nu>\frac{n}{n-2} , lJ \in R and lJ <q_{0}\leq p_{0}=

\frac{n(\iota/-1)}{2} . Then we can fifind a positive number \delta_{0} and a continuous, strictly
monotone-increasing function \omega(\delta) on [0, \delta_{0}] with \omega(0)=0 such that:

(1) For every f(x)\in D’ . there exists at most one solution w(x) of
(1.3) in \{w(x)\in \mathcal{M}_{p_{0},q0}|||w(x)||_{\mathcal{M}_{p_{0},q_{0}}}<\omega(\delta_{0})\} .

(2) For every f(x)\in \mathcal{M}_{p0,q0}^{-2} with ||f(x)||_{\mathcal{M}_{p_{0},q_{0}}^{-2}}=\delta<\delta_{0} , there exists
a solution w(x)\in \mathcal{M}_{p_{0},q0} of (1.3) with ||w(x)||_{\mathcal{M}_{p_{0},q_{0}}}\leq\omega(\delta) .

Example 1.1 For f(x)=A|x|^{-\alpha-2} . we see easily that w(x)=c|x|^{-\alpha}

solves (1.3) if and only if \alpha=2/(\nu-1) and

A=-c\alpha(n-2-\alpha)+|c|^{\nu-1}c . (1.4)

If \nu>n/(n -2) , we see that f(x)\in L^{n/(\alpha+2),\infty} . It follows that f(x)\in
\mathcal{M}_{n/(\alpha+2),q1} for every q_{1}<n/(\alpha+2) . This implies f(x)\in \mathcal{M}_{p0,q0}^{-2} for every
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q_{0}<p_{0} . On the other hand, w(x)\in \mathcal{M}_{p0,q0} holds for every q_{0}<p_{0} .
If A is sufficiently small, the equation (1.4) has three solutions. It fol-

lows that the condition ||w(x)||\mathcal{M}_{p_{0},q_{0}}<\omega(\delta_{0}) is necessary for the uniqueness
of the solution in Theorem 1.1.

Next, we will consider the Cauchy problem (1.1)-(1.2) in the general
case \nu\in R , and divide it into two cases as follows.

Case 1: \frac{n}{n-2}<\nu\leq 2 , \nu\in R .

Case 2: lJ >2 , \nu\in R .

For the first case, we have the following main theorems.

Theorem 1.2 Suppose that n\geq 3 , \frac{n}{n-2}<\nu\leq 2 , \nu\in R and p_{0} , q_{0} are
the same as in Theorem 1.1. Let p , q and \sigma_{0} be rea/ numbers such that
p_{0}<p< \frac{n-2}{n}\nu p_{0} , q_{0}<q \leq\frac{pq0}{p0} and \frac{2}{p}<\sigma_{0}<2-\frac{(n-2)\iota/-n}{p} . Then we can
fifind positive numbers \delta_{1}(\leq\delta_{0}) , \epsilon_{0} and M_{0} satisfying the following:

For every f(x)\in \mathcal{M}_{p0,q0}^{-2} with ||f(x)||_{\mathcal{M}_{p_{0},q_{0}}^{-2}}<\delta_{1} , take the solution

w(x) of (1.3) in Theorem 1.1, and take a(x)\in \mathcal{M}_{p,q}^{\frac{n}{p}-\frac{n}{p_{0}}} with ||a(x) -

w(x)||_{\mathcal{M}_{q}} \frac{n}{pp},-\frac{n}{p_{0}}=\epsilon<\epsilon_{0}
, there exists a time-global solution v(t, x) of (1.1)-

(1.2) such that:

\sup_{0<t\leq T} , t^{\frac{n}{2p_{0}}-\frac{n-2}{2p}},||v(t, \cdot)-w||_{\mathcal{M}_{q}^{\frac{2}{pp}}},<\infty , for every 0<T’\leq\infty ,

(1.5)

\lim_{tarrow 0}\sup_{+}t^{\frac{n}{2p_{0}}-\frac{n-2}{2p}}||v(t, \cdot)-w||_{\mathcal{M}_{q}^{\frac{2}{pp}}},<M_{0} . (1.6)

Moreover, the initial condition (1.2) holds in the following sense: For
every s satisfying \frac{n}{p}-\frac{(n-2)\iota/}{p}\leq s\leq\frac{n}{p}-\frac{n}{p0} and every T’>0 , we have

\sup_{0<t\leq T’}t^{\frac{s}{2}+\frac{n}{2p_{0}}-\frac{n}{2p}}||v(t, \cdot)-a||_{\mathcal{M}_{p,q}^{s}}<\infty . (1.7)

Remark 1.1 From Lemma 2.1 in the next section, the stationary solution
w(x)\in \mathcal{M}_{p0,q0}\subset \mathcal{M}_{p,q}^{\frac{n}{p}-\frac{n}{p_{0}}}

Theorem 1.3 Under the same assumptions and notations as in TheO-
rem 1.2, for every 0<T\leq\infty , any solution of (1.1)-(1.2) on (0, T) \cross

R^{n} satisfying (1.5) for every T’\in(0, T) , (1.6) and v(t, \cdot)-a –0 in
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\mathcal{M}_{p,q}^{\frac{n}{p}-\frac{(n-2)\nu}{p}} coincides with the restriction on (o, _{T})
\cross R^{n} of the time-global

solution in Theorem 1.2.

Theorem 1.4 Under the same assumptions and notations as in TheO-
rem 1.2, for every \sigma satisfying \frac{n}{p}-\frac{n}{p0}\leq\sigma\leq\sigma_{0} , there exists a continuous,
strictly monotone-increasing function \psi_{\sigma}(\epsilon) on [0, \epsilon_{0}] with \psi_{\sigma}(0)=0 such
that:

\sup_{t>0}t^{\frac{\sigma}{2}+\frac{n}{2p_{0}}-\frac{n}{2p}}||v(t, \cdot)-w||_{\mathcal{M}_{p,q}^{\sigma}}\leq\psi_{\sigma}(\epsilon) , for every \epsilon<\epsilon_{0} . (1.8)

Remark 1.2 The estimate (1.8) with \sigma=\frac{n}{p}-\frac{n}{p0} in Theorem 1.4 together
with the fact that \lim_{\inarrow 0+}\psi_{\sigma}(\epsilon)=0 asserts the Lyapunov stability of the

stationary solution in the topology of \mathcal{M}_{p,q}^{\frac{n}{p}-\frac{n}{p_{0}}} Other estimates in (1.8) give
the asymptotic stability in different topologies of \mathcal{M}_{p,q}^{\sigma} .

Example 1.2 Let w(x) be a stationary solution as shown in Theorem
1.1 (2) where f(x)=c_{0}|x|^{-\frac{2\nu}{\nu-1}} with a small constant c_{0} . Suppose that p_{0} ,
q_{0} , p , q(q<p) satisfy the assumptions in Theorem 1.2. Then we can take
a(x)=w(x)+c_{1} (-\triangle_{x})^{\frac{n}{2p_{0}}-\frac{n}{2p}}(|x|^{-\frac{n}{p}}) in Theorem 1.2 provided that the
coefficient c_{1} is sufficiently small.

For the second case, we have the following main theorems.

Theorem 1.5 Suppose that n\geq 3 , \nu>2 , \nu\in R , \nu<q_{1}\leq q_{0}\leq p_{0}=

\frac{n(\iota/-1)}{2} . Let p , \sigma_{0} be real numbers such that p_{0}<p<2p_{0}, \frac{n}{p0}-\frac{n}{p}<\sigma_{0}<

\frac{2n}{p0}-\frac{2n}{p} . Then we can fifind positive numbers \delta_{1}(\leq\delta_{0}) , \epsilon_{0} and M_{0} satisfying
the following:

For every f(x)\in \mathcal{M}_{p_{0},q0}^{-2} with ||f(x)||_{\mathcal{M}_{p_{0},q_{0}}^{-2}}<\delta_{1} , take the solution w(x)

of (1.3) in Theorem 1.1, and take a(x)\in \mathcal{M}_{p_{0},q1} with ||a(x)-w(x)||\mathcal{M}_{p_{0},q_{1}}=

\epsilon<\epsilon_{0} , there exists a time-global solution v(t, x) of (1.1)-(1.2) such that:

max \{\sup_{0<t\leq T} , ||v(t, \cdot)-w||_{\mathcal{M}_{p_{0},q_{1}}}.\sup_{0<t\leq T}

,
t^{\frac{n}{2p_{0}}-\frac{n}{2p}}||v(t, \cdot)-w||_{\mathcal{M}_{q_{1}}}\frac{n}{p_{0}p_{0}},-\frac{n}{p}\}

<\infty , (1.9)

for every 0<T’\leq\infty ,

\max\{\lim_{tarrow 0}\sup_{+}||v(t, \cdot)-w||_{\mathcal{M}_{p_{0},q_{1}}} , \lim_{tarrow 0}\sup_{+}t^{\frac{n}{2p_{0}}-\frac{n}{2p}}||v(t, \cdot)-w||_{\mathcal{M}_{q_{1}}}\frac{n}{p_{0}p_{0}},-\frac{n}{p}\}

<M_{0} . (1.10)
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Moreover, the initial condition (1.2) holds in the following sense: For
every s satisfying \frac{2n}{p0}-\frac{2n}{p}-2\leq s\leq 0 and every T’>0 , we have

\sup_{0<t\leq T’}t^{\frac{s}{2}}||v(t, \cdot)-a||_{\mathcal{M}_{p_{0},q_{1}}^{s}}<\infty . (1.11)

\mathcal{M}_{p0,q0}\subset \mathcal{M}_{p0,q_{1}}Remark1.3A.s

shown in Zhou [27], any stationary solution w(x)\in

Theorem 1.6 Under the same assumptions and notations as in TheO-
rem 1.5, for every 0<T\leq\infty , any solution of (1.1)-(1.2) on (0, T) \cross

R^{n} satisfying (1.9) for every T’\in(0, T) , (1.10) and v(t, \cdot)-aarrow 0 in
\mathcal{M}_{q_{1}}^{\frac{2n}{p_{0}^{0}p}-\frac{2n}{p}-2}

, coincides with the restriction on (0, _{T})
\cross R^{n} of the time-global

solution in Theorem 1.5.

Theorem 1.7 Under the same assumptions and notations as in TheO-
rem 1.5, for every \sigma satisfying 0 \leq\sigma\leq\sigma_{0} , there exists a continuous,
strictly monotone-increasing function \psi_{\sigma}(\epsilon) on [0, \epsilon_{0}] with \psi_{\sigma}(0)=0 such
that:

\sup_{t>0}t^{\frac{\sigma}{2}}||v(t, \cdot)-w||_{\mathcal{M}_{p_{0},q_{1}}^{\sigma}}\leq\psi_{\sigma}(\epsilon) , for every \epsilon<\epsilon_{0} . (1.12)

Remark 1.4 The estimate (1.12) with \sigma=0 in Theorem 1.7 together
with the fact that \lim_{\epsilonarrow 0+}\psi_{\sigma}(\epsilon)=0 asserts the Lyapunov stability of the
stationary solution in the topology of \mathcal{M}_{p0,q_{1}} . Other estimates in (1.12) give
the asymptotic stability in different topologies of \mathcal{M}_{p0,q_{1}}^{\sigma} .

Example 1.3 Let w(x) be a stationary solution as shown in Example 1.1
where f(x)=c_{0}|x|^{-\frac{2\nu}{\nu-1}} with a small constant c_{0} . Suppose that n>3 ,
\nu>2 , \nu\in R , \nu<q_{1}\leq q_{0}\leq(n-1)p_{0}/n=(n-1)(\nu-1)/2 . Put x’=
(x_{1}, . , x_{n-1}) for x=(x_{1}, \ldots , x_{n}) . Then we can take the function a(x)=
w(x)+C_{2} (-\triangle_{x})^{\frac{1}{\nu-1}-\frac{n-1}{2}}\delta(x’) in Theorem 1.5 provided that the coefficient
c_{2} is sufficiently small.

Remark 1.5 The critical exponent for (1.3) is \nu=n/(n-2) , whereas the
critical exponent for (1.1) with f(x)\equiv 0 is \nu=(n+2)/n . The difference
corresponds to the following fact: Br\’ezis and V\’eron [1] showed that the
elliptic equation

-\triangle u+|u|^{\nu-1}u=\delta(x)
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on a bounded domain with smooth boundary containing the origin admits
a solution if and only if \nu<n/(n-2) , whereas Br\’ezis and Friedman [5]
showed that

\frac{\partial v}{\partial t}-\triangle v+|v|^{\nu-1}v=0

with the initial condition v(0)=\delta(x) admits a solution if and only if \nu<

(n+2)/n .

Remark 1.6 For \nu such that 1+2/n<l/<(n+2)/(n-2) , Haraux and
Weissler [10] constructed a nontrivial solution v(t, x) of (1.1)-(1.2) with
f(x)\equiv a(x)\equiv 0 of the form v(t, x)=t^{-1/(\nu-1)}\varphi(x/\sqrt{t}) . Then we have
||v(t, \cdot)||_{\mathcal{M}_{p,q}^{s}}=Ct^{-1/(\nu-1)+n/2p-s/2} for every p, q and s . It follows that,
even in the case a(x)\equiv f(x)\equiv 0 , the condition (1.6) is necessary for the
uniqueness in Theorem 1.3, and the condition (1.10) is necessary for the
uniqueness in Theorem 1.6.

