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Analytic foliations and center problem

Djibrilla GARBA BELKO
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Abstract. We prove a real version of Lins Neto’s synthesis Theorem. The technics
used, allow us to give a foliation without Liouvillian first integral and which restricts to
center on the fixed point set of many antiholomorphic involutions leaving F invariant.

Key words: holomorphic 1-forms center reduction of singularities groups of diffe0-
morphisms -antiholomorphic involutions -Liouvillian first integral.

1. Introduction

Let \mathcal{F} and \sigma be germs of holomorphic foliation and antiholomorphic
involution at 0\in C^{2} . It is well known that if \sigma^{*}\mathcal{F}=\mathcal{F} then \mathcal{F} restricts
to a real foliation on the fixed point set of \sigma(Fix_{\sigma}) . We say that \mathcal{F}/Fix_{\sigma}

is monodromic if to each germ of real analytic curve \tau : R_{0}^{+}arrow Fix_{\sigma,\tau(0)}

corresponds a Poincar\’e return map \mathcal{P} (for t small enough the leaf of \mathcal{F} ,
which passes through \tau(t) cuts again \tau(R_{0}^{+}) at \mathcal{P}(\tau(t))) . When \mathcal{P} is the
germ of identity, we say that \mathcal{F}/Fix_{\sigma} is a center. The simplest example of
center is the one defined by the levels of the function f(x, y)=x^{2}+y^{2} , or
equivalently by the 1-form \omega=xdx+ydy . The complexification of \mathcal{F}_{\omega} ,
denoted \mathcal{F}_{\omega}^{C} . is the germ of foliation at 0\in C^{2} defined by 1-form \omega^{C} , whose
restriction on R_{0}^{2} is \omega . This example corresponds to the case where \mathcal{F}_{\omega}^{C} has
two holomorphic invariant curves and has the following property (cf. 4.2):

1. for each antiholomorphic involution \sigma which does not fix any invariant
curve of \mathcal{F}_{\omega}^{C} and such that \sigma^{*}\mathcal{F}_{\omega}^{C}=\mathcal{F}_{\omega}^{C} . \mathcal{F}_{\omega/Fix_{\sigma}}^{C} is a center.

When \mathcal{F}_{\omega}^{C} has two invariant tangent curves (node), according to Brunella
[Br], the assumption of center and some generic conditions on \omega ensure that
there exists an elementary mutiform first integral for \omega [CM]. We are inter-
ested in centers whose complexification has four invariant curves. That is
the simplest case after the one described above, since the complexification
of a germ of real analytic foliation which is a center has an even number of
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invariant curves (the image of an invariant curve by the standard antiholo
morphic involution (\phi_{0} : (x, y)\mapsto(\overline{x},\overline{y})) of C_{0}^{2} is an invariant curve and
the presence of invariant curve fixed by \phi_{0} is an obstruction to the mon-
odromicity). The foliation \mathcal{F}_{\omega}^{C} , where \omega=d(x^{4}+y^{4}) , is fixed by \phi_{0} and
\sigma_{0} : (x, y)\mapsto(\overline{x}, \sqrt{-1}\overline{y}) has a holomorphic first integral. More generally it
is proved in [G] that each 1-form \omega such that the reduction of singularities
of \mathcal{F}_{\omega}^{C} is a blowing up, \mathcal{F}_{\omega}^{C} has four invariant curves and is fixed by the
last two antiholomorphic involutions, has a holomorphic first integral. The
involutions which leave the foliation fixed are the reason of the existence of
multiform first integrals in this example. Thus we can hope that a foliation
has an elementary or a Liouvillian [P] first integral as soon as it has “many
sections” in which it restricts to centers. The following result proves, in
general, we do not have such an answer:

Proposition 1.1 There is a germ of foliation \mathcal{F} at 0\in C^{2} which satisfies
the following properties:

1. For any antiholomorphic involution \sigma which leaves \mathcal{F} invariant and
does not fix an invariant curve of \mathcal{F} , \mathcal{F}/Fix_{\sigma} is a center.

2. There are two antiholomorphic involutions \sigma_{1} and \sigma_{2} which leave \mathcal{F}

invariant, which are not conjugate by a holomorphic diffeomorphism
tangent to \mathcal{F} and such that \mathcal{F}/Fix_{\sigma_{k}} ’ k=1,2 , are centers.

3. \mathcal{F} has not a Liouvillian first integral.
4. \mathcal{F} has four invariant curves.

Thus we have an example of foliation with a maximal number of “real
sections”, which are not conjugate by any diffeomorphism tangent to the
foliation, while the foliation restricts to center and does not have a Liou-
villian first integral. The exceptional divisor of the minimal reduction of
singularities of a node center has at least two components and some corners
which are linearizable and resonant. Thus the following question is natural:
do there exist some multiform first integrals related to the types of singular-
ities in the corners (linearizable and non-resonant) if \mathcal{F}_{\omega}^{C} has four invariant
curves? The next result gives a negative answer to this question:

Proposition 1.2 There is a real analytic center \omega such that:
1. \mathcal{F}_{\omega}^{C} has four invariant curves,
2. \mathcal{F}_{\omega} has no Liouvillian first integral,
3. the exceptional divisor of the minimal reduction of singularities of \mathcal{F}_{\omega}^{C}
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has two components and its corner is linearizable and non resonant.

The proofs of these results consist of building some non dicritical hol0-
morphic 1-forms which have some basic properties (cf. 2). For this we gener-
alize a real version of Lins Neto’s synthesis theorem, established by Berthier,
Cerveau and Lins-Neto [BCL] in a special case. For the understanding of the
assumptions of this, we will describe, in Section 2, the properties of blowing
up of a foliation and antiholomorphic involution which leaves it invariant.
Let \pi : \tilde{C}_{0}^{2}arrow C_{0}^{2} be a finite sequence of blowings up, S a finite set of points
consisting of the corners and those points of \pi^{-1}(0) , C_{1} , . , C_{n} the irre-
ductible components of \pi^{-1}(0) and some group homomorphisms Ho1_{k} from
the Poincare’ group \pi_{1}(C_{k}\backslash S) to Diff(Co) where Diffff(C_{0}) is the group of
holomorphic diffeomorphisms of C_{0} . We assume that equivariance, com-
patibility and Chern conditions (Definition 2.5) hold. These conditions are
natural properties of singularities and holonomy groups of the complexifi-
cation of real analytic foliation. Then we have the following result which
generalizes the special case of a blowing-up [BCL]:

Theorem 1.3 (Real synthesis theorem) There is a germ of real analytic
1-form \omega at 0 in R^{2} such that:

1. up to a homeomorphism \pi is the minimal reduction of singularities of
\mathcal{F}_{\omega}^{C} and the set of singularities of \tilde{\mathcal{F}}_{\omega}^{C} . denoted Sing \tilde{\mathcal{F}}_{\omega}^{C} . is equal to S ,

2. \mathcal{F}_{\omega}^{C} is not dicritical,
3. Ho1_{k} is the holonomy representation of C_{k} .

In Section 3, we prove the previous theorem which is the main result
of this paper. Using this theorem, we will show Propositions 1.1 and 1.2
respectively in Sections 5 and 6.

The author is very grateful to M. Berthier, D. Cerveau and the referee
for their helpful comments.

2. Properties of germs of real analytic foliations

Now we describe the blowing up of an antiholomorphic involution in
order to understand the germs of foliations at 0 obtained by complexification
of real analytic foliations. For this we fix the following notations: i=\sqrt{-1}

and \phi_{0} : (x, y)arrow(\overline{x},\overline{y}) for the standard antiholomorphic involution of C^{2} .



