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Comments on the absolute convergence of Fourier series

L\’aszl\’o LEINDLER
(Received December 10, 1999)

Abstract. We give sufficient conditions for the convergence of the series having the
following form

\sum_{k=1}^{\infty}k^{\delta}(\varphi(|a_{n_{k}}|)+\varphi(|b_{n_{k}}|)) ,

where a_{k} and b_{k} are Fourier coefficients, \delta\geq 0 , \varphi(u)(u\geq 0) is an increasing concave
function, and \{n_{k}\} is a certain increasing sequence of natural numbers.
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1. Introduction

Let f(x) be a 2\pi-periodic integrable function and let

\sum_{n=1}^{\infty} ( a_{n} cos nx+b_{n} sin nx)

be its Fourier series.
It is well known that O. Sz\’asz [6] proved that if f\in L^{2}(-\pi, , \pi) and

\sum_{n=1}^{\infty}n^{-1/2}\omega^{(2)}(f;\frac{1}{n})<\infty ,

then the Fourier series of f converges absolutely, where

\omega^{(2)}(f;\delta):=\sup_{0<h\leq\delta}(\int_{-\pi}^{\pi}|f(x+h)-f(x-h)|^{2}dx)^{1/2}

S.B . Ste\check{c}kin[5] showed that if \{m_{n}\} is an arbitrary increasing sequence
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of natural numbers, then

\sum_{n=1}^{\infty}n^{-1/2}\omega^{(2)}(f;\frac{1}{m_{n}})<\infty

implies that

\sum_{n=1}^{\infty}(|a_{m_{n}}|+|b_{m_{n}}|)<\infty ,

assuming that the Fourier series of f has the following form

\sum_{n=1}^{\infty} ( a_{m_{n}} cos m_{n}x+b_{m_{n}} sin m_{n}x).

J.R. Patadia and V.M . Shah [4] studied such a special Fourier series
having the following form:

\sum_{k=1}^{\infty} ( a_{n_{k}} cos n_{k}x+b_{n_{k}} sin n_{k}x ), (1.1)

where \{n_{k}\}(k\in \mathbb{N}) is a strictly increasing sequence of natural numbers
with an infinity of gaps (n_{k}, n_{k+1}) and satisfying the s0-called condition B_{2} .

A strictly increasing sequence \{n_{k}\} of natural numbers is said to satisfy
the condition B_{2} if \sup_{n}P_{2}(n) is finite, where P_{2}(n) denotes the number of
different representations of an integer n in the form

n=\epsilon_{1}n_{k_{1}}+\epsilon_{2}n_{k_{2}}(\epsilon_{i}=\pm 1;n_{k_{i}}\in\{n_{k}\}) .

Patadia and Shah, among others, verified that if the sequence \{n_{k}\}

satisfies the condition B_{2} and (1.1) is the Fourier series of f, then

\sum_{k=1}^{\infty}(|a_{n_{k}}|+|b_{n_{k}}|)<\infty (1.2)

holds, that is, the Fourier series (1.1) converges absolutely even when the
hypothesis in the Steckin’s theorem is satisfied only in a set E of positive
measure.

Before recalling their results more precisely let us give two definitions.
Let E\subset[-\pi, \pi] be a set of positive measure and |E| be its measure.
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Denote

\omega^{(2)}(f, E;\delta):=\sup_{0<h\leq\delta}(\int_{E}|f(x+h)-f(x-h)|^{2}dx)^{1/2}

and

E_{m}^{(2)}(f, E):= \inf_{T_{m}}(\int_{E}|f(x)-T_{m}(x)|^{2}dx)^{1/2}

where T_{m}(x) is a trigonometric polynomial of order not higher than m.

Theorem A If 0<\beta\leq 1 and

\sum_{k=1}^{\infty}k^{-\beta/2}(\omega^{(2)}(f, E;1/n_{k}))^{\beta}<\infty ,

or

\sum_{k=1}^{\infty}k^{-\beta/2}(E_{n_{k}}^{(2)}(f, E))^{\beta}<\infty ,

furthermore if \{n_{k}\} satisfies the condition B_{2} , then for the Fourier series
(1.1) of f

\sum_{k=1}^{\infty}(|a_{n_{k}}|^{\beta}+|b_{n_{k}}|^{\beta})<\infty .

Very recently N. Ogata [3] has generalized the Theorem A such a way
that he replaced the function x^{\beta} , \beta is appearing in Theorem A as an exp0-

nent, by a more general increasing concave function.
In the paper we shall generalize her theorem further multiplying by a

factor k^{\delta}(\delta\geq 0) both the terms of the conditions and the terms in the
statement.

Since our theorem in the special case \delta=0 reduces to that of N. Ogata,
we leave out citing her result.

Applying the idea used by N. Ogata we extend one of Konjuskov’s
theorems from the classical function x^{\beta}(0<\beta\leq 1) to any increasing
concave function, too.
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2. Theorems

We prove the following theorems.

Theorem 1 Let \varphi(u)(u\geq 0) be an increasing and concave function with
\varphi(0)=0 and let E\subset[-\pi, \pi] be a set of positive measure. If a sequence
\{n_{k}\} of natural numbers satisfies the condition B_{2} , \delta\geq 0 , and either

\sum_{k=1}^{\infty}k^{\delta}\varphi(k^{-1/2}\omega^{(2)}(f, E;\pi/n_{k})<\infty, (2.1)

or

\sum_{k=1}^{\infty}k^{\delta}\varphi(k^{-1/2}E_{n_{k}}^{(2)}(f, E))<\infty , (2.2)

then for the Fourier series (1.1) of f
\sum_{k=1}^{\infty}k^{\delta}(\varphi(|a_{n_{k}}|)+\varphi(|b_{n_{k}}|))<\infty (2.3)

holds.