Semigroup theory will be used to prove our results in the same way
as in Zhou [27]. In order to prove our main theorems in different cases,
we need different estimates and propositions which can be obtained in the
similar way. Therefore we obmit some unnecessary proofs. For details, see
Zhou [27].

The plan of this paper is the following. In Section 2, we recall the
definitions and some known results of the Sobolev-type Morrey spaces. Then
we consider the stationary problem (1.3) and prove Theorem 1.1. Section 3
deals with the perturbation of the heat operater. Then we will discuss
the the semigroup in Section 4. In Section 5, the equivalence between the
original differential equations and the associated integral equations will be
given. In Section 6, we will construct time-global solutions to the integral
equation by the method of succesive approximation. Then we complete the
proofs of Theorem 1.2, Theorem 1.4, Theorem 1.5 and Theorem 1.7. The
uniqueness properties in Theorem 1.3 and Theorem 1.6 will be proved in
the last part of this paper.

2. Morrey spaces and the stationary problem

First of all we recall the definitions of the Morrey spaces.

Definition 2.1 Let 1\leq q\leq p<\infty , s\in R . The Morrey space \mathcal{M}_{p,q} on
R^{n} is defined to be the set of functions u(x)\in L_{loc}^{q}(R^{n}) such that
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||u||_{\mathcal{M}_{p,q}}= \sup_{xo\in R^{n}}\sup_{R>0}R^{n/p-n/q}(\int_{|x-x_{0}|<R}|u(x)|^{q}dx)^{1/q}<\infty .

Furthermore, the Sobolev-type Morrey space \mathcal{M}_{p,q}^{s} is defined by

\mathcal{M}_{p,q}^{s}=\{u(x)\in\Phi’/\mathcal{P}|||u(x)||_{\mathcal{M}_{p,q}^{s}}=||(-\triangle)^{\frac{s}{2}}u||_{\mathcal{M}_{p,q}}<\infty\} ,

where \Phi’ and P denote the set of tempered distributions on R^{n} and the set
of polynomials with n variables, respectively.

In this paper, we only consider the spaces \mathcal{M}_{p,q}^{s} with s< \frac{n}{p} . As Bour-
daud [4], Kozono and Yamazaki [17] showed, they can be regarded as a
subspace of \Phi’

Many properties of Morrey spaces have been shown in Zhou [27], we
will not describe them here again. For more detailed properties, see Peetre
[20], Taylor [22, 23] , Kozono and Yamazaki [16, 17] . It is worthy to point
out the following important lemma.

Lemma 2.1 Let 1<q\leq p<\infty , s\in R and 0<\theta<1 , them \mathcal{M}_{p,q}^{s}\subset

\mathcal{M}_{p/\theta,q/\theta}^{s-(1-\theta)n/p}

Now we prove the Theorem 1.1 by using the Banach inverse mapping
theorem. For every w(x)\in \mathcal{M}_{p0,q0} , define the mapping:

F(w)=-\triangle w(x)-w(x)|w(x)|^{\nu-1}

Then we see that F : \mathcal{M}_{p0,q0}arrow \mathcal{M}_{p0,q0}^{-2} is continuous in the same way as
in [25]. Moreover, it is Fr\’echet differentiate at any w_{0}\in \mathcal{M}_{p0,q0} with the
Fr\’echet derivative -\triangle-\nu|w_{0}(x)|^{\nu-1} .

The Fr\’echet derivative at 0 coincides with (-\triangle) which is an isomor-
phism from \mathcal{M}_{p_{0},q0} to \mathcal{M}_{p0,q0}^{-2} . By the Banach inverse mapping theorem,
there exist sufficiently small positive constants \gamma_{0} and \delta_{0} such that the
mapping F is injective on the set

U=\{w(x)\in \mathcal{M}_{p0,q0}|||w(x)||_{\mathcal{M}_{p_{0},q_{0}}}<\gamma_{0}\} ,

and the image F(U) contains the set

V=\{f(x)\in \mathcal{M}_{p0,q0}^{-2}|||f(x)||_{\mathcal{M}_{p_{0},q_{0}}^{-2}}<\delta_{0}\} .

Moreover, the inverse mapping F^{-1} : Varrow U is continuous. This com-
pletes the proof of Theorem 1.1.
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3. Estimates of the perturbed heat operator

In the following sections, we will consider the Cauchy problem (1.1)-
(1.2). Hereafter we always assume that n\geq 3 , \nu>\frac{n}{n-2} , \nu\in R and \nu<

q_{0} \leq p_{0}=\frac{n(\nu-1)}{2} . Let w(x)\in \mathcal{M}_{p0,q0} be the small stationary solution as in
Theorem 1.1 (2) such that ||w(x)||_{\mathcal{M}_{p_{0},q_{0}}}\leq\omega(\delta)<1 .

Put u(t, x)=v(t, x)-w(x) , b(x)=a(x)-w(x) , then the system (1.1)-
(1.2) is transformed into the following system:

\frac{\partial u}{\partial t}(t, x)=\triangle u(t, x)+(w(x)+u(t, x))|w(x)+u(t, x)|^{\nu-1}

-w(x)|w(x)|^{\nu-1} in (0, \infty) \cross R_{:}^{n} (3.1)

u(0, x)=b(x) on R^{n} (3.2)

Denote

A[f](x)=-\triangle_{x}f(x)+B[f](x) ,
B[f](x)=-\nu|w(x)|^{\nu-1}f(x) ,
G(w, u)=-(w+u)|w+u|^{\nu-1}+w|w|^{\nu-1}+\nu|w|^{\nu-1}u ,

then (3.1) becomes

\frac{\partial u}{\partial t}(t, x)+A[u(t, \cdot)](x)+G(w(x), u(t, x))=0 . (3.3)

Further, for the case \frac{n}{n-2}<\nu\leq 2 , \nu\in R , the conditions (1.5)-(1.8)
can be rewritten as

\sup_{0<t\leq T} , t^{\frac{n}{2p_{0}}-\frac{n-2}{2p}}||u(t, \cdot)||_{\mathcal{M}_{q}^{\frac{2}{pp}}},<\infty , for every 0<T’\leq\infty , (3.4)

\lim_{tarrow 0}\sup_{+}t^{\frac{n}{2p_{0}}-\frac{n-2}{2p}}||u(t, \cdot)||_{\mathcal{M}_{q}^{\frac{2}{pp}}},<M_{0} , (3.5)

\sup_{0<t\leq T’}t^{\frac{s}{2}+\frac{n}{2p_{0}}-\frac{n}{2p}}||u(t, \cdot)-b||_{\mathcal{M}_{p,q}^{s}}<\infty . (3.6)

\sup_{t>0}t^{\frac{\sigma}{2}+\frac{n}{2p_{0}}-\frac{n}{2p}}||u(t, \cdot)||_{\mathcal{M}_{p,q}^{\sigma}}\leq\psi_{\sigma}(\epsilon) (3.7)

respectively. In the meantime, for the second case \nu>2 , \nu\in R , the
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conditions (1.9)-(1.12) can be rewritten as

max \{\sup_{0<t\leq T}

,
||u(t, \cdot)||_{\mathcal{M}_{p_{0},q_{1}}},\sup_{0<t\leq T} , t^{\frac{n}{2p_{0}}-\frac{n}{2p}}||u(t, \cdot)||_{\mathcal{M}_{q_{1}}^{\frac{n}{p_{0}^{\mathcal{P}0}}-\frac{n}{p}}},\}<\infty ,

(3.8)

for every 0<T’\leq\infty ,

max \{\lim_{tarrow 0}\sup_{+}||u(t, \cdot)||_{\mathcal{M}_{p_{0},q_{1}}} , \lim_{tarrow 0}\sup_{+}t^{\frac{n}{2p_{0}}-\frac{n}{2p}}||u(t, \cdot)||_{\mathcal{M}_{q_{1}}}\frac{n}{p_{0}p_{0}},-\frac{n}{p}\}<M_{0} ,

(3.9)

\sup_{0<t\leq T}, t^{\frac{s}{2}}||u(t, \cdot)-b||_{\mathcal{M}_{p_{0},q_{1}}^{s}}<\infty , (3.10)

\sup_{t>0}t^{\frac{\sigma}{2}}||u(t, \cdot)||_{\mathcal{M}_{p_{0},q_{1}}^{\sigma}}\leq\psi_{\sigma}(\epsilon) , for every \epsilon<\epsilon_{0} (3.10)

respectively. Therefore, in order to prove our main results, it is enough to
find a solution of (3.2)-(3.3) satisfying the conditions (3.4)-(3.7) for every
0<T’\leq\infty and to show its uniqueness. For the second case, it is also
enough to find a solution of (3.2)-(3.3) satisfying the conditions (3.8)-(3.11)
for every 0<T’\leq\infty and to show its uniqueness. We will use different
inequalities on the term G(w(x), u(t, x)) for different case, as the following
lemma.

Lemma 3.1 Let G(w(x), u(t, x)) be defifined as above, we have
(1) If \frac{n}{n-2}<\nu\leq 2 , \nu\in R , then |G(w, u)|\leq|u|^{\nu}

(2) If \nu>2 , \nu\in R , then |G(w, u)| \leq\frac{\nu(\nu-1)}{2}(|w|+|u|)^{\nu-2}u^{2} .

Proof. In fact, denote the function F(\lambda)=\lambda|\lambda|^{\nu-1} , then

F’(\lambda)=\nu|\lambda|^{\nu-1} , |F’(\lambda)|=\nu(\nu-1)|\lambda|^{\nu-2} .

The first inequality is deduced from

F(w+u)-F(w)= \int_{0}^{1}F’(w+\theta u)ud\theta

and

|G(w, u)| \leq\int_{0}^{1}|F’(w+\theta u)-F’(w)||u|d\theta
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\leq\nu\int_{0}^{1}||w+\theta u|^{\nu-1}-|w|^{\nu-1}||u|d\theta

\leq\nu\int_{0}^{1}|\theta u|^{\nu-1}|u|d\theta=|u|^{\nu} .

where we used the trivial inequality (a+b)^{\alpha}\leq a^{\alpha}+b^{\alpha} , for every 0<\alpha<1

and 0\leq a\leq b .
The second inequality is easy to be calculated as follows.

|G(w, u)| \leq\int_{0}^{1}|F’(w+\theta u)-F’(w)||u|d\theta

\leq\int_{0}^{1}(\int_{0}^{\theta}|F’(w+\tau u)||u|d\tau)|u|d\theta

\leq\int_{0}^{1}\nu(\nu-1)(1-\tau)(|w|+\tau|u|)^{\nu-2}u^{2}d\tau

= \frac{\nu(\nu-1)}{2}(|w|+|u|)^{\nu-2}u^{2}

\square

Lemma 3.2 Suppose that \frac{n}{n-2}<\nu\leq 2 , \nu \in R , p_{0}<p<\infty , q_{0}<q\leq

gq\underline{0}p0

’ then for every s\leq 2 such that 0<s< \frac{n}{p} , the operators A and B are
bounded from \mathcal{M}_{p,q}^{s} to \mathcal{M}_{p,q}^{s-2} .

Proof In view of Propostion 2.1 (Zhou [27]), it is enough to prove the
conclusion for the operator B . Put

\frac{n}{p_{1}}=\frac{n}{p}-s , q_{2}= \frac{p_{1}q}{p} ,

\frac{1}{p_{2}}=\frac{1}{p_{1}}+\frac{\nu-1}{p_{0}} , \frac{1}{q_{3}}=\frac{1}{q_{2}}+\frac{\nu-1}{q_{0}} .

Let f(x) be an element of \mathcal{M}_{p,q}^{s} . Then Lemma 2.1, Lemma 2.2, Lemma 2.3
and Lemma 2.4 (Zhou [27]) imply the following inclusion relations:

B[f](x)=-\nu|w(x)|^{\nu-1}f(x)\in \mathcal{M}_{p_{2},qs}\subset \mathcal{M}_{p_{2},\frac{p_{2}q}{p}}\subset \mathcal{M}_{p,q}^{\sigma} ,

where

\sigma=-(1-\frac{p_{2}}{p})\frac{n}{p_{2}}=\frac{n}{p}-(\frac{n}{p_{1}}+\frac{n(\nu-1)}{p_{0}})=s-2 .

\square
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For the second case, the operators A and B have the following property.

Lemma 3.3 Suppose that \nu>2 , \nu\in R , \nu<q_{1}\leq q_{0},0<s<\frac{n}{p0} . Then
the operators A and B are bounded from \mathcal{M}_{p0,q_{1}}^{s} to \mathcal{M}_{p0,q_{1}}^{s-2}

In order to discuss the semigroup generated by the perturbed heat op-
erator A, we need some estimates of the resolvent of A. For the proof we
make use of the following lemmas. Firstly we have the following lemma (see
Zhou [27] Lemma 3.2).

Lemma 3.4 Let p and q be real numbers such that 1<q\leq p . Then, for
every positive number \epsilon wilh \epsilon j <\pi/2 and nonnegative numbers a and b with
a\leq b , there exists a positive constant C=C_{n,\epsilon,a,b} such that the estimate

||(-\triangle_{x})^{a}(\lambda+\triangle_{x})^{-b}||_{\mathcal{L}(\mathcal{M}_{p,q},\mathcal{M}_{p,q})}\leq C|\lambda|^{a-b} (3.12)

holds for every \lambda\in C\backslash [0, +\infty) with | arg \lambda|\geq\epsilon .