522 D. Garba Belko

2.1. Blowing up of antiholomorphic involution
Let \mathcal{F} be a foliation and \phi be an antiholomorphic involution on a com-

plex surface M , such that \phi^{*}\mathcal{F}=\mathcal{F} . Let m be a singular point and \phi(m)

its image by \phi . We have the following lemma:

Lemma 2.1 There are some local coordinates (x_{m}, y_{m}) and (X_{\phi(m)}

at m and \phi(m) respectively, such that:

(X_{\phi(m)}=\phi_{0} .

Proof. Let (C_{m}^{2}, \varphi) and (c_{\phi(m)}^{2} , \varphi’) be two germs of local charts of M at
m and \phi(m) respectively. For a suitable choice of endomorphism (resp. en-
domorphisme with real coefficients) of C_{0}^{2} , \theta , (resp. R) \lambda=\theta\circ(id_{C_{0}^{2}}+R\circ

\phi_{0}o(\varphi’0\phi 0\varphi^{-1})) is a diffeomorphism which conjugates \varphi’\circ\phi 0\varphi^{-1} to
\phi_{0} . \square

Let \pi=\pi_{m,\phi(m)} : \tilde{M}=\tilde{M}_{m,\phi(m)}arrow M be a morphism obtained by
blowing up of M at m and \phi(m) simultaneously. Using the previous lemma
it is easy to prove:

Lemma 2.2 There is only one antiholomorphic involution \tilde{\phi} on \tilde{M} such
that \phi\circ\pi=\pi\circ\tilde{\phi} .

Remark 2.3 The invariance of \mathcal{F} under \phi implies that the strict trans-
Fo r of \mathcal{F} by \pi,\tilde{\mathcal{F}}=\tilde{\mathcal{F}}_{m,\phi(m)} , is invariant under \tilde{\phi} . In particular the singular
points and the invariant curves are globally invariant. Furthermore, if \Sigma is
a curve tranverse to \tilde{\mathcal{F}} so is \tilde{\phi}(\Sigma) .

2.2. Properties of complexifications of real analytic foliations
Using the process above we obtain the following version of Seidenberg’s

reduction theorem of singularities [MM]:

Theorem 2.4 Let \mathcal{F} be a foliation on C_{0}^{2} invariant under \phi_{0} . There is a

holomorphic proper map \pi : \tilde{C}_{0}^{2}arrow C_{0}^{2} and a foliation \tilde{\mathcal{F}}^{C} (strict transform
of \mathcal{F}^{C} by \pi ) such that:

1. \pi is given by a finite number of blowings-up,
2. \pi^{-1}(0) is a divisor with normal crossings,
3. \phi_{0}\circ\pi=\pi 0\tilde{\phi}_{0} ,

4. \tilde{\mathcal{F}}^{C} is reduced,

5. \tilde{\phi}_{0}^{*}\tilde{\mathcal{F}}^{C}=\tilde{\mathcal{F}}^{C} .
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2.2.1. Equivariance of the holonomy generators. Let C_{k} be a com-
point of \pi^{-1}(0) which is assumed to be non dicritical, P\in C_{k}\backslash Sing \tilde{\mathcal{F}}^{C}

and \Sigma : C_{0}arrow\tilde{C}_{0}^{2} a germ of holomorphic transversal at P whose image will
be also denoted \Sigma . The invariance of \tilde{\mathcal{F}}^{C} under \tilde{\phi}_{0} implies that:

1. the map \Sigma’ from C_{0} to \tilde{C}_{0}^{2} which associates \tilde{\phi}_{0}0\Sigma(\overline{y}) to y is a hol0-
morphic transversal of \tilde{\mathcal{F}}^{C} at f_{k}(P) ,

2. for all closed path \gamma of C_{k}\backslash Sing \tilde{\mathcal{F}}^{C} . with base point P , the following
diagram is commutative:

\Sigma

arrow\overline{\phi}_{0}
\Sigma’

\Sigma\downarrow h_{\gamma}

arrow\overline{\emptyset}0

\Sigma\downarrow,h_{f_{k}(\gamma)}

where h_{\gamma} (resp. h_{f_{k}(\gamma)} ) is the holonomy diffeomorphism associated to \gamma

(resp. to f_{k}(\gamma) ). If we identify \Sigma and \Sigma’ to C_{0} the previous diagram implies
the equivariance of the holonomy generators:

\overline{h}_{\gamma}(z)=h_{f_{k}(\gamma)}(\overline{z}) .

2.2.2. Chern conditions. If C_{k}\cap Sing\tilde{\mathcal{F}}_{\omega}^{C}=\{P_{1}, \ldots, P_{r}\} , then we
choose the closed path \gamma_{j} so that its index around P_{l} is \delta_{jl} . We have the
following property which will be called the Chern condition:

either 1. there is 0\leq j\leq r such that h_{\gamma_{j}} is holomorphically linearizable,

or 2. for all 0\leq j\leq r there is \mu_{j}\leq 0 such that \sum_{j=1}^{r}\mu_{j}=Chern(C_{k}) ,
where (h_{\gamma_{j}})’(0)=\exp(2i\pi\mu_{j}) and Chern(C_{k}) is the Chern class [GH] of C_{k} .

Indeed according to Poincar\’e [ko] if condition 1 is not, then each exp (2i\pi\mu_{j})

has modulus 1, this means that \mu_{j} is real. The CamachO-Sad index [CS] of
\tilde{\mathcal{F}}^{C} at P_{j} relatively to C_{k} is written:

I_{P_{j}}(\tilde{\mathcal{F}}^{C}, C_{k})=\mu_{j}+n_{j} ,

where n_{j} is in Z. Again, according to Poincar\’e [Po] if the germ of \tilde{\mathcal{F}}_{\omega}^{C} at
P_{j} is not linearisable, then \mu_{j}+n_{j} is negative. The CamachO-Sad’s index
theorem [CS] ensures:

Chern (C_{k})= \sum_{j=1}^{r}\mu_{j}+n_{j} .
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Thus, up to to put \mu_{j}+n_{j} in the place of \mu_{j} , we have either condition 1
or 2.

Conversely, let \pi : \tilde{C}_{0}^{2}arrow C_{0}^{2} , be a morphism given by a finite number of
blow up and let C_{1} , \ldots , C_{n} be the irreductible components of \pi^{-1}(0) . Let
S be a finite set, which consists of corners and those points of \pi^{-1}(0) and
for each k in I=\{1, \ldots, n\} , let Ho1_{k} : \pi_{1}(C_{k}\backslash S)arrow Diffff(C_{0}) be a group
representation. The properties of foliations, obtained by complexifications
of real analytic foliations, suggest us the following:

Definition 2.5
1. We say that the equivariance condition holds if there are an involution

a on I and an antiholomorphic diffeomorphism f_{k} : C_{k} – C_{a(k)} such
that:
(a) f_{k}(C_{k})\cap S=C_{a(k)}\cap S ,
(b) if C_{k}=C_{a(k)} , then a(k)=k ,
(c) C_{k}\cap C_{j}=\emptyset if and only if C_{a(k)}\cap C_{a(j)}=\emptyset ,
(d) \forall\gamma\in\pi_{1}(C_{k}\backslash S) , Ho1_{k}(\gamma)(z)=\overline{Ho1}_{a(k)}(f_{k}(\gamma))(\overline{z}) (equivariance of

the holonomy generators).
2. We say that the Chern conditions hold when: If C_{k}\cap S=\{P_{1}, \ldots, P_{r}\}

and \gamma_{j}^{k} is a closed path in C_{k}\backslash S whose index around P_{l} is \delta_{jl} , then
we have:
(a) either there is 0\leq j\leq r such that Ho1_{k}(\gamma_{j}^{k}) is holomorphically

linearizable,
(b) or for all 0 \leq j\leq r there is \mu_{j}\leq 0 such that \sum_{j=1}^{r}\mu_{j}=

Chern (C_{k}) , where (Ho1_{k}(\gamma_{j}^{k}))’(0)=\exp(2i\pi\mu_{j}) .
3. We say that the compatibility conditions, in the corners, hold when:

If C_{k}\cap C_{j}=\{P\} , there is a holomorphic reduced l-form

\omega=\lambda_{1}x(1+a(x, y))dy+\lambda_{2}y(1+b(x, y))dx

so that the holonomy generator of the invariant curve x=0 (resp. y=
0) is conjugate to Ho1_{k}(\gamma_{k}) (resp. Ho1_{j}(\gamma_{j}) ), where \gamma_{k} (resp. \gamma_{j} ) is a
closed path in C_{k}\backslash S (resp. C_{j}\backslash S ) whose index around P is one.

Remark 2.6 1. Let \pi be the reduction of singularities of the complex-
ification of a real foliation and C_{1} , \ldots , C_{n} the irreductibles components of
\pi^{-1}(0) . If we define a(k) by \tilde{\phi}_{0}(C_{k})=C_{a(k)} and f_{k} as the restriction of \tilde{\phi}_{0}

to C_{k} we trivially have the properties (a), (b) and (c) of the Definition 2.5.
2. The compatibility conditions are trivially satisfied by the holonomy
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generators associated to the components of the exceptional divisor of the
reduction of singularities of a non dicritical foliation.

3. Proof of theorem 1.3

For each k , 1\leq k\leq n , the synthesis theorem [L] asserts that there are
a complex surface M_{k} , a disk bundle F_{k} : M_{k} – C_{k} , a foliation \mathcal{F}_{k} and a
point m_{k} in M_{k} such that:

1. there is a diffeomorphism \varphi_{k} from the zero section, S_{k} , of F_{k} to C_{k} ,
2. the set of singularities of \mathcal{F}_{k} is \varphi_{k}^{-1}(C_{k}\cap S) ,

3. \mathcal{F}_{k} has not a node singularity
4. S_{k}\backslash Sing \mathcal{F}_{k} is a leaf of \mathcal{F}_{k} ,

5. F_{k} is transverse to all the leaves of \mathcal{F}_{k} except the special fibers which
pass through Sing \mathcal{F}_{k} ,

6. m_{k} is in S_{k}\backslash Sing \mathcal{F}_{k} and f_{k}(\varphi_{k}(m_{k}))=\varphi_{a(k)}(m_{k}) ,
7. the Chern class of S_{k} is equal to the one of C_{k} ,

8. the holonomy representation of S_{k} is:

Ho1(\mathcal{F}_{k}, S_{k}) : \pi_{1} ( S_{k}\backslash Sing \mathcal{F}_{k} , m_{k} ) arrow Diffff(C_{0})

\gamma \mapsto Ho1_{k}([\varphi_{k}(\gamma)])=h_{\gamma} .

Remark 3.1 The equivariance of the holonomy generators implies that
there is an antiholomorphic diffeomorphism \phi_{k} from F_{k}^{-1}(\varphi_{k}(m_{k})) to
F_{a(k)}^{-1}(\varphi_{k}(m_{a(k)})) with \phi_{a(k)}=\phi_{k}^{-1} inherited from the standard antihol0-
morphic involution of C such that:

1. \phi_{k}(m_{k})=m_{a(k)} ,
2. \phi_{k}oh_{\gamma}o\phi_{a(k)}=h_{f_{k}(\gamma)}\forall\gamma\in\pi_{1} ( S_{k}\backslash Sing \mathcal{F}_{k} ).

The following results must be understood up the choice of a suitable
neighbourhood of S_{k} in M_{k} . We have the fondamental:

Lemma 3.2 For each k there is a antiholomorphic diffeomorphism, \sigma_{k} :
M_{k}arrow M_{a(k)} , which carries the leaves of \mathcal{F}_{k} (resp. \mathcal{F}_{a(k)} ) to the one of \mathcal{F}_{a(k)}

(resp. \mathcal{F}_{k} ). Furthermore \sigma_{k}^{-1}=\sigma_{a(k)} .

Proof. We are going to extend the germ of diffeomorphism \phi_{k} given in
Remark 3.1. We use essentially the ideas of [BCL]. Let m be a point of
S_{k}\backslash Sing \mathcal{F}_{k} and let \gamma be a path in S_{k}\backslash Sing \mathcal{F}_{k} connecting m to m_{k} .
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For z in F_{k}^{-1}(\varphi_{k}(m)) close enough to m, the lifting \tilde{\gamma} of \gamma , in the leaf
of \mathcal{F}_{k} passing through z , following the fiber bundle F_{k} ends at the point
h_{\gamma}(z) of F_{k}^{-1}(\varphi_{k}(m_{k})) . We define \sigma_{\gamma}(z) as the end of the path obtained
by lifting f_{k}(\gamma^{-1}) from \phi_{k}(h_{\gamma}(z)) in the leaves of \mathcal{F}_{a(k)} following F_{a(k)} . It
does not depend on the choice of the path. Indeed let \gamma’ be another path
in S_{k}\backslash Sing \mathcal{F}_{k} . The compound \gamma_{1}=\gamma^{\prime-1}

\gamma is an element of \pi_{1}(S_{k}\backslash

Sing \mathcal{F}_{k} , m) which corresponds to a diffeomorphism h_{\gamma_{1}} . The image \sigma_{\gamma’}(z)

of z is obtained by lifting f_{k}\circ(\gamma^{\prime-1}) from \phi_{k}(h_{\gamma’}(z)) . From the equivariance
of the holonomy generators, we get that:

\phi_{k}\circ h_{\gamma’}=\phi_{k}\circ h_{\gamma’\gamma^{-1}\gamma}=\phi_{k}\circ h_{\gamma_{1}\gamma^{-1}}=\phi_{k}\circ h_{\gamma_{1}}\circ h_{\gamma^{-1}}

=\phi_{k}\circ h_{\gamma_{1}}\circ\phi_{k}^{-1}(\phi_{k}\circ h_{\gamma})

=h_{f_{i}\circ\phi_{i}(\gamma_{1})}\circ\phi_{i}^{-1}(\phi_{k}\circ h_{\gamma})

=\phi_{k}oh_{\gamma} .