Next, it is easy to get the following two lemmas from Proposition 2.1
(Zhou [27]), Lemma 3.2 and Lemma 3.3.

Lemma 3.5 Let \nu , p_{0} , q_{0} , p , q be the same as in Lemma 3.2 and suppose
that \theta\in(0,1) satisfifies 0< \theta<\frac{n}{2p} . Then the operator (-\triangle_{x})^{\theta-1}B(-\triangle_{x})^{-\theta}

is bounded on \mathcal{M}_{p,q} .

Lemma 3.6 Let \nu , p_{0} , q_{1} be the same as in Theorem 1.5. Suppose that
0< \theta<\frac{n}{2p_{0}} . Then the operator (-\triangle_{x})^{\theta-1}B(-\triangle_{x})^{-\theta} is bounded on \mathcal{M}_{p0,q_{1}} .

Now we have the main propositions on the estimates of the resolvent
of A.

Proposition 3.1 Let \nu , p_{0} , q_{0} , p , q be the same as in Lemma 3.2. Suppose
that s , \sigma<2 are real numbers satisfying

s , \sigma\in(-2, \frac{n}{p} ) and |s-\sigma|\leq 2 . (3.13)

Then, for every \epsilon>0 , we can take a positive number \gamma_{1}=\gamma_{1}(s, \sigma) , if
w(x)\in \mathcal{M}_{p_{0},q0} satisfifies ||w(x)||_{\mathcal{M}_{p_{0},q_{0}}}^{\nu-1}\leq\gamma_{1} , then every \lambda\in C\backslash [0, +\infty)

with | arg \lambda|\geq\epsilon belongs to the resolvent of the operator A in \mathcal{M}_{p,q}^{s} . In the
meantime, the following estimate
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||(-\triangle_{x})^{\sigma/2}(\lambda+\triangle_{x})^{-1}B(\lambda-A)^{-1}(-\triangle_{x})^{-s/2}||_{\mathcal{L}(\mathcal{M}_{p,q},\mathcal{M}_{p,q})}

\leq\underline{C|\lambda|^{(\sigma-s)/2-1}} (3.14)
\gamma_{1}-||w||_{\mathcal{M}_{p_{0},q_{0}}}^{\nu-1}

holds with a positive constant C .
Furthermore, if \sigma\geq s , the operator (-\triangle_{x})^{\sigma/2}(\lambda-A)^{-1} (-\triangle_{x})^{-s/2} can

be extended to a bounded operator on \mathcal{M}_{p,q} and enjoys the estimate

||(-\triangle_{x})^{\sigma/2}(\lambda-A)^{-1}(-\triangle_{x})^{-s/2}||_{\mathcal{L}(\mathcal{M}_{p,q},\mathcal{M}_{p,q})}

\leq\underline{C|\lambda|^{(\sigma-s)/2-1}}

\gamma_{1}-||w||_{\mathcal{M}_{p_{0},q_{0}}}^{\nu-1}

(3.15)

with a positive constant C .

Proof. We prove in the similar way as in Zhou [27]. First we prove (3.14).
Since \frac{1}{2} max \{s, \sigma\}<\min\{1, \frac{n}{2p}\}\leq 1 , \frac{1}{2}\max\{s, \sigma\}\leq 1+\frac{1}{2} min \{s, \sigma\}

and 0<1+ \frac{1}{2}\min\{s, \sigma\} , hence we can find a positive number \theta\in(0,1)

satisfying

\frac{1}{2}\max\{s, \sigma\}\leq\theta\leq 1+\frac{1}{2}\min\{s, \sigma\} and 0< \theta<\frac{n}{2p} .

Then Lemma 3.5 implies that the operator

\Theta=(-\triangle_{x})^{\theta-1}B(-\triangle_{x})^{-\theta}

is bounded on \mathcal{M}_{p,q} and the estimate ||\Theta||_{\mathcal{L}(\mathcal{M}_{p,q},\mathcal{M}_{p,q})}\leq C_{1}||w||_{\mathcal{M}_{p_{0},q_{0}}}^{\nu-1} holds
with some positive constant C_{1} .

On the other hand, the operator (-\triangle_{x})(\lambda+\triangle_{x})^{-1} is also bounded on
\mathcal{M}_{p,q} for every \lambda\in C\backslash [0, +\infty) , | arg \lambda|\geq\epsilon and the estimate

||(-\triangle_{x})(\lambda+\triangle_{x})^{-1}||_{\mathcal{L}(\mathcal{M}_{p,q},\mathcal{M}_{p,q})}\leq C_{2}

holds with some positive constant C_{2} .
In the same way, Lemma 3.4 implies that there exists a positive constant

C_{3} , we have the following estimates:

||(-\triangle_{x})^{\frac{\sigma}{2}+1-\theta}(\lambda+\triangle_{x})^{-1}||_{\mathcal{L}(\mathcal{M}_{p,q},\mathcal{M}_{p,q})}\leq C_{3}|\lambda|^{\frac{\sigma}{2}-\theta} ,

||(-\triangle_{x})^{\theta-\frac{s}{2}}(\lambda+\triangle_{x})^{-1}||_{\mathcal{L}(\mathcal{M}_{p,q},\mathcal{M}_{p,q})}\leq C_{3}|\lambda|^{\theta-1-\frac{s}{2}} ,
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for every \lambda\in C\backslash [0, +\infty) , | arg \lambda|\geq\epsilon .
Therefore, if ||w||_{\mathcal{M}_{p_{0},q_{0}}}^{\nu-1}< \gamma_{1}(s, \sigma)=\frac{1}{c_{1}c_{2}} , the series

I=(-\triangle_{x})^{\frac{\sigma}{2}+1-\theta}(\lambda+\triangle_{x})^{-1}\Theta

\cross\sum_{j=0}^{\infty}\{(\lambda+\triangle_{x})^{-1}(-\triangle_{x})\Theta\}^{j}(-\triangle_{x})^{\theta-\frac{s}{2}}(\lambda+\triangle_{x})^{-1}

converges in \mathcal{L}(\mathcal{M}_{p,q}, \mathcal{M}_{p,q}) and the operator norm of the limit is dominated
by

C_{3}| \lambda|^{\frac{\sigma}{2}-\theta}C_{1}||w||_{\mathcal{M}_{p_{0},q_{0}}}^{\nu-1}\frac{1}{1-C_{1}C_{2}||w||_{\mathcal{M}_{p_{0},q_{0}}}^{\nu-1}}C_{3}|\lambda|^{\theta-1-\frac{s}{2}}

\leq\frac{C|\lambda|^{\frac{\sigma-s}{2}-1}}{\gamma_{1}-||w||_{\mathcal{M}_{p_{0},q_{0}}}^{\nu-1}} .

Moreover, the limit is

I=(-\triangle_{x})^{\frac{\sigma}{2}}(\lambda+\triangle_{x})^{-1}B(-\triangle_{x})^{-\theta}

\cross\sum_{j=0}^{\infty}\{(\lambda+\triangle_{x})^{-1}(-\triangle_{x})^{\theta}B(-\triangle_{x})^{-\theta}\}^{j}(-\triangle_{x})^{\theta-\frac{s}{2}}(\lambda+\triangle_{x})^{-1}

=(-\triangle_{x})^{\frac{\sigma}{2}}(\lambda+\triangle_{x})^{-1}B(-\triangle_{x})^{-\theta}

\cross\{1-(\lambda+\triangle_{x})^{-1}(-\triangle_{x})^{\theta}B(-\triangle_{x})^{-\theta}\}^{-1}(-\triangle_{x})^{\theta-\frac{s}{2}}(\lambda+\triangle_{x})^{-1}

=(-\triangle_{x})^{\frac{\sigma}{2}}(\lambda+\triangle_{x})^{-1}B(\lambda-A)^{-1}(-\triangle_{x})^{-\frac{s}{2}} .

This yields (3.14). Observe the equality

(-\triangle_{x})^{\frac{\sigma}{2}}(\lambda-A)^{-1}(-\triangle_{x})^{-\frac{s}{2}}

=(-\triangle_{x})^{\frac{\sigma}{2}}(\lambda+\triangle_{x})^{-1}(-\triangle_{x})^{-\frac{s}{2}}

+(-\triangle_{x})^{\frac{\sigma}{2}}(\lambda+\triangle_{x})^{-1}B(\lambda-A)^{-1}(-\triangle_{x})^{-\frac{s}{2}}

=(-\triangle_{x})^{\frac{\sigma-s}{2}}(\lambda+\triangle_{x})^{-1}+(-\triangle_{x})^{\frac{\sigma}{2}}(\lambda+\triangle_{x})^{-1}B(\lambda-A)^{-1}(-\triangle_{x})^{-\frac{s}{2}} ,

the estimate (3.15) follows immediately from the above discussion and
Lemma 3.4. \square

Proposition 3.2 Let \nu , p_{0} , q_{0} , q_{1} be the same as in Lemma 3.3. Suppose
that s , \sigma are real numbers satisfying

s , \sigma\in(-2,\frac{n}{p_{0}}) and |s-\sigma|\leq 2 . (3.16)
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Then, for every \epsilon>0 , we can take a positive number \gamma_{1}=\gamma_{1}(s, \sigma) , if
w(x)\in \mathcal{M}_{p_{0},q0} satisfifies ||w(x)||_{\mathcal{M}_{p_{0},q_{0}}}^{\nu-1}\leq\gamma_{1} , then every \lambda\in C\backslash [0, +\infty) with
| arg \lambda|\geq\epsilon belongs to the resolvent of the operator A in \mathcal{M}_{p,q_{1}}^{s_{0}}

‘ In the
meantime, the following estimate

||(-\triangle_{x})^{\sigma/2}(\lambda+\triangle_{x})^{-1}B(\lambda-A)^{-1}(-\triangle_{x})^{-s/2}||_{\mathcal{L}(\mathcal{M}_{p_{0},q_{1}},\mathcal{M}_{p_{0},q_{1}})}

<\underline{C|\lambda|^{(\sigma-s)/2-1}}

(3.17)
-\gamma_{1}-||w||_{\mathcal{M}_{p_{0},q_{0}}}^{\nu-1}

holds with a positive constant C .
Furthermore, if \sigma\geq s , the operator (-\triangle_{x})^{\sigma/2}(\lambda-A)^{-1} (-\triangle_{x})^{-s/2} can

be extended to a bounded operator on \mathcal{M}_{p_{0},q1} and enjoys the estimate

||(-\triangle_{x})^{\sigma/2}(\lambda-A)^{-1}(-\triangle_{x})^{-s/2}||_{\mathcal{L}(\mathcal{M}_{p_{0},q_{1}},\mathcal{M}_{p_{0},q_{1}})}

<\underline{C|\lambda|^{(\sigma-s)/2-1}}

(3.18)
-\gamma_{1}-||w||_{\mathcal{M}_{p_{0},q_{0}}}^{\nu-1}

with a positive constant C .

Proof. Since \frac{1}{2}\max\{s, \sigma\}<\frac{n}{2p_{0}}=\frac{1}{\nu-1}<1 , \frac{1}{2}\max\{s, \sigma\}\leq 1+\frac{1}{2}\min\{s, \sigma\}

and 0<1+ \frac{1}{2}\min\{s, \sigma\} , hence we can find a positive number \theta\in(0,1)

satisfying

\frac{1}{2}\max\{s, \sigma\}\leq\theta\leq 1+\frac{1}{2} min \{s, \sigma\} and 0< \theta<\frac{n}{2p_{0}} .

Then we can finish the rest part of our proof in the same way as the proof
of Proposition 3.1, by using Lemma 3.4 and Lemma 3.6. \square

4. The semigroup generated by the perturbed operator

In this section, we will give some properties of the semigroup \exp(-tA)

generated by the pertubed heat operator A. It is defined by the formula

exp (-tA)= \int_{\Gamma} exp (-t\lambda)(\lambda-A)^{-1}d\lambda ,

for t\in C such that Re t>0 , the contour \Gamma satisfies the condition

\Gamma\subset { \lambda\in C\backslash \{0\}|| arg \lambda|>\epsilon } connects
exp (-i\omega)\infty to \exp(i\omega)\infty , (4.1)
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where 0<\epsilon<\omega<\pi/2-|\arg t| . In the following sections, we will use this
semigroup to construct our time-global solutions by succesive approxima-
tion.

First, we have some properties about the boundedness of the semigroup
\exp(-tA) on the Morrey spaces. For the case \frac{n}{n-2}<\nu\leq 2 , \nu\in R , we have
the following

Theorem 4.1 Let \nu , p_{0} , q_{0} , p , q be the same as in Lemma 3.2, s , \sigma<2

satisfy (3.13). Suppose that w(x)\in \mathcal{M}_{p0,q0} satisfifies ||w||_{\mathcal{M}_{p_{0},q_{0}}}^{\nu-1}<\gamma_{1}(s, \sigma) .
Then there exists a positive constant C such that for every t>0 , we have:

|| exp (-tA)||_{\mathcal{L}(\mathcal{M}_{p,q}^{s},\mathcal{M}_{p,q}^{\sigma})} \leq\frac{Ct^{(s-\sigma)/2}}{\gamma_{1}-||w||_{\mathcal{M}_{p_{0},q_{0}}}^{\nu-1}} , if s\leq\sigma , (4.2)

|| \exp(-tA)-1||_{\mathcal{L}(\mathcal{M}_{p,q}^{s},\mathcal{M}_{p,q}^{\sigma})}\leq\frac{Ct^{(s-\sigma)/2}}{\gamma_{1}-||w||_{\mathcal{M}_{p_{0},q_{0}}}^{\nu-1}} , if \sigma\leq s . (4.3)

For the second case \nu>2 , \nu \in R , the boundedness is as follows.