Thus \sigma_{\gamma’}(z) is also obtained by lifting f_{k}\circ\phi(\gamma^{\prime-1}) from \phi_{k}oh_{\gamma}(z) . As
\phi_{k}(\gamma_{1})=\phi_{k}(\gamma_{1}^{-1}) \phi_{k}(\gamma^{-1}) , we have \sigma_{\gamma’}(z)=\sigma_{\gamma}(z) . Using this process we
find an antiholomorphic diffeomorphism \sigma_{k} from M_{k}’=M_{k}\backslash \{\phi_{k}^{-1}(m)/m\in

Sing\cap C_{k}\} to M_{a(k)}’=M_{a(k)}\backslash \{\phi_{a(k)}^{-1}(m)/m\in Sing\cap C_{a(k)}\} , such that
\sigma_{k}^{*}\mathcal{F}_{a(k)}=\mathcal{F}_{k} . Now we have to extend \sigma_{k} to the invariant curves. Let
m be a singular point of \mathcal{F}_{k} and m’=\varphi_{a(k)}^{-1}of_{k}o\varphi_{k}(m) . We are going to
define an antiholomorphic involution in order to use a result of [BCL]. Let
(V_{m}, (u, v)) and (V_{m’}, (u’, v’)) be two local trivializations of F_{k} and F_{a(k)}

respectively at the points m and m’ such that:

1. m=(0,0) (resp. m’=(0,0) ) is in (u, v) (resp. (u’, v’) )
2. v=0 (resp. v’=0) is a local equation of S_{k} (resp. S_{a(k)} ).

Let fix a point P in S_{k}\cap V_{m} close enough to m but distinct from it. It is
easy to see that one can choose (u, v) and (u’, v’) so that u’of_{k} ou^{-1} and v’\circ

\sigma_{k}ov^{-1}/F_{k}^{-1}(\varphi_{k}(P)) are equal to the standard antiholomorphic involution of

C. Up to this choice we define \phi as follows: (u’, v’)\circ\phi\circ(u, v)^{-1}=(\overline{u},\overline{v}) . The
holonomy generators equivariance and Proposition 2.1 of [MR] imply that
\phi^{*}\mathcal{F}_{a(k)}/V_{m} and \mathcal{F}_{k/V_{m}} are holomorphically conjugate by a diffeomorphism

which leaves a fiber bundle invariant [Me]. Thus, up to a chart change, we
assume that \phi^{*}\mathcal{F}_{a(k)}/V_{m}=\mathcal{F}_{k/V_{m}} . It is enough to show that \psi=\sigma_{a(k)}\circ\phi

is bounded to obtain the extension of \sigma_{k} . Note that \psi is holomorphic on
V_{m}\backslash F_{k}^{-1}(\varphi_{k}(P)) and conjugates \mathcal{F}_{k/V_{m}} to itself. The germ of \mathcal{F}_{k/V_{m}} at m
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is defined by a reduced 1-form \omega_{m} which is not a node. In order to extend
\psi in a neighbourhood of m we proceed as in [BCL]. \square

Lemma 3.3 There are a complex surface M , obtained by gluing together
the M_{k} , a foliation\tilde{\propto}s on M, such that for any k in \{ 1, . . , n\}\tilde{\propto}s/M_{k}=\propto s_{k} ,
and an antiholomorphic involution \tilde{\sigma} on M which leavess\tilde{\propto} invariant.

Proof. Let \{m\} be the intersection of two components C_{k} and C_{j} of \pi^{-1}(0)

and put \{m’\}=C_{a(k)}\cap C_{a(j)} . We deal with the case m is different from
m’ . Let (V_{k}, \rho_{k}) be a local chart of M_{k} at \varphi_{k}^{-1}(m) and whose values are in
a polydisk \triangle_{k} of C^{2} . Put V_{a(k)}=\sigma_{k}(V_{k}) and \rho_{a(k)}=\phi_{0}\circ\rho_{k}0\sigma_{a(k)} . By
construction (V_{a(k)}, \rho_{a(k)}) is a chart of M_{a(k)} which contains \varphi_{a(k)}^{-1}(m’) , with
values in \phi_{0}(\triangle_{k}) , and such that \rho_{a(k)}\circ\sigma_{k}\circ\rho_{k}^{-1}=\phi_{0/\triangle_{k}} . In the same way
we can choose a local chart (V_{j}, \rho_{j}) (resp. ( V_{a(j)} , \rho_{a(j)} )) at \varphi_{j}^{-1}(m) (resp.
\varphi_{a(j)}^{-1}(m’) with values in a poly disk \triangle_{j} (resp. \triangle_{a(j)}=\phi_{0}(\triangle_{j}) ) such that
\rho_{a(j)}0\sigma_{j}\circ\rho_{j}^{-1} is equal to \phi_{0/\triangle_{j}} . Let \theta be the diffeomorphism from \triangle_{k}\cup

\triangle_{a(k)} to \triangle_{j}\cup\triangle_{a(j)} defined by:

1. \rho_{j}0\theta 0\rho_{k}^{-1}(u_{k}, v_{k})=(u_{k}, v_{k}) and \rho_{a(j)}0\theta 0\rho_{a(k)}^{-1}(u_{a(k)}, v_{a(k)})=

(u_{a(k)}, v_{a(k)}) .

The compatibility conditions (Definition 2.5) in the corners imply that \mathcal{G}_{j}=

(\rho_{j}^{-1})^{*}\mathcal{F}_{j} and \mathcal{G}_{k}=(\rho_{k}^{-1}0\theta^{-1})^{*}\mathcal{F}_{k} (resp. \mathcal{G}_{a(j)}=(\rho_{a(j)}^{-1})^{*}\mathcal{F}_{a(j)} and \mathcal{G}_{a(k)}=

(\rho_{a(k)}^{-1}0\theta^{-1})^{*}\mathcal{F}_{a(k)}) are holomorphically conjugate. As \phi_{0} carries the leaves
of \mathcal{G}_{k} (resp. \mathcal{G}_{j} ) to those of \mathcal{G}_{a(k)} (resp. \mathcal{G}_{a(j)} ), there is a holomorphic dif-
feomorphism \psi : \triangle_{j}\cup\triangle_{a(j)}arrow\triangle_{j}\cup\triangle_{a(j)} which commutes with \phi_{0} and so
that:

\psi^{*}\mathcal{G}_{k}=\mathcal{G}_{j} and \psi^{*}\mathcal{G}_{a(k)}=\mathcal{G}_{a(j)} .

Identifying each element of V_{k} (resp. V_{j} ) with its image by \rho_{j}^{-1-1}\circ\psi^{-1}\circ\theta\circ\rho_{k}

(resp. \rho_{a(j)}^{-1-1}\circ\psi^{-1}0\theta\circ\rho_{a(k)} ) we glue simultaneously:

1. M_{k} and M_{j} (resp. M_{a(k)} and M_{a(j)} ),
2. \mathcal{F}_{k} and \mathcal{F}_{j} (resp. \mathcal{F}_{a(k)} and \mathcal{F}_{a(j)} ),
3. \sigma_{k} and \sigma_{j} (resp. \sigma_{a(k)} and \sigma_{a(j)} ).

Assume now that \{m\} is equal to \{m’\} . This means that a(k)=k , a(j)=j
and \varphi_{k}^{-1}(m) (resp. \varphi_{j}^{-1}(m) ) is a fixed point of \sigma_{k} (resp. \sigma_{j} ). From Lemma
2.1 we choose a local chart (V_{k}, \rho_{k}) (resp. ( V_{j} , \rho_{j} )) of M_{k} (resp. M_{j} ) at
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\varphi_{k}^{-1}(m) (resp. \varphi_{j}^{-1}(m) ) with values in a polydisk \triangle of C^{2} such that:

\phi_{0}(\triangle)=\triangle and \rho_{l}\circ\sigma_{l}\circ\rho_{l}^{-1}=\phi_{0/\Delta} for l=k,j .

As before the compatibility conditions in the corners imply that \mathcal{G}_{k}=

(\rho_{k}^{-1})^{*}\mathcal{F}_{k} and \mathcal{G}_{j}=(\rho_{j}^{-1})^{*}\mathcal{F}_{j} are holomorphically conjugate. As \phi_{0} leaves \mathcal{G}_{k}

and \mathcal{G}_{j} fixed there is a complexification \psi of a real analytic diffeomorphism,
from \triangle to \triangle , such that \psi^{*}\mathcal{G}_{k} is equal to \psi^{*}\mathcal{G}_{j} . Identifying each element
of V_{k} with its image by \rho_{j}^{-1}\circ\psi^{-1}\circ\rho_{k}^{-1} we glue M_{k} and M_{j} (resp. \mathcal{F}_{k} and
\mathcal{F}_{j} , \sigma_{k} and \sigma_{j} ). Gluing as above at each corner, we have done the proof of
Lemma 3.3. \square

As the self intersections of S_{k} are the same as the ones of the C_{k} (com-
ponents of \pi^{-1}(0)) , we have a morphism \overline{\pi} : Marrow V composed by a finite
number of blowings down, where V is a neighbourhood of 0 in C^{2} . By Har-
tog’s theorem one can extend \sigma , defined by \sigma\circ\overline{\pi}=\overline{\pi}\circ\tilde{\sigma} , at 0 in C^{2} . From
Lemme 2.1 \sigma is holomorphically conjugate to \phi_{0} . Thus, up a conjugation,
the foliation \mathcal{F} , whose strict transform is \tilde{\mathcal{F}} , is invariant under \phi_{0} and is
therefore a real analytic foliation.

4. Examples

4.1. Example
We give here some informations on the set, Ahi (\mathcal{F}_{\omega}^{C}) , of antiholomorphic

involutions which leave \mathcal{F}_{\omega}^{C} invariant, where \omega=d(H) , with H=x^{4}+y^{4} .
Remark that Ahi(\mathcal{F}_{\omega}^{C}) is not a group (the compound of two antiholomorphic
involution is holomorphic). Let \phi_{0} still be the standard antiholomorphic
involution of C^{2} and let us put:

Iso(\mathcal{F}_{\omega}^{C})= { \psi\in Diffff(C_{0}^{2})/\exists\varphi\in Diffff(C_{0}) so that H\circ\psi=\varphi\circ H }

and

Fix(\mathcal{F}_{\omega}^{C})=\{\psi\in Diffff(C_{0}^{2})/H\circ\psi=H\} ,

where Diffff(C_{0}^{2}) is the group of holomorphic diffeomorphisms of C_{0}^{2} . We
assert that:

1. each element of Ahi(\mathcal{F}_{\omega}^{C}) tangent to the identity is of the form \phi_{0}0

exp [\tau(x, y)]\mathcal{X} , where \tau is the complexification of an analityc function
of R_{0}^{2} ,
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2. there is a bijection between the set of elements of Ahi(\mathcal{F}_{\omega}^{C}) which are
not tangent to the identity and \{\varphi\in Diffff(C_{0})/\varphi^{-1}(z)=\overline{\varphi}(\overline{z})\} .

The morphism L_{H} from [mathring]_{\frac{Is(F_{\omega}^{C})}{Fix(\mathcal{F}_{\omega}^{C})}} to Diff(Co), which associates to \psi the
element \varphi of Diffff(C_{0}) such that Ho\psi=\varphi oh [BCM] is well defined and
injective. According to [BCM] an element \psi of Fix(\mathcal{F}_{\omega}^{C}) is tangent to the
identity (that is \psi (x , y ) =(x+h.0.t, y+h.0.t) ) if and only \psi(x, y)=

exp [\tau(x, y)]\mathcal{X} , where \tau is a holomorphic function and \mathcal{X}(x, y)=y^{3}\frac{\partial}{\partial x} -

x^{3} \frac{\partial}{\partial y} . Now let \sigma be an element of Ahi(\mathcal{F}_{\omega}^{C}) . We have two cases:

1. \phi_{0}0\sigma is an element of Fix(\mathcal{F}_{\omega}^{C}) . There is a holomorphic function \tau

such that \sigma=\phi_{0}\circ exp [\tau(x, y)]\mathcal{X} . As \sigma is an involution, an easy computa-
tion shows that \tau must be the complexification of a real analytic function.
Conversely for each complexification of real analytic function \tau . \sigma=\phi_{0}0

exp [\tau(x, y)]\mathcal{X} is in Ahi (\mathcal{F}_{\omega}^{C}) .
2. \phi_{0}\circ\sigma is not an element of Fix(\mathcal{F}_{\omega}^{C}) . Let us put \varphi=L_{H}(\phi_{0}0\sigma) .

From the following equations:

H=H\circ(\phi_{0}0\sigma)\circ(\sigma 0\phi_{0})=\varphi\circ Ho(\sigma 0\phi_{0})

=\varphi 0\overline{H}\circ(\phi_{0}0\sigma)\circ\phi_{0}=\varphi 0\overline{\varphi}oHo\phi_{0}=\varphi 0\overline{\varphi}\circ\overline{H}

we get that \varphi^{-1}(x)=\overline{\varphi}(\overline{x}) . Conversely let \varphi be a diffeomorphism of C_{0}

such that \varphi^{-1}(x)=\overline{\varphi}(\overline{x}) . We are going to show that there exists an element
\sigma of Ahi(\mathcal{F}_{\omega}^{C}) which verifies H\circ\phi_{0}\circ\sigma=\varphi\circ H . Put \tilde{\varphi}(x)=(\varphi(x^{4}))^{\frac{1}{4}} and
\phi(x)=\tilde{\varphi}(\overline{x}) . Since \varphi^{-1}(x)=\overline{\varphi}(\overline{x}) an easy computation shows that \phi is an
involution. Let \pi : \tilde{C}_{0}^{2}arrow C_{0}^{2} be a blowing up, (x, t) and (s, y) the charts of
\tilde{C}_{0}^{2} glued together by y=tx and st=1 . Let us remark that the Hopf’s fiber
bundle (that is the fiber bundle \tilde{C}_{0}^{2} – \pi^{-1}(0) given by t=constante) is
transverse to each leaf of \tilde{\mathcal{F}}_{\omega}^{C} except the special ones which pass through the
singularities and that the holonomy group computed on the transversal t=
0 is generated by h(x)=ix . Moreover for each \gamma , in \pi_{1}(\pi^{-1}(0)\backslash Sing(\tilde{\mathcal{F}}_{\omega}^{C})) ,
we have:

(*) h_{\gamma}(z)=\phi\circ h_{\tilde{\phi}_{0}(\gamma)}\circ\phi(z)

We build an antiholomorphic involution \tilde{\sigma} on \tilde{C}_{0}^{2} which leaves \tilde{\mathcal{F}}_{\omega}^{C} invariant
as follows: let (x, t) be a point of \tilde{C}_{0}^{2} such that x is close enough to 0 and
(0, t) is not a singularity, and \gamma is a path in \pi^{-1}(0)\backslash Sing \tilde{\mathcal{F}}_{\omega}^{C} connecting
(0, t) to (0, 0) . The lifting of \gamma in the leaf of \tilde{\mathcal{F}}_{\omega}^{C} passing through (x, t)
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following Hopf’s fiber bundle ends at (x_{\gamma}, 0) . We define \tilde{\sigma}_{\gamma}(x, t) to be the
end of the path obtained by lifting f(\gamma^{-1}) from \phi(x_{\gamma}, 0) . As in the proof
of Theorem 1.3 we find, using equality (*) , that \tilde{\sigma}_{\gamma} does not depend on the
choice of the path, extends to invariant curves and induces an element \sigma

of Ahi(\mathcal{F}_{\omega}^{C}) . By construction, in the local coordinates (z=x(1+t^{4})^{\frac{1}{4}}, t) ,
\tilde{\sigma}\circ\tilde{\phi}_{0}(z, t) is equal to (\tilde{\varphi}(z), t) and \tilde{H}(z, t) is equal to z^{4} . We have:

\tilde{H}\circ(\tilde{\phi}_{0}0\tilde{\sigma})(z, t)=(\tilde{\varphi}(z))^{4}=\varphi(z^{4})=\tilde{H}\circ\tilde{\phi}_{0}\circ\tilde{\sigma}(z, t)

which implies that H\circ(\phi_{0}\circ\sigma)=\varphi\circ H . Thus the assertion.