Theorem 4.2 Let \nu , p_{0} , q_{0} , q_{1} be the same as in Lemma 3.3, s , \sigma satisfy
the condition (3.16). Suppose that w(x)\in \mathcal{M}_{p0,q0} satisfifies ||w||_{\mathcal{M}_{p_{0},q_{0}}}^{\nu-1} <
\gamma_{1}(s, \sigma) . Then there exists a positive constant C such that for every t>0 ,
we have:

|| exp (-tA)||_{\mathcal{L}(\mathcal{M}_{p_{0},q_{1}}^{s},\mathcal{M}_{p_{0},q_{1}}^{\sigma})} \leq\frac{Ct^{\frac{s-\sigma}{2}}}{\gamma_{1}-||w||_{\mathcal{M}_{p_{0},q_{0}}}^{\nu-1}} , if s\leq\sigma , (4.4)

|| \exp(-tA)-1||_{\mathcal{L}(\mathcal{M}_{p_{0},q_{1}}^{s},\mathcal{M}_{p_{0},q_{1}}^{\sigma})}\leq\frac{Ct^{\frac{s-\sigma}{2}}}{\gamma_{1}-||w||_{\mathcal{M}_{p_{0},q_{0}}}^{\nu-1}} , if \sigma\leq s .

(4.5)

The two theorems above-mentioned can be proved in the same way as
in Theorem 4.1 (Zhou [27]), by using Proposition 3.1 and Proposition 3.2.

As in the usual analytical semigroup theory, \exp(-tA) is independent
of the choice of \omega , and the semigroup property exp(-(t+s)A)=\exp(-lA).
\exp(-sA) holds for every t and s such that Re t , Re s>0 .

Before we construct the time-global solutions to the Cauchy problem
(3.2)-(3.3), we must prove the equivalence between differential equations
and integral equations. However, we need the following propositions of the
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strong continuity and the strong differentiability of \exp(-tA)f . The proofs
are similar to the proof of Proposition 4.1 (Zhou [27]). For the first case
\frac{n}{n-2}<\nu\leq 2 , \nu\in R , we have

Proposition 4.1 Let \nu , p_{0} , q_{0} , p , q be the same as in Theorem 4.1, and
assume that 0< \sigma+2<s<\min\{2, n/p\} . Moreover, suppose that w(x)\in
\mathcal{M}_{p0,q0} satisfifies the estimate

||w||_{\mathcal{M}_{p_{0},q_{0}}}^{\nu-1}< \min\{\gamma_{1}(s, s-2), ^{\gamma_{1}(s-2}, \sigma+2)\} .

Then, for every f(x)\in \mathcal{M}_{p,q}^{s} , we have

\frac{\exp(-tA)f-f}{t}+Af\in \mathcal{M}_{p,q}^{\sigma} , for every t>0 ,

\lim_{tarrow 0+}\frac{\exp(-tA)f-f}{t}+Af=0 in the topology of \mathcal{M}_{p,q}^{\sigma} .

For the second case \nu>2 , \nu\in R , this property is described as follows.

Proposition 4.2 Let \nu , p_{0} , q_{0} , q_{1} be the same as in Theorem 4.2, and
assume that 0<\sigma+2<s<n/p_{0} . Moreover, suppose that w(x)\in \mathcal{M}_{p_{0},q0}

satisfifies the estimate

||w||_{\mathcal{M}_{p_{0},q_{0}}}^{\nu-1}< \min\{\gamma_{1}(s, s-2), \gamma_{1}(s-2, \sigma+2)\} .

Then, for every f(x)\in \mathcal{M}_{p0,q_{1}}^{s} , we have

\frac{\exp(-tA)f-f}{t}+Af\in \mathcal{M}_{p,q_{1}}^{\sigma_{0}} , for every t>0 ,

\lim_{tarrow 0+}\frac{\exp(-tA)f-f}{t}+Af=0 in the topology of \mathcal{M}_{p0,q_{1}}^{\sigma} .

5. Equivalence between differential equations and integral equa-
tions

In this section, by virtue of the estimates of the semigroup \exp(-tA)

established in the previous section, we will prove the equivalence of the
original differential equations and the associated integral equations in the
similar way as in Zhou [27]. The integral equation of (3.3) is as follows:

u(t, \cdot)=\exp(-tA)b-\int_{0}^{t}\exp(-(t-\tau)A)G(w(\cdot), u(\tau, \cdot))d\tau . (5.1)
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From the definition of the Morrey spaces, we have the following result
on complex interpolation. See Lemma 2.5 of Kozono and Yamazaki [17].
For complex interpolation, see Bergh and L\"ofstr\"om [3] or Ikiebel [24], for
example.

Lemma 5.1 Suppose that 1<q\leq p<\infty , s_{1} , s_{2}\in R and 0<\theta<1 , and
put s=(1-\theta)s_{1}+\theta s_{2} . Then the space \mathcal{M}_{p,q}^{s} coincides with the complex
interpolation space [\mathcal{M}_{p^{1}q}^{s},’ \mathcal{M}_{p^{2}q}^{s},]_{\theta} .

Now we consider the Cauchy problem (3.2)-(3.3).

Case 1: \frac{n}{n-2}<\nu\leq 2 , \nu\in R .

Firstly we determine the positive number \delta_{1} in Theorem 1.2. Let \sigma_{0}

be a constant in Theorem 1.2. Denote \sigma_{1}=\frac{\nu}{2p0} , then there exists a real
number \sigma_{2} such that

\sigma_{1}<\sigma_{2}<2/p

Therefore we can take a positive constant \delta_{1}\leq\delta_{0} sufficiently small so
that, for every f\in \mathcal{M}_{p_{0},q0}^{-2} such that ||f||_{\mathcal{M}_{p_{0},q_{0}}^{-2}}<\delta_{1} , the stationary solution
of (1.3) given in Theorem 1.1 enjoys the estimate

||w||_{\mathcal{M}_{p_{0},q_{0}}}^{\nu-1}

< \min\{\gamma_{1} (\sigma_{0}-2, \sigma_{0}-2) , \gamma_{1}(\sigma_{0}, \sigma_{0}-2) , \gamma_{1}(\sigma_{0}-2, \sigma_{0}) , \gamma_{1}(\sigma_{0}, \sigma_{0}) ,

\gamma_{1}(\sigma_{1}-2, \sigma_{1}-2) , \gamma_{1}(\sigma_{1}, \sigma_{1}-2) , \gamma_{1}(\sigma_{1}-2, \sigma_{1}) , \gamma_{1}(\sigma_{1}, \sigma_{1}) ,

\gamma_{1}(\frac{2}{p},\frac{2}{p}-2) , \gamma_{1}
(\begin{array}{l}\underline{2}-2,\sigma_{2}p\end{array}) \}\leq 1 .

In the sequel we assume that f(x) and w(x) are as above. Then TheO-
rem 4.1 and Lemma 5.1 imply the following proposition.

Proposition 5.1 The estimate

|| exp (-tA)||_{\mathcal{L}(\mathcal{M}_{p,q}^{s},\mathcal{M}_{p,q}^{\sigma})}\leq Ct^{(s-\sigma)/2}

is valid for every s and \sigma satisfying \sigma_{1}-2\leq s\leq\sigma\leq\sigma_{0} and \sigma\leq s+2 .
Moreover, the estimate

||\exp(-tA)-1||_{\mathcal{L}(\mathcal{M}_{p,q}^{s},\mathcal{M}_{p,q}^{\sigma})}\leq Ct^{(s-\sigma)/2}

is valid for every s and \sigma satisfying \sigma_{1}-2\leq\sigma\leq s\leq\sigma_{0} and s\leq\sigma+2 .



554 M. Yamazaki and X. Zhou

The following theorem shows the equivalence between differential equa-
tions and integral equations.

Theorem 5.1 Let 0<T\leq\infty . Suppose that b(x)\in \mathcal{M}_{p,q}^{\frac{n}{p}-\frac{n}{p0}} and that
u(t, x) is a function on (0, T) \cross R^{n} satisfying (3.4) for every T’\in(0, T) .
Then the following three cone ditions on the function u(t, x) are equivalent:

(1) u(t, x) satisfifies the differential equation (3.3) on (0, T) , and the
condition (3.6) for every s \in[\frac{n}{p}-\frac{(n-2)\nu}{p}, \frac{n}{p}-\frac{n}{p0}] and every T’\in(0, T) .

(2) u(t, x) satisfifies the differential equation (3.3) on (0, T) , and
u(t, \cdot)-barrow 0 in the topology of \mathcal{M}_{p,q}^{\frac{n}{p}-\frac{(n-2)\nu}{p}} as tarrow 0+ .

(3) u(t, x) satisfifies the integral equation (5.1) on (0, T) .

In order to prove the theorem, we need the following lemma.

Lemma 5.2 Let u(t, x) be a function on (0, T) \cross R^{n} satisfying (3.4) for
every T’\in(0, T) and (5.1) on (0, _{T}) , and suppose that b(x)\in \mathcal{M}_{p,q}^{\frac{n}{p}-\frac{n}{p0}}

Then, for every s \in[\frac{n}{p}-\frac{(n-2)\nu}{p}, \sigma_{0}] , there exists a constant C_{s} such that

||u(t, \cdot)- exp (-tA)b||_{\mathcal{M}_{p,q}^{s}}\leq C_{s}M^{\nu}t^{\frac{n}{2p}-\frac{n}{2p_{0}}-\frac{s}{2}} , (5.2)

||u(t, \cdot)-b||_{\mathcal{M}_{p,q}^{s}}\leq C_{s}(M^{\nu}+||b||_{\mathcal{M}_{q}}\frac{n}{pp},-\frac{n}{p_{0}})t^{\frac{n}{2p}-\frac{n}{2p_{0}}-\frac{s}{2}} if s \leq\frac{n}{p}-\frac{n}{p_{0}} ,

(5.3)

||u(t, \cdot)||_{\mathcal{M}_{p,q}^{s}}\leq C_{s}(M^{\nu}+||b||_{\mathcal{M}_{q}}\frac{n}{pp},-\frac{n}{p_{0}})t^{\frac{n}{2p}-\frac{n}{2p_{0}}-\frac{s}{2}} if s \geq\frac{n}{p}-\frac{n}{p_{0}}

(5.4)

hold for every t\in(0, T’) , where

M= \sup_{0<t\leq T’}t^{\frac{n}{2p_{0}}-\frac{n-2}{2p}}||u(t, \cdot)||_{\mathcal{M}_{q}^{\frac{2}{p^{p}}}}

,

Proo/. We first prove (5.2). Denote a= \frac{n}{n-2} . If u(t, \cdot)\in \mathcal{M}_{p,q}^{\frac{2}{p}} , then
Lemma 2.1 implies that u(t, \cdot)\in \mathcal{M}_{ap,aq} . It follows from Lemma 3.1 (1)

that G(w(\cdot), u(t, \cdot))\in \mathcal{M}_{ap/\nu,aq/\nu}\subset \mathcal{M}_{p,q}^{\frac{n}{p}-\frac{(n-2)\nu}{p}}

Since \sigma_{1}-2<\frac{n}{p}-\frac{(n-2)\nu}{p}\leq s\leq\sigma_{0} and s-( \frac{n}{p}-\frac{(n-2)\nu}{p})<\sigma_{0}-(\frac{n}{p} -
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\frac{(n-2)\nu}{p})<2 , we have the following estimate in view of Proposition 5.1.

||u(t, \cdot)- exp (-tA)b||_{\mathcal{M}_{p,q}^{s}}

\leq\int_{0}^{t}||\exp(-(t-\tau)A)G(w(\cdot), u(\tau, \cdot))||_{\mathcal{M}_{p,q}^{s}}d\tau

\leq C\int_{0}^{t}(t-\tau)^{\frac{1}{2}(\frac{n}{p}-\frac{(n-2)\nu}{p})-\frac{s}{2}}||G(w(\cdot), u(\tau, \cdot))||,d\tau \mathcal{M}_{q}^{\frac{n}{p^{p}}-\frac{(n-2)\nu}{p}}

\leq C\int_{0}^{t}(t-\tau)^{\frac{1}{2}(\frac{n}{p}-\frac{(n-2)\nu}{p})-\frac{s}{2}}(||u(\tau, \cdot)||_{\mathcal{M}_{q}^{\frac{2}{p^{p}}}},)^{\nu}d\tau

\leq CM^{\nu}\int_{0}^{t}(t-\tau)^{\frac{1}{2}(\frac{n}{p}-\frac{(n-2)\nu}{p})-\frac{s}{2}}\tau^{\nu(\frac{n-2}{2p}-\frac{n}{2p_{0}})}d\tau\leq C_{s}M^{\nu}t^{\frac{n}{2p}-\frac{n}{2p_{0}}-\frac{s}{2}} ,

which yields the estimate (5.2).
If s \leq\frac{n}{p}-\frac{n}{p0} , we have \sigma_{1}-2<\frac{n}{p}-\frac{(n-2)\nu}{p}\leq s\leq\frac{n}{p}-\frac{n}{p0}<\sigma_{0} and

\frac{n}{p}-\frac{n}{p0}-s<2 , hence the following inequality holds from Proposition 5.1:

||( \exp(-tA)-1)b||_{\mathcal{M}_{p,q}^{s}}\leq Ct^{\frac{n}{2p}-\frac{n}{2p_{0}}-\frac{s}{2}}||b||_{\mathcal{M}_{q}}\frac{n}{pp},-\frac{n}{p_{0}} ,

which together with (5.2) implies (5.3).
Finally, if s \geq\frac{n}{p}-\frac{n}{p0} , we have \sigma_{1}-2<\frac{n}{p}-\frac{n}{p0}\leq s\leq\sigma_{0} and s- ( \frac{n}{p}

-

\frac{n}{p0})<2 . Therefore Proposition 5.1 follows that

|| exp (-tA)b||_{\mathcal{M}_{p,q}^{s}} \leq Ct^{\frac{n}{2p}-\frac{n}{p0}-\frac{s}{2}}||b||_{\mathcal{M}_{q}}\frac{n}{pp},-\frac{n}{p0} ,

which together with (5.2) implies (5.4). \square

Proof of Theorem 5.1. (1)\Rightarrow(2) is trivial.
Next we show the implication (3)\Rightarrow(1) . Suppose that u(t, x) is a

solution of (5.1) on (0, T) . Then the estimate (3.6) for every T’\in(0, T)

follows from (5.3) for every s \in[\frac{n}{p}-\frac{(n-2)\nu}{p}, \frac{n}{p}-\frac{n}{p0}] .