4.2. Relation between Poincar\’e return map and holonomy
Let \mathcal{F} be a germ of holomorphic foliation on C_{0}^{2} , \sigma an antiholomorphic

involution which leaves it invariant and \pi the minimal reduction of singu-
larities of \mathcal{F} . We assume that \mathcal{F}/Fix_{\sigma} is monodromic and for simplicity that
\sigma is the standard antiholomorphic involution of C^{2} . Let \beta be the “interval”
of leaf which begins at (x, 0) and ends at (P(x), 0) where 0\leq x is close
enough to 0 and P is the Poincar\’e return map corresponding to \mathcal{F}/Fix_{\sigma} .
Let us denote \beta^{+}=\beta\cap\{0<y\} , \beta^{-}=\beta\cap\{y<0\} and \tilde{\beta} (resp. \tilde{\beta}^{+} ,
\tilde{\beta}^{-}) be the strict transform of \beta (resp. \beta^{+} . \beta^{-} ) by \pi . When \pi is a blow-
ing up, as \mathcal{F}/Fix_{\sigma} is monodromic, the Hopf’s fiber bundle is transverse to
\mathcal{F} in a neighbourhood of F\tilde{i}x_{\sigma}\cap\pi^{-1}(0) . The Hopf’s fiber bundle gives a
homeomorphism between \tilde{\beta}^{+} (resp. \tilde{\beta}^{-} ) and \gamma(]0,1[) , where \gamma is a path
\gamma : [0, 1] such that \gamma([0,1])=F\tilde{i}x_{\sigma}\cap\pi^{-1}(0) . Thus in this case P is the
holomomy diffeomorphism corresponding to \gamma\cdot\gamma . When \pi is not a blowing
up \pi^{-1}(0)\cap\tilde{R}_{0}^{2} is not smooth in general and we have not a fiber bundle
transverse to \mathcal{F} . But as \mathcal{F}/Fix_{\sigma} is monodromic \pi^{-1}(0)\cap\tilde{R}_{0}^{2} has only saddle
points and we can use as Brunella [Br] the Dulac real maps in the corners
or those technics like Berthier and Moussu [BM]. In the particular case of
\mathcal{F}_{\omega}^{C} . where \omega=xdx+ydy for for each antiholomorphic involution \sigma which
does not fix any invariant curve of \mathcal{F}_{\omega}^{C} and such that \sigma^{*}\mathcal{F}_{\omega}^{C}=\mathcal{F}_{\omega}^{C} , \mathcal{F}_{\omega/Fix_{\sigma}}^{C}

is a center since \pi^{-1}(0)\cap F\tilde{i}x_{\sigma} is homotopic to \pi^{-1}(0)\cap\tilde{R}_{0}^{2} .

5. Proof of proposition 1.1

We build here a germ of foliation satisfying the properties 1, 2 and 3 of
Proposition 1.1 and whose minimal reduction of singularities is a blowing up.
Furthermore the holonomy group of its exceptional divisor is not resoluble;
thus according to [BCL], [P], it does not have a Liouvillian first integral.
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For this we introduce:

1. h_{1}(x)=iK^{-1} ( \frac{x}{1-\epsilon:x}) , where \epsilon=\frac{1-i}{2} et K(x)=x+x^{5} ,

2. h_{2}(x)=-h_{1}^{-1}(x)= \frac{iK(x)}{1-\epsilon iK(x)} ,

3. h_{3}(x)= \overline{h}_{2}^{-1}(\overline{x})=iK^{-1}(\frac{x}{1-\overline{\in}x}) ,

4. h_{4}(x)= \overline{h}_{1}^{-1}(\overline{x})=\frac{iK(x)}{1+\overline{\in}iK(x)} .

Obviously h_{4}\circ h_{3}\circ h_{2}\circ h_{1}=id_{C} . Let \pi : \tilde{C}_{0}^{2}arrow C_{0}^{2} be a blowing up at 0 in
C_{0}^{2} , (x, t) and (s, y) the charts of \tilde{C}_{0}^{2} glued together by x=sy and st=1 .
Denote by m_{0} (resp. m_{1} , m_{2} , m_{3} , m_{4} ) the point of coordinates (0, 0) (resp.
(0, 1+i) , (0, -1+i) , (0, -1-i) , (0, 1-i)) in the chart (x, t) and \gamma_{1} (resp.
\gamma_{2} , \gamma_{3} , \gamma_{4}) a closed path in \pi_{1}(\pi^{-1}(0)\backslash \{m_{1}, m_{2}, m_{3}, m_{4}\}, m_{0}) whose index
around m_{1} (resp. m_{2} , m_{3} , m_{4} ) is one. According to Theorem 1.3, there is
a real analytic 1-form \omega such that:

1. \pi is a minimal reduction of singularities of \mathcal{F}_{\omega}^{C} ,
2. \mathcal{F}_{\omega}^{C} is not dicritical,
3. Sing \tilde{\mathcal{F}}_{\omega}^{C}=\{m_{1}, m_{2}, m_{3}, m_{4}\} ,
4. the holonomy diffeomorphism h_{\gamma k} of \gamma_{k} is h_{k} .

Moreover, according to synthesis theorem [L], we can assume that the strict
transform of \mathcal{F}_{\omega}^{C} by \pi is transverse to Hopf’s fiber bundle and all the in-
variant curves, except \pi^{-1}(0)\backslash Sing \tilde{\mathcal{F}}_{\omega}^{C} . are fibers of Hopf’s fiber bundle.
As h_{2}\circ h_{1}(x)=-x , we see that \omega is a real center since its Poincar\’e return
map is the square of h_{2}\circ h_{1} . Let now show that there is an antiholomorphic
involution, \sigma , with F\tilde{i}x_{\sigma}\cap\pi^{-1}(0)= { (0, it)/t\in R\cup {\infty }} and \mathcal{F}_{\omega/Fix_{\sigma}}^{C} is

a center. Remark that Sing \tilde{\mathcal{F}}_{\omega}^{C} is invariant under the map f on \pi^{-1}(0) ,
defined by t\mapsto-\overline{t}s\mapsto-\overline{s} , and that:

h_{\gamma k}=\phi\circ h_{f(\gamma_{k})}o\phi , \forall k=1,2,3,4 and \phi(x)=i\overline{x} .

We deduce from the above equation that for any \gamma in
\pi_{1} ( \pi^{-1}(0)\backslash Sing \tilde{\mathcal{F}}_{\omega}^{C} , m_{0} ) we have:

(**) h_{\gamma}=\phi oh_{f(\gamma)}\circ\phi .