Step 1. We verify that the function u(t, \cdot) is H\"older continuous from [\epsilon, T’]

to \mathcal{M}_{p^{2}q}^{\sigma}, for every \epsilon and T’ such that 0<\epsilon<T’<T

Let \epsilon\leq\tau\leq T’ , then we have

u(t, \cdot)-u(\tau, \cdot)=(\exp(-(t-\tau)A)-1)u(\tau, \cdot)

- \int_{\tau}^{t}\exp(-(t-s)A)G(w(\cdot), u(s, \cdot))ds .
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From Proposition 5.1, we get the following estimate.

||u(t, ^{)-u(\mathcal{T}}\cdot, \cdot)||_{\mathcal{M}_{p^{2}q}^{\sigma}}

,

\leq||\exp(-(t-\tau)A)-1||,,||u(\tau c(\mathcal{M}_{q}^{\frac{2}{pp}},\mathcal{M}_{p^{2}q}^{\sigma})’ \cdot)||_{\mathcal{M}_{q}^{\frac{2}{pp}}}

,

+ \int_{\tau}^{t}||\exp(-(t-s)A)G(w(\cdot), u(s, \cdot))||_{\mathcal{M}_{p^{2}q}^{\sigma}},ds

\leq CM(t-\tau)^{\frac{1}{p}-^{\underline{\sigma}_{2}}l}\tau^{\frac{n-2}{2p}-\frac{n}{2p_{0}}}

+C \int_{\tau}^{t}(t-s)^{\frac{1}{2}(\frac{n}{p}-\frac{(n-2)\nu}{p})-^{\sigma}z_{2}}||G(w(\cdot), u(s, \cdot))||,ds\mathcal{M}_{q}^{\frac{n}{pp}-\frac{(n-2)\nu}{p}}

\leq CM(t-\tau)^{\frac{1}{p}-^{\sigma}\simeq_{2}}\tau^{\frac{n-2}{2p}-\frac{n}{2p_{0}}}

+CM^{\nu}(t-\tau)^{1-\frac{(n-2)\nu-n}{2p}-^{\sigma_{2}}}-2\tau^{\nu(\frac{n-2}{2p}-\frac{n}{2p_{0}})} .

which implies that the function u(t, \cdot) is H\"older continuous from [\epsilon, T’] to
\mathcal{M}_{p^{2}q}^{\sigma},\cdot

Step 2. We verify that the function G(w(\cdot), u(t, \cdot)) is H\"older continuous

from [\epsilon, T’] to \mathcal{M}_{p,q}^{\sigma_{2}-\frac{(n-2)(\nu-1)}{p}} for every \epsilon and T’ such that 0<\epsilon<T’<T

Let \epsilon\leq\tau\leq T’ , then we have the following estimate from the definition of
G(w(\cdot), u(t, \cdot)) .

|G(w(\cdot), u(t, \cdot))-G(w(\cdot), u(\tau, \cdot))|

\leq\nu(|u(t, \cdot)|^{\nu-1}+|u(\tau, \cdot)|^{\nu-1})|u(t, \cdot)-u(\tau, \cdot)| .

Then the H\"older continuity of G(w(\cdot), u(t, \cdot)) in \mathcal{M}_{p,q}^{\sigma_{2}-\frac{(n-2)(\nu-1)}{p}} can be easily
deduced from that of u(t, \cdot) in the same way as in Zhou [27].

Step 3. We prove that u(t, x) satisfies the differential equation (3.3). Let
t_{0} be an arbitrary point of (\epsilon, T’) , and let t_{1} , t_{2} be points of (\epsilon, T’) such
that t_{1}<t_{2} . Then we have

\frac{u(t_{2})-u(t_{1})}{t_{2}-t_{1}}

= \frac{\exp(-(t_{2}-t_{1})A)-1}{t_{2}-t_{1}}u(t_{0})+\frac{\exp(-(t_{2}-t_{1})A)-1}{t_{2}-t_{1}}(u(t_{1})-u(t_{0}))

- \frac{1}{t_{2}-t_{1}}\int_{t_{1}}^{t_{2}}\exp(-(t_{2}-\tau)A)(G(w(\cdot), u(\tau, \cdot))-G(w(\cdot), u(t_{0}, \cdot)))d\tau
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- \frac{1}{t_{2}-t_{1}}\int_{t_{1}}^{t_{2}}(\exp(-(t_{2}-\tau)A)-1)G(w(\cdot), u(t_{0}, \cdot))d\tau

-G(w(\cdot), u(t_{0}, \cdot))

=I_{1}+I_{2}+I_{3}+I_{4}-G(w(\cdot), u(t_{0}, \cdot)) .

Now let t_{1} , t_{2} - t_{0} . Since

||w||_{\mathcal{M}_{p_{0},q_{0}}}^{\nu-1}< \min\{\gamma_{1}(\frac{2}{p},\frac{2}{p}-2) . \gamma_{1}(\frac{2}{p}-2, \sigma_{2})\} .

Proposition 4.1 implies that I_{1} tends to -Au(t_{0}) in \mathcal{M}_{p^{2}q}^{\sigma-2},\cdot Next, PropO-
sition 5.1 implies that the operator

\frac{\exp(-tA)-1}{t}

is uniformly bounded in \mathcal{L}(\mathcal{M}_{p^{2}q}^{\sigma},’ \mathcal{M}_{p^{2}q}^{\sigma-2},) . Observing the H\"older continuity
of u(t, x) in \mathcal{M}_{p^{2}q}^{\sigma}

,’ we know that I_{2} tends to 0 in \mathcal{M}_{p^{2}q}^{\sigma-2},\cdot

Further, we get the following estimate in the same way as in (5.2).

||I_{4}||_{\mathcal{M}_{p^{2}q}^{\sigma-2}},\leq C(t_{2}-t_{1})^{\frac{1}{2}(\frac{n}{p}-\frac{(n-2)\nu}{p})+1}-^{\sigma}z_{2}(||u(t_{0})||_{\mathcal{M}_{q}^{\frac{2}{pp})^{\mathcal{U}}}}

,

hence I_{4} tends to 0 in \mathcal{M}_{p^{2}q}^{\sigma-2}, as t_{1} , t_{2}arrow t_{0} .
Next, we discuss the term I3. Proposition 5.1 implies that the opera-

tor \exp(-tA) is uniformly bounded in \mathcal{L}(\mathcal{M}_{p,q}^{\sigma_{2}-\frac{(n-2)(\nu-1)}{p}}, \mathcal{M}_{p,q}^{\sigma_{2}-\frac{(n-2)(\nu-1)}{p}}) .
It follows from this fact and the H\"older continuity of G(w(\cdot), u(t, \cdot)) in
\mathcal{M}_{p,q}^{\sigma_{2}-\frac{(n-2)(\nu-1)}{p}} that I3 tends to 0 in \mathcal{M}_{p,q}^{\sigma_{2}-\frac{(n-2)(\nu-1)}{p}}

From the discussion above we have proved the equality

\lim_{t_{1},t_{2}arrow t_{0}}\frac{u(t_{2})-u(t_{1})}{t_{2}-t_{1}}=-Au(t_{0})-G(w(\cdot), u(t_{0}, \cdot))

holds in \Phi’ . That means u(t, x) satisfies (3.3) on (\epsilon, T’) . Since \epsilon and T’ are
arbitrary, u(t, x) satisfies (3.3) on (0, T) . This shows that (3)\Rightarrow(1) .

Finally, we will prove the implication (2)\Rightarrow(3) . Suppose that u(t, x)
satisfies (3.4) for every T’\in(0, T) , (3.3) and u(t, x)-barrow 0 in the topology

of \mathcal{M}_{p,q}^{\frac{n}{p}-\frac{(n-2)\nu}{p}} as t –0+.
Put

v(t, \cdot)=-\int_{0}^{t}\exp(-(t-\tau)A)G(w(\cdot), u(\tau, \cdot))d\tau .
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Then we can prove that u(t, x)=\exp(-tA)b+v(t, x) satisfies (5.1) in the
same way as in Zhou [27]. That means (2)\Rightarrow(3) .

This completes the proof of Theorem 5.1. \square

Next we consider the second case.

Case 2: \nu>2 , \nu\in R .
Let \nu , p_{0} , q_{0} , q_{1} be the same as in Theorem 1.5. We will use the same

method for the first case to prove our results. Firstly we determine the
positive number \delta_{1} in Theorem 1.5. Let \sigma_{0} be a constant in Theorem 1.5.
Denote \sigma_{1}=\frac{n}{2p0}-\frac{n}{2p} , then there exist a real number \sigma_{2} such that

\frac{n}{2p_{0}}-\frac{n}{2p}<\sigma_{2}<\frac{n}{p_{0}}-\frac{n}{p} .

Therefore we can take a positive constant \delta_{1}\leq\delta_{0} sufficiently small so
that, for every f\in \mathcal{M}_{p_{0},q0}^{-2} such that ||f||_{\mathcal{M}_{p_{0},q_{0}}^{-2}}<\delta_{1} , the stationary solution
of (1.3) given in Theorem 1.1 enjoys the estimate

2||w||_{\mathcal{M}_{p_{0},q_{0}}}^{\nu-1}

< \min\{\gamma_{1} (\sigma_{0}-2, \sigma_{0}-2) , \gamma_{1}(\sigma_{0}, \sigma_{0}-2) , \gamma_{1}(\sigma_{0}-2, \sigma 0) , \gamma_{1}(\sigma_{0}, \sigma 0) ,

\gamma_{1}
(\sigma_{1}-2, \sigma_{1}-2) , \gamma_{1}(\sigma_{1}, \sigma_{1}-2) , \gamma_{1}(\sigma_{1}-2, \sigma_{1}) , \gamma_{1}(\sigma_{1}, \sigma_{1}) ,

\gamma_{1}(\frac{n}{p_{0}}-\frac{n}{p},\frac{n}{p_{0}}-\frac{n}{p}-2) , \gamma_{1}(\frac{n}{p_{0}}-\frac{n}{p}-2, \sigma_{2})\}\leq 1 .

Hereafter we assume that f(x) and w(x) are as above for the second
case. Then we have the following proposition by using Theorem 4.2 and
Lemma 5.1.

Proposition 5.2 The estimate

|| exp (-tA)||_{\mathcal{L}(\mathcal{M}_{p_{0},q_{1}}^{s},\mathcal{M}_{p_{0},q_{1}}^{\sigma})}\leq Ct^{(s-\sigma)/2}

is valid for every s and \sigma satisfying \sigma_{1}-2\leq s\leq\sigma\leq\sigma_{0} and \sigma\leq s+2 .
Moreover, the estimate

||\exp(-tA)-1||_{\mathcal{L}(\mathcal{M}_{p_{0},q_{1}}^{s},\mathcal{M}_{p_{0},q_{1}}^{\sigma})}\leq Ct^{(s-\sigma)/2}

is valid for every s and \sigma satisfying \sigma_{1}-2\leq\sigma\leq s\leq\sigma_{0} and s\leq\sigma+2 .

Then we also have the following theorem about the equivalence between
differential equations and integral equations when \nu>2 , \nu\in R .
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Theorem 5.2 Let 0<T\leq\infty . Suppose that b(x)\in \mathcal{M}_{p0,q_{1}} and that
u(t, x) is a function on (0, T) \cross R^{n} satisfying (3.8) for every T’\in(0, T) .
Then the following three conditions on the function u(t, x) are equivalent:

(1) u(t, x) satisfies the differential equation (3.3) on (0, T) , and the
condition (3.10) for every s \in[\frac{2n}{p0}-\frac{2n}{p}-2,0] and every T’\in(0, T) .

(2) u(t, x) satisfifies the differential equation (3.3) on (0, T) , and
u(t, \cdot)-barrow 0 in the topology of \mathcal{M}_{q_{1}}^{\frac{2n}{p_{0}^{p_{0}}}-\frac{2n}{p}-2}

, as tarrow 0+ .

(3) u(t, x) satisfifies the integral equation (5.1) on (0, T) .

As before we need the following lemma to prove Theorem 5.2.

Lemma 5.3 Let u(t, x) be a function on (0, T) \cross R^{n} satisfying (3.8) for
every T’\in(0, T) and (5.1) on (0, T) , and suppose that b(x)\in \mathcal{M}_{p0,q_{1}} .
Then, for every s \in[\frac{2n}{p0}-\frac{2n}{p}-2, \sigma_{0}] , there exists a constant C_{s} such that

||u(t, \cdot)- exp (-tA)b||_{\mathcal{M}_{p_{0},q_{1}}^{s}}\leq C_{s}(M^{\nu}+||w||_{\mathcal{M}_{p_{0},q_{0}}}^{\nu-2}M^{2})t^{-\frac{s}{2}}., (5.5)

||u(t, \cdot)-b||_{\mathcal{M}_{p_{0},q_{1}}^{s}}\leq C_{s}(M^{\nu}+||w||_{\mathcal{M}_{p_{0},q_{0}}}^{\nu-2}M^{2}+||b||_{\mathcal{M}_{p_{0},q_{1}}})t^{-\frac{s}{2}}

if s\leq 0 , (5.6)

||u(t, \cdot)||_{\mathcal{M}_{p_{0},q_{1}}^{s}}\leq C_{s}(M^{\nu}+||w||_{\mathcal{M}_{p_{0},q_{0}}}^{\nu-2}M^{2}+||b||_{\mathcal{M}_{p_{0},q_{1}}})t^{-\frac{s}{2}}

if s\geq 0 (5.7)

hold for every t\in(0, T’) , where

M= \max\{\sup_{0<t\leq T} ,
||u(t, \cdot)||_{\mathcal{M}_{p_{0},q_{1}}}.\sup_{0<t\leq T}

,
t^{\frac{n}{2p_{0}}-\frac{n}{2p}}||u(t, \cdot)||_{\mathcal{M}_{q_{1}}}\frac{n}{p_{0}p_{0}},-\frac{n}{p}\} .

Proo/. If u(t, \cdot)\in \mathcal{M}_{q_{1}}^{\frac{n}{p0p_{0}}-\frac{n}{p}}, Lemma 2.1 implies that u(t, \cdot)\in \mathcal{M}_{p},\frac{pq}{p_{0}} . It

follows from Lemma 3.1 (2) that G(w(\cdot), u(t, \cdot))\in \mathcal{M}_{q_{1}}^{\frac{2n}{p0p_{0}}-\frac{2n}{p}-2}

,

Since \sigma_{1}-2<\frac{2n}{p0}-\frac{2n}{p}-2\leq s\leq\sigma_{0} and s-( \frac{2n}{p0}-\frac{2n}{p}-2)\leq\sigma_{0}-(\frac{2n}{p0}-

\frac{2n}{p}-2)<2 , Proposition 5.2 implies that

||u(t, \cdot)-b||_{\mathcal{M}_{p_{0},q_{1}}^{s}}

\leq\int_{0}^{t}||\exp(-(t-\tau)A)G(w(\cdot), u(\tau, \cdot))||_{\mathcal{M}_{p_{0},q_{1}}^{s}}d\tau
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\leq C\int_{0}^{t}(t-\tau)^{\frac{1}{2}(\frac{2n}{p_{0}}-\frac{2n}{p}-2)-\frac{s}{2}}||G(w(\cdot), u(\tau, \cdot))||,d\tau \mathcal{M}_{q_{1}}^{\frac{2n}{p_{0}p_{0}}-\frac{2n}{p}-2}

\leq C\int_{0}^{t}(t-\tau)^{\frac{n}{p_{0}}-\frac{n}{p}-\frac{s}{2}-1}(||w(\cdot)||_{\mathcal{M}_{p_{0},q_{0}}}+||u(t, \cdot)||_{\mathcal{M}_{p_{0},q_{1}}})^{\nu-2}

\cross(||u(t, \cdot)||_{\mathcal{M}_{q_{1}}}\frac{n}{p_{0}p_{0}},-\frac{n}{p})^{2}d\tau

\leq C\int_{0}^{t}(t-\tau)^{\frac{n}{p_{0}}-\frac{n}{p}-\frac{s}{2}-1}\tau^{\frac{n}{p}-\frac{n}{p_{0}}}(||w(\cdot)||_{\mathcal{M}_{p_{0},q_{0}}}+M)^{\nu-2}M^{2}d\tau

\leq C_{s}(M^{\nu}+||w||_{\mathcal{M}_{p_{0},q_{0}}}^{\nu-2}M^{2})t^{-\frac{s}{2}} .

holds for every t\in(0, T’) , which yields the estimate (5.5).
If s\leq 0 , then \sigma_{1}-2<\frac{2n}{p0}-\frac{2n}{p}-2\leq s\leq 0<\sigma_{0} and -s<2-\sigma_{1}<2 ,

hence we have the following estimate in view of Proposition 5.2.

||(\exp(-tA)-1)b||_{\mathcal{M}_{p_{0},q_{1}}^{s}}\leq C_{s}t^{-\frac{s}{2}}||b||_{\mathcal{M}_{p_{0},q_{1}}} ,

which together with (5.5) implies (5.6).
Finally, if s\geq 0 , we have \sigma_{1}-2<\frac{2n}{p0}-\frac{2n}{p}-2\leq 0\leq s\leq\sigma_{0}<2 , then

it follows from Proposition 5.2 that

|| exp (-tA)b||_{\mathcal{M}_{p_{0},q_{1}}^{s}}\leq C_{s}t^{-\frac{s}{2}}||b||_{\mathcal{M}_{p_{0},q_{1}}} ,

which together with (5.5) implies (5.7). \square

Now we prove Theorem 5.2 in the same way as in that of Theorem 5.1.

Proof of Theorem 5.2. It is enough to prove the implication (3)\Rightarrow(1) .
Suppose that u(t, x) is a solution of (5.1) on (0, T) . Then the estimate (3.10)
for every T’\in(0, T) follows from (5.6) for every s \in[\frac{2n}{p0}-\frac{2n}{p}-2,0] .

Suppose that \sigma_{1} , \sigma_{2} and \sigma_{0} satisfy the assumptions above-mentioned.
Then we can also prove that the function u(t, x) is H\"older continuous from
[\epsilon, T’] to \mathcal{M}_{p^{2},q1}^{\sigma_{0}} for every \epsilon and T’ such that 0<\epsilon<T’<T

Next, we have the following inequality by calculating directly.

|G(w(\cdot), u(t, \cdot))-G(w(\cdot), u(\tau, \cdot))|

\leq C(|w(\cdot)|+|u(t, \cdot)|+|u(\tau, \cdot)|^{\nu-2})(|u(t, \cdot)|+|u(\tau, \cdot)|)|u(t, \cdot)-u(\tau, \cdot)| .

From this fact and the H\"older continuity of u(t, x) in \mathcal{M}_{p^{2}}^{\sigma_{0q_{1}}}, ’ it is also easy
to prove that G(w(\cdot), u(t, \cdot)) is H\"older continuous from [\epsilon, T’] to \mathcal{M}_{p^{2},q_{1}}^{\sigma_{0}-2} for
every \epsilon and T’ such that 0<\epsilon<T’<T
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Now we prove that u(t, x) satisfies the differential equation (3.3). Let
t_{0} be an arbitrary point of (\epsilon, T’) , and let t_{1} , t_{2} be points of (\epsilon, T’) such
that t_{1}<t_{2} . Then we have

\frac{u(t_{2})-u(t_{1})}{t_{2}-t_{1}}

= \frac{\exp(-(t_{2}-t_{1})A)-1}{t_{2}-t_{1}}u(t_{0})+\frac{\exp(-(t_{2}-t_{1})A)-1}{t_{2}-t_{1}}(u(t_{1})-u(t_{0}))

- \frac{1}{t_{2}-t_{1}}\int_{t_{1}}^{t_{2}}\exp(-(t_{2}-\tau)A)(G(w(\cdot), u(\tau, \cdot))-G(w(\cdot), u(t_{0}, \cdot)))d\tau

- \frac{1}{t_{2}-t_{1}}\int_{t_{1}}^{t_{2}}(\exp(-(t_{2}-\tau)A)-1)G(w(\cdot), u(t_{0}, \cdot))d\tau

-G(w(\cdot), u(t_{0}, \cdot))

=I_{1}+I_{2}+I_{3}+I_{4}-G(w(\cdot), u(t_{0}, \cdot)) .

Let t_{1} , t_{2}arrow t_{0} . Since

||w||_{\mathcal{M}_{p_{0},q_{0}}}^{\nu-1}< \min\{\gamma_{1}(\frac{n}{p_{0}}-\frac{n}{p},\frac{n}{p_{0}}-\frac{n}{p}-2) , \gamma_{1}(\frac{n}{p_{0}}-\frac{n}{p}-2, \sigma_{2})\} ,

Proposition 4.2 implies that I_{1} tends to -Au(t_{0}) in \mathcal{M}_{p^{2}q}^{\sigma-2},\cdot Next, PropO-
sition 5.2 implies that the operator

\frac{\exp(-tA)-1}{t}

is uniformly bounded in \mathcal{L}(\mathcal{M}_{p0,q_{1}}^{\sigma_{2}}, \mathcal{M}_{p0,q_{1}}^{\sigma_{2}-2}) . Observing the H\"older continu-
ity of u(t, x) in \mathcal{M}_{p^{2},q_{1}}^{\sigma_{0}} , we know that I_{2} tends to 0 in \mathcal{M}_{p0,q_{1}}^{\sigma_{2}-2} .

Further, we get the following estimate in the same way as in (5.5).

||I_{4}||_{\mathcal{M}_{p_{0}^{2},q_{1}}^{\sigma-2}}\leq C(||w||_{\mathcal{M}_{p_{0},q_{0}}}+||u(t_{0})||_{\mathcal{M}_{p_{0},q_{1}}})^{\nu-2}

\cross(||u(t_{0})||_{\mathcal{M}_{q_{1}}}\frac{n}{p_{0}^{0}p},-\frac{n}{p})^{2}(t_{2}-t_{1})^{\frac{n}{p_{0}}-\frac{n}{p}-^{\underline{\sigma}_{2}}2} ,

hence I_{4} tends to 0 in \mathcal{M}_{p^{2},q_{1}}^{\sigma_{0}-2} as t_{1} , t_{2}arrow t_{0} .
Finally, Proposition 5.2 implies that the operator \exp(-tA) is uniformly

bounded in \mathcal{L}(\mathcal{M}_{p0,q_{1}}^{\sigma_{2}-2}, \mathcal{M}_{p^{2},q_{1}}^{\sigma_{0}-2}) . Moreover, G(w(\cdot), u(t, \cdot)) is H\"older contin-
uous in \mathcal{M}_{p0,q_{1}}^{\sigma_{2}-2} , it follows that I3 tends to 0 in \mathcal{M}_{p0,q_{1}}^{\sigma_{2}-2} .
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From the discussion above we have proved the equality

\lim_{t_{1},t_{2}arrow t_{0}}\frac{u(t_{2})-u(t_{1})}{t_{2}-t_{1}}=-Au(t_{0})-G(w(\cdot), u(t_{0}, \cdot))

holds in \mathcal{M}_{p^{2},q_{1}}^{\sigma_{0}-2}\subset\Phi’ . That means u(t, x) satisfies (3.3) on (\epsilon, T’) . Since
\epsilon and T’ are arbitrary, u(t, x) satisfies (3.3) on (0, T) . This shows that
(3)\Rightarrow(1) .

The rest part of our proof can be finished in the same way as the proof
of Theorem 5.1. \square

6. Stability of the stationary solution

In this section, we will construct the solution of the integral equation
(5.1) by succesive approximation. Then we show this solution satisfies all
of the properties required in our theorems.

Firstly we consider the case \nu\leq 2 .

Case 1: \frac{n}{n-2}<\nu\leq 2 , \nu\in R .
Define the sequence of functions \{u_{j}(t, x)\}_{j=0}^{\infty} inductively by

u_{0}(t, \cdot)=\exp(-tA)b ,

u_{j+1}(t, \cdot)=u_{0}(t, \cdot)-\int_{0}^{t}\exp(-(t-\tau)A)G(w(\cdot), u_{j}(\tau, \cdot))d\tau .

Put A_{j}= \sup_{t>0}t^{\frac{n}{2p_{0}}-\frac{n-2}{2p}}||u_{j}(t, \cdot)||_{\mathcal{M}_{q}^{\frac{2}{pp}}}

,

B_{j}= \sup_{t>0}t^{\frac{n}{2p_{0}}-\frac{n-2}{2p}}||u_{j+1}(t, \cdot)-u_{j}(t, \cdot)||

\mathcal{M}_{q}^{\frac{2}{pp}}

,

Then we have the following

estimates.