We build an antiholomorphic involution \tilde{\sigma} on \tilde{C}_{0}^{2} which leaves \tilde{\mathcal{F}}_{\omega}^{C} invariant
as follows: let (x, t) be a point of \tilde{C}_{0}^{2} such that x is close enough to 0 and
(0, t) is not a singularity, and such that \gamma is a path in \pi^{-1}(0)\backslash Sing \tilde{\mathcal{F}}_{\omega}^{C}
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connecting (0, t) to (0, 0) . The lifting of \gamma in the leaf of \tilde{\mathcal{F}}_{\omega}^{C} passing through
(x, t) following HopP s fiber bundle ends at (x_{\gamma}, 0) . We define \tilde{\sigma}_{\gamma}(x, t) to
be the end of the path obtained by lifting f(\gamma^{-1}) from \phi(x_{\gamma}, 0) . As in the
proof of Theorem 1.3 we find, using the equality (**) , that \tilde{\sigma}_{\gamma} does not
depend on the choice of the path, extends to invariant curves and induces
an antiholomorphic involution of C_{0}^{2} so that:

\sigma^{*}\mathcal{F}_{\omega}^{C}=\mathcal{F}_{\omega}^{C} and F\tilde{i}x_{\sigma}\cap\pi^{-1}(0)=\gamma([0,1])= { (0, it)/t\in R\cup {\infty }}

where the homology class of \gamma is \gamma_{2} \gamma_{1} . Furthermore \mathcal{F}_{\omega}^{C} restricts to a
center on Fix_{\sigma} since h_{\gamma}^{2}=id_{C} . Indeed we have:

h_{\gamma}^{2}(x)=(h_{1} \circ h_{2})^{2}(x)=[iK^{-1}(\frac{K(ix)}{1+iK(ix)})]^{2}

=-K^{-1}[( \frac{K}{1-K})]^{2}(x)=-K^{-1}[\frac{K(-K^{-1}o\frac{K}{1-K})}{1-K(-K^{-1}o\frac{K}{1-K})}](x)

=-K^{-1}[ \frac{(\frac{-K}{1-K})}{(1+\frac{K}{1-K})}](x)=-K^{-1}(-K)(x)=x .

Let us show that there is no diffeomorphism, \psi , tangent to \mathcal{F}_{\omega}^{C} which con-
jugates \phi_{0} and \sigma . Assume for instance the converse. On one hand \tilde{\psi}_{/\pi^{-1}(0)}

is different from the identity since \tilde{\sigma}/\pi^{-1}(0) and \tilde{\phi}_{0/\pi^{-1}(0)} are distinct. On
the other hand we have:

a) either \tilde{\psi}(m_{1})=m_{2},\tilde{\psi}(m_{2})=m_{3},\tilde{\psi}(m_{3})=m_{4} and \tilde{\psi}(m_{4})=m_{1}

b) or \tilde{\psi}(m_{1})=m_{4},\tilde{\psi}(m_{2})=m_{1},\tilde{\psi}(m_{3})=m_{2} and \tilde{\psi}(m_{4})=m_{3} .

Let \Sigma : (t=0) , let \Sigma’=\tilde{\Psi}(\Sigma) , let \alpha be a path in \pi^{-1}(O)\backslash Sing\tilde{\mathcal{F}}_{\omega}^{C} connecting
the intersection of \Sigma and \pi^{-1}(0) to the one of \Sigma’ and \pi^{-1}(0) , and let h_{\alpha} :
\Sigmaarrow\Sigma’ be the holonomy diffeomorphism associated to it. Up to assume
a) , the invariance of \tilde{\mathcal{F}}_{\omega}^{C} under \tilde{\psi},\tilde{\phi}_{0} and \tilde{\sigma} implies that \varphi(x)=h_{\alpha}^{-1}o\tilde{\psi}(x)

satisfies:

1. \varphi^{-1}0\overline{\varphi}(x)=i\overline{x} ,
2. h_{1}=\varphi^{-1}oh_{2}o\varphi(x) .

We have h_{2}(x)=ix-\epsilon x^{2}+h.0.t and let \varphi(x)=a_{1}x+a_{2}x^{2}+h.0.t , with
a_{1}\neq 0 . From 1. we get:
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\frac{\overline{a}_{1}}{a_{1}}\overline{x}+[\frac{\overline{a}_{2}}{a_{1}}-a_{2}\frac{\overline{a}_{1}^{2}}{a_{1}^{3}}]\overline{x}^{2}=i\overline{x} .

This is equivalent to say that a_{1} (resp. a_{2}+\overline{a}_{2} ) is equal to \alpha exp ( \frac{2i\pi}{8})

(resp. 0), where \alpha is in R. Thus a_{2} is in iR. From 2. we find:

ix+ \frac{1}{a_{1}}[ia_{2}-\epsilon a_{1}^{2}+a_{2}]x^{2}=ix+\epsilon ix^{2}

Thus a_{2} is equal to ( \frac{i\alpha^{2}}{2}+\frac{\sqrt{2}\alpha}{2}) which is not in iR, contradiction. If \sigma’ is
another antiholomorphic involution which does not fix any invariant curve
and leaves \mathcal{F}_{\omega}^{C} invariant then either \tilde{\sigma}_{/\pi^{-1}(0)}’ is equal to \tilde{\phi}_{0/\pi^{-1}(0)} or \tilde{\sigma}_{0/\pi^{-1}(0)}

because Sing \tilde{\mathcal{F}}_{\omega}^{C} is invariant under \tilde{\sigma} and \tilde{\phi}_{0} . Thus \gamma’=F\tilde{i}x_{\sigma’}\cap\pi^{-1}(0) is
equal to \tilde{R}_{0}^{2}\cap\pi^{-1}(0) or F\tilde{i}x_{\sigma}\cap\pi^{-1}(0) , and therefore \mathcal{F}_{\omega/Fix_{\sigma}}^{C} , is a center
since its Poincar\’e return map is given by:

P : F\tilde{i}x_{\sigma’}\cap\{t=0\} – F\tilde{i}x_{\sigma’}\cap\{t=0\}

m \mapsto h_{\gamma}^{2},(m) .

As the holonomy group of \pi^{-1}(0) contains the following two elements which
are not tangent to the identity at the same order [CM] it is not resoluble:

1. -h_{1}\circ h_{4}(x)=x+\sqrt{2}x^{2}+h.0.t ,
2. h_{1}^{4}(x)=x-4\sqrt{2}x^{5}+h.0.t .

\square

Remark 5.1 Let g_{1}(x)=ix+x^{7} , g_{2}(x)=-g_{1}^{-1}(x) , g_{3}(x)=ix-x^{7} ,
and g_{4}(x)=-g_{3}^{-1}(x) . If we substitute g_{1} (resp. g_{2} , g_{3} , g_{4} ) to h_{1} (resp. h_{2} ,
h_{3} , h_{4}) in the previous proof we obtain a real analytic center, \omega’ , and an
antiholomorphic involution, \sigma , at 0 in C^{2} such that:

1. \sigma^{*}\mathcal{F}_{\omega}^{C}, =\mathcal{F}_{\omega}^{C},

2. F\tilde{i}x_{\sigma}\cap\pi^{-1}(0)= { (0, it)/t\in R\cup {\infty }}.

As Sing \tilde{\mathcal{F}}_{\omega}^{C},
\cap F\tilde{i}x_{\sigma} is empty, the flow box theorem implies that \mathcal{F}_{\omega/Fix_{\sigma}}^{C}, is

monodromic. \tilde{\mathcal{F}}_{\omega}^{C}, \cap F\tilde{i}x_{\sigma} is not a center since its Poincar\’e return map is
given by:

P : \exp^{\frac{2i\pi}{8}}R arrow \exp^{\frac{2i\pi}{8}}R

x \mapsto h_{\gamma}^{2}(x\exp^{\frac{2i\pi}{8}})=\exp^{\frac{2i\pi}{8}}(x-4x^{7})+h.0.t .
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6. Proof of proposition 1.2

We are going to build, using 1.3, a real analytic 1-form whose complex-
ification has the properties prescribed. For this we express the following
result [BCL]: there are an irrational \lambda and a germ of real analytic diffe0-
morphism of R at 0 such that the group \langle\exp^{2i\pi\lambda}x, \varphi(x)\rangle is free. Moreover,
up a ramification by x\mapsto x^{2} and to change \lambda by \frac{\lambda}{2} , we assume that
\varphi(-x)=-\varphi(x) for x small enough. Let \pi be a morphism given by a finite
sequence of blowings-up and such that:

1. \pi^{-1}(0) has two irreductibles components C_{1} and C_{2} whose Chern num-
bers are respectively -2 and -1,

2. the complex structure of \tilde{C}_{0}^{2} is given by the charts (x_{2}, y) , (x_{1}, t_{2}) and
(x, t_{1}) glued together by x_{2}t_{2}=1 , x_{1}t_{1}=1 , x_{1}=yx_{2} and x=yx_{1} .

Let m_{0} (resp. m_{1},\tilde{m}_{1} , m_{2},\tilde{m}_{2} ) be the point whose coordinates are (0, 0)

(resp. (1, 0), (-i, 0) , (0, i) , (0, -i) ) in the chart (x_{1}, t_{1}) . Let us choose a
chart (u, v) of \tilde{C}_{0}^{2} at m_{0} which does not contain neither m_{k} , nor \tilde{m}_{k} , k=
1,2 , and such that u=0 (resp. v=0) is a local equation of C_{1} (resp. of C_{2} ).
Choose a positive real \epsilon enough close to 0 and let introduce the following
paths, which does not contain m_{0} :

1. \gamma_{1} (resp. \gamma_{2} ) is the real path which begins at the point whose coor-
dinates are (0, \epsilon) (resp. ( \epsilon , 0)) and ends to the one whose coordinates
are (0, -\epsilon) (resp. (-\epsilon , 0)) in (u, v) ,

2. \gamma_{1}’ (resp. \gamma_{2}’ ) is the image of the map t\in[0,1]\mapsto (0, -\epsilon exp i\pi t ) (resp.
t\in[0,1]\mapsto ( -\epsilon exp i\pi t , 0) ) .

The Theorem 1.3 allows us to build a real analytic 1-form, \omega , such that:

1. \pi is a minimal reduction of singularities of \mathcal{F}_{\omega}^{C} .
2. the singularities of \mathcal{F}_{\omega}^{C} are m_{0} , m_{1},\tilde{m}_{1} , m_{2} and \tilde{m}_{2} ,
3. C_{1} and C_{2} are not dicritical,
4. the holonomy diffeomorphism associated to \gamma_{1}.\gamma_{1}’ (resp. \gamma_{2}

\gamma_{2’} ) is
h_{\gamma_{1}\cdot\gamma_{1’}}(u)=\exp^{\frac{-i\pi}{\lambda_{1}}}u (resp. h_{\gamma_{2}\cdot\gamma_{2’}}(v)=\exp^{2i\pi\lambda}\varphi(v) ), where \lambda_{1}>0

and \exp^{\frac{-i\pi}{\lambda_{1}}}\cross exp 2i\pi\lambda=1 ,
5. the germ of \tilde{\mathcal{F}}_{\omega}^{C} at m_{0} is \tilde{\omega}_{m}=udv+\lambda_{1}v du.

By construction the holonomy group of C_{2} is G=\langle\exp^{\frac{-i\pi}{\lambda_{1}}}v, \exp^{2i\pi\lambda}\varphi(v)\rangle=

\langle\exp^{4i\pi\lambda}v, -\exp^{2i\pi\lambda}\varphi(v)\rangle which is free because it is isomorphic to the free
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group \langle\exp^{2i\pi\lambda}v, \varphi(v)\rangle . According to [BCL], [P] \omega has no liouvillian first
integral. Let show that \omega is a center. Since the only real singularity of \tilde{\mathcal{F}}_{\omega}^{C}

is the corner m_{0} which is a saddle and since C_{1} and C_{2} are non dicritical,
the flow box theorem assures that \mathcal{F}_{\omega} is monodromic. In order to prove
that it is a center, let us introduce the Dulac real maps in the corner:

D_{1} : \{\epsilon\}\cross R^{+}\backslash (u=\epsilon)\cap\tilde{R}_{0}^{2} arrow R^{+}\cross\{\epsilon\}\backslash (v=\epsilon)\cap\tilde{R}_{0}^{2}

(\epsilon, v) \mapsto
(\epsilon^{1-\frac{1}{\lambda_{1}}}v^{\frac{1}{\lambda_{1}}}, \epsilon) ,

D_{2} : R^{+}\cross\{-\epsilon\}\backslash (v=-\epsilon)\cap\tilde{R}_{0}^{2}arrow \{\epsilon\}\cross R^{-}\backslash (v=\epsilon)\cap\tilde{R}_{0}^{2}

(u, \epsilon) \mapsto (\epsilon, \epsilon^{1-\lambda_{1}}u^{\lambda_{1}}) ,

D_{3} : \{-\epsilon\}\cross R^{+}\backslash (u=-\epsilon)\cap\tilde{R}_{0}^{2}arrow R^{-}\cross\{\epsilon\}\backslash (v=\epsilon)\cap\tilde{R}_{0}^{2}

(-\epsilon, v) \mapsto
(-\epsilon^{1-\frac{1}{\lambda_{1}}}v^{\frac{1}{\lambda_{1}}}, \in) ,

D_{4} : R^{-}\cross\{-\epsilon\}\backslash (v=-\in i)\cap\tilde{R}_{0}^{2}arrow\{-\epsilon\}\cross R^{-}\backslash (v=-\epsilon)\cap\tilde{R}_{0}^{2}

(u, -\epsilon) \mapsto (-\epsilon, -\epsilon^{1-\lambda_{1}}(-u)^{\lambda_{1}}) .

The Poincar\’e return map is given by:

v\mapsto p_{2}oh_{\gamma_{2}}^{-1}oD_{4}oh_{\gamma_{1}}oD_{3}oh_{\gamma_{2}}oD_{2}oh_{\gamma_{1}}oD_{1}(\epsilon, v) ,

p_{2}(u, v)=v .

We easily find that h_{\gamma_{1}’}(u)=e^{-i\pi/\lambda_{1}}u and h_{\gamma_{2}’}(v)=e^{2i\pi/\lambda}v so:

h_{\gamma_{1}} : ux\{\epsilon\}\subset(u, v) arrow ux\{\epsilon\}\subset(u, v)

(u, \epsilon) \mapsto (u, \epsilon)

and
h_{\gamma_{2}} : \{\epsilon\}\cross v\subset(u, v) arrow \{-\epsilon\}\cross v\subset(u, v)

(\epsilon, v) \mapsto (-\epsilon, \varphi(v)) .

Thus P is:

P(v)=\varphi^{-1}\circ(-\varphi(-v)) .

As \varphi(x)=-\varphi(-x)P is equal to the identity and \omega is a center. \square
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