Lemma 6.1 There exist positive constants C_{1} , C_{2} which only depend on
\nu , p_{0} , q_{0} , p , q such that

(1) A_{0}\leq C_{1}\epsilon .
(2) A_{j+1}\leq C_{1}\epsilon+C_{2}A_{j}^{\nu} , for every j=0,1,2 , . .

Proof. Since \sigma_{1}-2<\frac{n}{p}-\frac{n}{p0}<\frac{2}{p}<\sigma_{0} and \frac{2}{p}-(\frac{n}{p}-\frac{n}{p0})<2 , Propositions 5.1
implies that

||u_{0}(t, \cdot)||_{\mathcal{M}_{q}^{\frac{2}{pp}}},\leq C_{1}t^{\frac{1}{2}(\frac{n}{p}-\frac{n}{p_{0}}-\frac{2}{p})}||b||_{\mathcal{M}_{q}^{\frac{n}{pp}-\frac{n}{p_{0}}}},=C_{1}\epsilon t^{-(\frac{n}{2p_{0}}-\frac{n-2}{2p})} ,

which yields (1).
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Next, we consider A_{j} . We get the following estimate in the same way
as in (5.2).

||u_{j+1}(t, ^{)-u_{0}(t}\cdot, \cdot)||_{\mathcal{M}_{q}^{\frac{2}{pp}}}

,

\leq\int_{0}^{t}||\exp(-(t-\tau)A)G(w(\cdot), u_{j}(\tau, \cdot))||_{\mathcal{M}_{q}^{\frac{2}{p^{p}}}},d\tau

\leq C\int_{0}^{t}(t-\tau)^{\frac{1}{2}(\frac{n}{p}-\frac{(n-2)\nu}{p}-\frac{2}{p})}||G(w(\cdot), u_{j}(\tau, \cdot))||,d\tau \mathcal{M}_{q}^{\frac{n}{pp}-\frac{(n-2)\nu}{p}}

\leq C\int_{0}^{t}(t-\tau)^{-\frac{(n-2)(\nu-1)}{2p}}(||u_{j}(\tau, \cdot)||_{\mathcal{M}_{q}^{\frac{2}{pp}}},)^{\nu}d\tau

\leq CA_{j}^{\nu}\int_{0}^{t}(t-\tau)^{-\frac{(n-2)(\nu-1)}{2p}}\tau^{-\nu(\frac{n}{2p_{0}}-\frac{n-2}{2p})}d\tau

=CA_{j}^{\nu}t^{1-\frac{(n-2)(\nu-1)}{2p}-\nu(\frac{n}{2p_{0}}-\frac{n-2}{2p})} \int_{0}^{1}(1-\tau)^{-\frac{(n-2)(\nu-1)}{2p}}\tau^{-\nu(\frac{n}{2p_{0}}-\frac{n-2}{2p})}d\tau

=C_{2}A_{j}^{\nu}t^{-(\frac{n}{2p_{0}}-\frac{n-2}{2p})} .

for every j=0,1,2 , . This implies A_{j+1}\leq C_{1}\epsilon+C_{2}A_{j}^{\nu} . \square

Now we decide the positive numbers \epsilon 0 and M_{0} required in TheO-
rem 1.2. Put \epsilon 0<\frac{\nu-1}{C_{1}\nu}(C_{2}\nu)^{-\frac{1}{\nu-1}} be a positive constant. Define the func-
tions \psi_{\epsilon}(x)=C_{1}\epsilon+C_{2}x^{\nu} and M( \epsilon)=\frac{\nu}{\nu-1}C_{1}\epsilon for \epsilon\in[0, \epsilon 0] . Here C_{1} ,
C_{2} are the constants in Lemma 6.1. Since \psi_{\epsilon}(0)=C_{1}\epsilon>0 and the func-
tion \psi_{\epsilon}(x)-x takes its minimum C_{1} \epsilon-\frac{\nu-1}{\nu}(C_{2}\nu)^{-\frac{1}{\nu-1}}\leq 0 at x=x_{0}=
(C_{2}\nu)^{-\frac{1}{\nu-1}} , there exists a number x_{1}\in(0, x_{0}] such that \psi_{\epsilon}(x_{1})=x_{1} . On
the other hand, since the function \psi_{\epsilon}(x) is convex, we have the following
estimate.

x_{1}= \psi_{\epsilon}(x_{1})\leq(1-\frac{x_{1}}{x_{0}})\psi_{\epsilon}(0)+\frac{x_{1}}{x_{0}}\psi_{\epsilon}(x_{0})=C_{1}\epsilon+\frac{1}{\nu}x_{1} .

Hence x_{1}\leq M(\epsilon) . Since A_{0}=C_{1}\epsilon<\psi_{\epsilon}(x_{1})=x_{1} , the monotonicity of
\psi_{\epsilon}(x) implies that A_{j}<x_{1} for every j\in N . It follows that \sup_{j\in N}A_{j}\leq

x_{1}\leq M(\epsilon)\leq M(\epsilon 0)=M_{0} .
In order to prove the convergence of the sequence \{u_{j}(t, x)\}_{j=0}^{\infty} , we make

use of the following lemma.
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Lemma 6.2 There exists a positive constant C_{3} which only depends on \nu ,
p_{0} , q_{0} , p , q such that B_{j+1}\leq C_{3}M(\epsilon)^{\nu-1}B_{j} , for every j\in N .

Proof. We obtain exactly in the same way as in the proof of Theorem 5.1
and Lemma 6.1 that

||u_{j+2}(t, \cdot)-u_{j+1}(t, \cdot)||_{\mathcal{M}_{q}^{\frac{2}{pp}}}

,

\leq\int_{0}^{t}||\exp(-(t-\tau)A)(G(w(\cdot), u_{j+1}(t, \cdot))-G(w(\cdot), u_{j}(t, \cdot)))||_{\mathcal{M}_{q}^{\frac{2}{p^{p}}}},d\tau

\leq C\int_{0}^{t}(t-\tau)^{\frac{1}{2}(\frac{n}{p}-\frac{(n-2)\nu}{p}-\frac{2}{p})}||G(w(\cdot), u_{j+1}(t, \cdot))

-G(w(\cdot), u_{j}(t, \cdot))||,d\tau \mathcal{M}_{q}^{\frac{n}{pp}-\frac{(n-2)\nu}{p}}

\leq C\int_{0}^{t}(t-\tau)^{-\frac{(n-2)(\nu-1)}{2p}}(||u_{j+1}(t, \cdot)||^{\nu-}\mathcal{M}_{q}^{\frac{21}{pp}},+||u_{j}(t, \cdot)||^{\nu-},)\mathcal{M}_{q}^{\frac{21}{pp}}

||u_{j+1}(t, \cdot)-u_{j}(t, \cdot)||_{\mathcal{M}_{q}^{\frac{2}{pp}}},d\tau

\leq C\int_{0}^{t}(t-\tau)^{-\frac{(n-2)(\nu-1)}{2p}}\tau^{-\nu(\frac{n}{2p_{0}}-\frac{n-2}{2p})}(A_{j+1}^{\nu-1}+A_{j}^{\nu-1})B_{j}d\tau

\leq C_{3}M(\epsilon)^{\nu-1}B_{j}t^{-(\frac{n}{2p_{0}}-\frac{n-2}{2p})} ,

which implies the conclusion. \square

Let \epsilon_{0}<\frac{\nu-1}{C_{1}\nu}(2C_{3})^{-\frac{1}{\nu-1}} if necessary. Then we have B_{j+1} \leq\frac{1}{2}B_{j} , for
every j\in N . From this fact, we conclude that \sum_{j=0}^{\infty}B_{j}<\infty , which implies
that the sequence u_{j}(t, x) converges to a function u(t, x) as j - \infty such
that

\sup_{t>0}t^{\frac{n}{2p_{0}}-\frac{n-2}{2p}}||u(t, \cdot)||_{\mathcal{M}_{q}^{\frac{2}{p^{p}}}},\leq M(\epsilon)<M_{0} .

It follows that u(t, x) satisfies (3.4) for every T’\in(0, \infty) and (3.5). It is
also easy to see that u(t, x) enjoys the integral equation (5.1) on (0, \infty) .
Hence Theorem 5.1 implies that u(t, x) satisfies (3.3).

Moreover, the estimate (5.3) in Lemma 5.2 implies that u(t, x) satisfies
the estimate (3.6) for every T’\in(0, \infty) , and the estimate (5.4) implies that
u(t, x) satisfies the estimate (3.7) with \psi_{\sigma}(\epsilon)=C_{\sigma}(\epsilon+M(\epsilon)^{\nu}) .

Prom the discussion above, we have proved the existence of time-global
solution of the Cauchy problem (3.2)-(3.3) with all the properties required
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in Theorem 1.2 and Theorem 1.4. Next we show the uniqueness of such
solution u(t, x) in the similar way as in Zhou [27].

Proof of Theorem 1.3. Let \tilde{u}(t, x) be another solution of (3.3) on (0, T) \cross

R^{n} satisfying (3.4) for every T’\in(0, T) and (3.5) such that \tilde{u}(t, \cdot)-barrow 0

in the topology of \mathcal{M}_{p,q}^{\frac{n}{p}-\frac{(n-2)\nu}{p}} as tarrow 0+ . Then Theorem 5.1 implies that
\tilde{u}(t, x) also solves the integral equation (5.1) on (0, T) .

Let T_{0} be a positive number less than T such that

M= \sup_{0<t\leq T_{0}}t^{\frac{n}{2p_{0}}-\frac{n-2}{2p}}||\tilde{u}(t, \cdot)||_{\mathcal{M}_{p,q}^{\frac{2}{p}}}<M_{0} .

Putting \overline{u}(t, x)=u(t, x)-\tilde{u}(t, x) and
A= \sup_{0<t\leq T_{0}}t^{\frac{n}{2p_{0}}-\frac{n-2}{2p}}||\overline{u}(t, \cdot)||_{\mathcal{M}_{p,q}^{\frac{2}{p}l}}, we obtain A< \frac{1}{2}A in the same way as

in Lemma 6.2. Hence we have \tilde{u}(t, x)\equiv u(t, x) on (0, T_{0}] \cross R^{n} .
Next, take T’\in(0, T) arbitrarily, s_{0} \equiv\frac{n}{2p_{0}}-\frac{n-2}{2p} , let

M’= \sup_{0<t\leq T’}t^{s_{0}}||\tilde{u}(t, \cdot)||_{\mathcal{M}_{p,q}^{\frac{2}{p}}}

and

A( \tau)=\sup_{0<t\leq\tau}t^{s_{0}}||\overline{u}(t, \cdot)||_{\mathcal{M}_{q}^{\frac{2}{pp}}}

,

for every \tau\in(0, T’] . Then we have

t^{-s_{0}}A(t) \leq C_{3}’\int_{0}^{t}(t-\tau)^{(\nu-1)s_{0}-1}\tau^{-\nu s_{0}}(M_{0}^{\nu-1}+M^{\prime\nu-1})A(\tau)d\tau

in the same way as in Lemma 6.2. Now suppose that A(T_{1})=0 with some
T_{1} such that T_{0}\leq T_{1}<T’ , then we have

A(t) \leq A(t)C_{4}t^{s_{0}}\int_{T_{1}}^{t}(t-\tau)^{(\nu-1)s_{0}-1}\tau^{-\nu s_{0}}d\tau .

Choose a positive number \delta such that

0< \delta<\frac{T_{0}}{2}\min\{1 , ( \frac{(\nu-1)s_{0}}{C_{4}})\frac{1}{(\nu-1)s_{0}}\}



566 M. Yamazaki and X. Zhou

Then t= \min\{T_{1}+\delta, T’\} satisfies t\leq 2T_{1} . It follows that

A(t) \leq A(t)\frac{C_{4}}{(\nu-1)s_{0}}(\frac{2\delta}{T_{1}})^{(\nu-1)s_{0}}<A(t) .

Therefore we obtain that A(T_{1})=0 implies A(t)=0. Starting at T_{1}=T_{0}

and repeating this process, we arrive at t=T’ after finite steps, which
implies that u(t, x)\equiv\tilde{u}(t, x) on (0, T’] \cross R^{n} . Since T’\in(0, T) is arbitrary,
it follows that u(t, x)\equiv\tilde{u}(t, x) on (0, T) \cross R^{n} .

This completes the proof of Theorem 1.3. \square

In the following part, we will prove the main results for the second case.

Case 2: \nu>2 , \nu\in R .
As well as the fisrt case, we construct the time-global solution of the

integral equation (5.1) by the same method of succesive approximation.
Define the sequence of functions \{u_{j}(t, x)\}_{j=0}^{\infty} inductively by

u_{0}(t, \cdot)=\exp(-tA)b ,

u_{j+1(t, \cdot)=u_{0}(t, \cdot)-} \int_{0}^{t}\exp(-(t-\tau)A)G(w(\cdot), u_{j}(\tau, \cdot))d\tau .

Put

A_{j}= \max\{\sup_{t>0}||u_{j}(t, \cdot)||_{\mathcal{M}_{p_{0},q_{1}}} . \sup_{t>0}t^{\frac{n}{2p_{0}}-\frac{n}{2p}}||u_{j}(t, \cdot)||_{\mathcal{M}_{q_{1}}}\frac{n}{p_{0}p_{0}},-\frac{n}{p}\} ,

B_{j}= \max\{\sup_{t>0}||u_{j+1}(t, \cdot)-u_{j}(t, \cdot)||_{\mathcal{M}_{p_{0},q_{1}}} ,

\sup_{t>0}t^{\frac{n}{2p_{0}}-\frac{n}{2p}}||u_{j+1}(t, \cdot)-u_{j}(t, \cdot)||_{\mathcal{M}_{q_{1}}}\frac{n}{p_{0}p_{0}},-\frac{n}{p}\} .

Suppose that \nu , p_{0} , q_{0} , p , q_{1} and \sigma_{0} satisfy the assumptions of Theorem 1.5.
Let f(x) and w(x) be the same as in the last section. For any given function
b(x)\in \mathcal{M}_{p_{0},q_{1}} such that ||b(x)||_{\mathcal{M}_{p_{0},q_{1}}}=\epsilon<\epsilon_{0} , we have the following
estimates.

Lemma 6.3 There exist positive constant C_{1} , C_{2} which only depend on
\nu , p_{0} , q_{0} , p , q_{1} such that

(1) A_{0}\leq C_{1}\epsilon .
(2) A_{j+1}\leq C_{1}\epsilon+C_{2}(||w||_{\mathcal{M}_{p_{0},q_{0}}}+A_{j})^{\nu-2}A_{j}^{2} , for every j=0,1,2 , . . \tau
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Proof. (1) It follows from Proposition 5.2 that ||u_{0}(t, \cdot)||_{\mathcal{M}_{p_{0},q_{1}}}\leq C_{1}\epsilon and

||u_{0}(t, \cdot)||_{\mathcal{M}_{q_{1}}}\frac{n}{p_{0}p_{0}},-\frac{n}{p}\leq C_{1}\epsilon t^{-(\frac{n}{2p_{0}}-\frac{n}{2p})} .

This implies the conclusion.
(2) We get the following estimates in the same way as in (5.2).

||u_{j+1}(t, \cdot)-u_{0}(t, \cdot)||_{\mathcal{M}_{p_{0},q_{1}}}

\leq\int_{0}^{t}||\exp(-(t-\tau)A)G(w(\cdot), u_{j}(\tau, \cdot))||_{\mathcal{M}_{p_{0},q_{1}}}d\tau

\leq C\int_{0}^{t}(t-\tau)^{\frac{n}{p_{0}}-\frac{n}{p}-1}||G(w(\cdot), u_{j}(\tau, \cdot))|
|_{\frac{2n}{p_{0}p_{0}}-\frac{2n}{p}-2,\mathcal{M}_{q_{1}}},d\tau

\leq C\int_{0}^{t}(t-\tau)^{\frac{n}{p_{0}}-\frac{n}{p}-1}(||w||_{\mathcal{M}_{p_{0},q_{0}}}+||u_{j}||_{\mathcal{M}_{p_{0},q_{1}}})^{\nu-2}(||u_{j}||_{\mathcal{M}_{q_{1}}}\frac{n}{p_{0}p_{0}},-\frac{n}{p})^{2}d\tau

\leq C(||w||_{\mathcal{M}_{p_{0},q_{0}}}+A_{j})^{\nu-2}A_{j}^{2}\int_{0}^{t}(t-\tau)^{\frac{n}{p_{0}}-\frac{n}{p}-1}\tau^{\frac{n}{p}-\frac{n}{p_{0}}}d\tau

\leq C_{2}(||w||_{\mathcal{M}_{p_{0},q_{0}}}+A_{j})^{\nu-2}A_{j}^{2}

and

||u_{j+1}(t, ^{)-u_{0}(t}\cdot, _{\mathcal{M}_{q_{1}}}^{)||_{\frac{n}{p_{0}p_{0}}-\frac{n}{p}}}\cdot

,

\leq\int_{0}^{t}||\exp(-(t-\tau)A)G(w(\cdot), u_{j}(\tau, \cdot))||_{\mathcal{M}_{q_{1}}}\frac{n}{p_{0}p_{0}},-\frac{n}{p}d\tau

\leq C\int_{0}^{t}(t-\tau)^{\frac{n}{2p_{0}}-\frac{n}{2p}-1}||G(w(\cdot), u_{j}(\tau, \cdot))|
|_{\frac{2n}{p_{0}p_{0}}-\frac{2n}{p}-2,\mathcal{M}_{q_{1}}},d\tau

\leq C\int_{0}^{t}(t-\tau)^{\frac{n}{2p_{0}}-\frac{n}{2p}-1}(||w||_{\mathcal{M}_{p_{0},q_{0}}}+||u_{j}||_{\mathcal{M}_{p_{0},q_{1}}})^{\nu-2}(||u_{j}||_{\mathcal{M}_{q_{1}}}\frac{n}{p_{0}p_{0}},-\frac{n}{p})^{2}d\tau

\leq C(||w||_{\mathcal{M}_{p_{0},q_{0}}}+A_{j})^{\nu-2}A_{j}^{2}\int_{0}^{t}(t-\tau)^{\frac{n}{2p_{0}}-\frac{n}{2p}-1}\tau^{\frac{n}{p}-\frac{n}{p_{0}}}d\tau

\leq C_{2}(||w||_{\mathcal{M}_{p_{0},q_{0}}}+A_{j})^{\nu-2}A_{j}^{2}t^{-(\frac{n}{2p_{0}}-\frac{n}{2p})} .

for every j=0,1,2 , . This gives the conclusion (2). \square

For the convergence of the sequence \{u_{j}(t, x)\}_{j=0}^{\infty} , we need the following
lemma.
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Lemma 6.4 There exists a positive constant C_{3} which only depends on \nu ,
p_{0} , q_{0} , p , q_{1} such that:

B_{j+1}\leq C_{3}(||w||_{\mathcal{M}_{p_{0},q_{0}}}+A_{j}+A_{j+1})^{\nu-1}B_{j} ,

for every j\in N .

Proof. Fisrtly we have the folloing inequality

|G(w(\cdot), u_{j+1}(t, \cdot))-G(w(\cdot), u_{j}(t, \cdot))|

\leq C(|w(\cdot)|+|u_{j+1}(t, \cdot)|+|u_{j}(t, \cdot)|)^{\nu-2}

|u_{j+1}(t, \cdot)+u_{j}(t, \cdot)||u_{j+1}(t, \cdot)-u_{j}(t, \cdot)| .

Then we obtain exactly in the same way as in the proof of Theorem 5.2 and
Lemma 6.3 that

||u_{j+2}(t, \cdot)-u_{j+1}(t, \cdot)||_{\mathcal{M}_{p_{0},q_{1}}}

\leq\int_{0}^{t}|| exp (-(t-\tau)A)(G(w(\cdot), u_{j+1}(t, \cdot))-G(w(\cdot), u_{j}(t, \cdot)))||_{\mathcal{M}_{p_{0},q_{1}}}d\tau

\leq C\int_{0}^{t}(t-\tau)^{\frac{n}{p_{0}}-\frac{n}{p}-1}||(G(w(\cdot), u_{j+1}(t, \cdot))-G(w(\cdot), u_{j}(t, \cdot)))|
|_{\frac{2n}{p_{0}p_{0}}-\frac{2n}{p}-2,\mathcal{M}_{q_{1}}},d\tau

\leq C\int_{0}^{t}(t-\tau)^{\frac{n}{p_{0}}-\frac{n}{p}-1}(||w||_{\mathcal{M}_{p_{0},q_{0}}}+||u_{j+1}||_{\mathcal{M}_{p_{0},q_{1}}}+||u_{j}||_{\mathcal{M}_{p_{0},q_{1}}})^{\nu-2}

\cross(||u_{j+1}||_{\mathcal{M}_{q_{1}}}\frac{n}{p_{0}p_{0}},-\frac{n}{p}+||u_{j}||_{\mathcal{M}_{q_{1}}\mathcal{M}_{q_{1}}}\frac{n}{p_{0}p_{0}},-\frac{n}{p})||u_{j+1}-u_{j}||_{\frac{n}{p_{0}p_{0}}-\frac{n}{p}},d\tau

\leq C(||w||_{\mathcal{M}_{p_{0},q_{0}}}+A_{j+1}+A_{j})^{\nu-2}(A_{j+1}+A_{j})B_{j}\int_{0}^{t}(t-\tau)^{\frac{n}{p_{0}}-\frac{n}{p}-1}\tau^{\frac{n}{p}-\frac{n}{p_{0}}}d\tau

\leq C_{3}(||w||_{\mathcal{M}_{p_{0},q_{0}}}+A_{j}+A_{j+1})^{\nu-1}B_{j} ,

and

||u_{j+2}(t, ^{)-u_{j+1}(t}\cdot, _{\mathcal{M}_{q_{1}}}^{)||_{\frac{n}{p_{0}p_{0}}-\frac{n}{p}}}\cdot

,

\leq\int_{0}^{t}||\exp(-(t-\tau)A)(G(w(\cdot), u_{j+1}(t, \cdot))-G(w(\cdot), u_{j}(t, \cdot)))||_{\mathcal{M}_{q_{1}}}\frac{n}{p_{0}p_{0}},-\frac{n}{p}d\tau

\leq C\int_{0}^{t}(t-\tau)^{\frac{n}{2p_{0}}-\frac{n}{2p}-1}||(G(w(\cdot), u_{j+1}(t, \cdot))-G(w(\cdot), u_{j}(t, \cdot)))|
|_{\frac{2n}{p_{0}p_{0}}-\frac{2n}{p}-2,\mathcal{M}_{q_{1}}},d\tau

\leq C(||w||_{\mathcal{M}_{p_{0},q_{0}}}+A_{j+1}+A_{j})^{\nu-2}(A_{j+1}+A_{j})B_{j}\int_{0}^{t}(t-\tau)^{\frac{n}{2p_{0}}-\frac{n}{2p}-1}\tau^{\frac{n}{p}-\frac{n}{p_{0}}}d\tau
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\leq C_{3}(||w||_{\mathcal{M}_{p_{0},q_{0}}}+A_{j}+A_{j+1})^{\nu-1}B_{j}t^{-(\frac{n}{2p_{0}}-\frac{n}{2p})} ,

for every j=0,1,2 , . . which implies the conclusion. \square

Now we decide the positive numbers \epsilon_{0} and M_{0} required in TheO-
rem 1.5. Observing that the constants C_{2} and C_{3} are independent of the
norm ||w||\mathcal{M}_{p_{0},q_{0}}(\leq 1/2) , there exists a contant C_{4}\geq 2 such that:

A_{j+1}\leq C_{1}\epsilon+2C_{4}A_{j}^{2} ,

B_{j+1}\leq C_{4}(||w||_{\mathcal{M}_{p_{0},q_{0}}}+A_{j}+A_{j+1})^{\nu-1}B_{j} ,

for every j=0,1,2 , . . Here A_{j}<1/2 will be determined as follows.
Let the constant \delta_{1} smaller if neccessary such that ||w||_{\mathcal{M}_{p_{0},q_{0}}}\leq 1/2C_{4} , if
\epsilon<\epsilon_{0}=1/8C_{1}C_{4} , then it follows from the above inequality that

A_{j} \leq\psi(\epsilon)=\frac{1-\sqrt{1-8C_{1}C_{46}}}{4C_{4}}<M_{0}=\psi(\epsilon_{0})=\frac{1}{4C_{4}}<\frac{1}{2} ,

for every j by induction.
Moreover, we get the estimate of B_{j} :

B_{j+1} \leq C_{4}(\frac{1}{2C_{4}}+\frac{1}{2C_{4}})^{\nu-1}B_{j}\leq(\frac{1}{C_{4}})^{\nu-2}B_{j} ,

for every j , where ( \frac{1}{c_{4}})^{\nu-2}<1 .
From this fact, we conclude that \sum_{j=0}^{\infty}B_{j}<\infty , which implies that

the sequence u_{j}(t, x) converges to a function u(t, x) in \mathcal{M}_{p_{0},q_{1}}\cap \mathcal{M}_{q1}^{\frac{n}{p_{0}^{0}p}-\frac{n}{p}}

, as
jarrow\infty such that

max \{\sup_{t>0}||u(t, \cdot)||_{\mathcal{M}_{p_{0},q_{1}}} . \sup_{t>0}t^{\frac{n}{2p_{0}}-\frac{n}{2p}}||u(t, \cdot)||_{\mathcal{M}_{q_{1}}}\frac{n}{p_{0}p_{0}},-\frac{n}{p}\}\leq\psi(\epsilon_{0})<M_{0} .

It follows that u(t, x) satisfies (3.8) for every T’\in(0, \infty) and (3.9). It is also
easy to see that u(t, x) enjoys the integral equation (5.1) on (0, \infty) . Hence
Theorem 5.1 implies that u(t, x) satisfies the differential equation (3.3).

Moreover, the estimate (5.6) in Lemma 5.3 implies that u(t, x) satisfies
the estimate (3.10) for every T’\in(0, \infty) , and the estimate (5.7) implies that
u(t, x) satisfies the estimate (3.11) with \psi_{\sigma}(\epsilon)=C_{\sigma}(\psi(\epsilon)^{\nu}+\omega(\delta)^{\nu-2}\psi(\epsilon)^{2}+

\epsilon) .
Therefore we have completed the proofs of Theorem 1.5 and TheO-

rem 1.7. The uniqueness in Theorem 1.6 is easy to be obtained in the same
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way as in Theorem 1.3.
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