Theorem 1 in the special case \delta=0 includes the mentioned theorem of
N. Ogata. To be precise we note that she did not considere the condition
(2.2), but her proof shows the sufficiency of (2.2) as well.

The next theorem will be a generalization of a well-known theorem of
Konju\check{s}kov [ 1 , Theorem 11].

Theorem 2 Let 1<p\leq 2 , f\in L^{p}(0,2\pi) and \delta\geq 0 . If \varphi(u)(u\geq 0) is
an increasing concave function with \varphi(0)=0 , and

\sum_{n=1}^{\infty}n^{\delta}\varphi(n^{\frac{1}{p}-1}E_{n}(p))<\infty , (2.4)

then

\sum n^{\delta}(\varphi(|a_{n}|)+\varphi(|b_{n}|))<\infty , (2.5)

where E_{n}(p) denotes the best approximation of f by trigonometric polynO-
mials of order at most n in the space L^{p}(0,2\pi) .

Theorem 2 in the special case \varphi(x)=x^{\beta}(0<\beta\leq 1) reduces to the
mentioned Konjuskov’s theorem. The reader can find a different general-
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ization of Konjuskov’s theorem in [2, Satz V], where n^{\delta} is replaced by an
arbitrary nonnegative \omega_{n} .

It seems to be an intricate problem to give a sharp sufficient condition
for the convergence of the series

\sum_{n=1}^{\infty}\omega_{n}(\varphi(|a_{n}|)+\varphi(|b_{n}|))<\infty ,

where \{\omega_{n}\} is an arbitrary sequence of nonnegative numbers.

3. Lemmas

The first two lemmas are certain generalizations used by N. Ogata in
her work.

Lemma 1 Let \delta\geq 0 , k\geq 1 and m\geq\delta+1 , where k and m are natural
numbers. Then the following inequalities

k^{\delta}m2^{1-m} \leq\sum_{j=k^{m}}^{(k+1)^{m}-1}j^{\frac{1+\delta}{m}-1}\leq k^{\delta}m2^{m-1} (3.1)

hold

Proof of Lemma 1. By the mean value theorem, there exists c with k<
c<k+1 such that the following two inequalities hold respectively;

\sigma(k, m;\delta):=\sum_{j=k^{m}}^{(k+1)^{m}-1}j^{\frac{1+\delta}{m}-1}\geq((k+1)^{m}-k^{m})(k+1)^{1+\delta-m}

=mc^{m-1}(k+1)^{1+\delta-m} \geq m(\frac{k}{k+1})^{m-1}k^{\delta}

and

\sigma(k, m;\delta)\leq((k+1)^{m}-k^{m})k^{1+\delta-m}=mc^{m-1}k^{1+\delta-m}

\leq m(\frac{k+1}{k})^{m-1}k^{\delta}

These two inequalities clearly imply (3.1) as stated.
In the sequel [\alpha] will denote the integer part of \alpha . \square

Lemma 2 Let 1<p\leq 2 , \delta\geq 0 and m be an arbitrary natural number.
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Furthermore let \{\alpha_{n}\} be a monotone nonincreasing sequence of nonnegative
numbers and let \varphi(u)(u\geq 0, \varphi(0)=0) be an increasing concave function.
Then the conditions

\sigma(m, \delta):=\sum_{k=1}^{\infty}k^{\frac{1+\delta}{m}-1}\varphi(k^{\frac{1-}{pm}R}\alpha_{[]}k^{1/m})<\infty (3.2)

and

\sigma(\delta):=\sum_{k=1}^{\infty}k^{\delta}\varphi(k^{\frac{1-p}{p}}\alpha_{k})<\infty (3.3)

are equivalent.

Proof of Lemma 2. First we show that (3.2)\Rightarrow (3.3). Taking into account
the first inequality in (3.1), the monotonicity of \varphi and \alpha_{n} , an easy calcula-
tion shows that

\sigma(m, \delta)=\sum_{k=1}^{\infty}\sum_{j=k^{m}}^{(k+1)^{7n}-1}j^{\frac{1+\delta}{m}-1}\varphi(j^{\frac{1-p}{pm}}\alpha_{[j^{1/m}]})

\geq\sum_{k=1}^{\infty}\varphi((k+1)^{\frac{1-p}{p}}\alpha_{k+1})\sum_{j=k^{m}}^{(k+1)^{nl}-1}j^{\frac{1+\delta}{m}-1}

\geq 2^{-m}\sum_{k=1}^{\infty}k^{\delta}\varphi((k\dashv- 1)^{\frac{1-p}{p}}\alpha_{k+1)}

\geq 2^{-m-\delta}\sum_{k=2}^{\infty}k^{\delta}\varphi(k^{\frac{1-p}{p}}\alpha_{k}) (3.4)

Hence the implication (3.2)\Rightarrow (3.3) follows obviously.
The proof of (3.3)\Rightarrow (3.2) runs similarly. Using the first equality in

(3.4), the monotonicity assumptions and the second inequality in (3.1), we
get immediately that

\sigma(m, \delta)\leq m2^{m}\sum_{k=1}^{\infty}\varphi(k^{\frac{1-p}{p}}\alpha_{k})k^{\delta}\equiv m2^{m}\sigma(\delta) .

The proof of Lemma 2 is complete. \square

In the sequel K, K_{i} will denote some positive constants, not necessarily
the same one in every occurrence, furthermore K(\cdot) will denote a constant
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depending only on those parameters as indicated.

Lemma 3 [4; Lemma 2] Let f\in L^{2} with the special Fourier series (1.1),
and let E\subset[-\pi, \pi] be a set of positive measure. Let the sequence \{n_{k}\} of
natural numbers satisfy the condition B_{2} . Then, if \ell is large enough, the
following inequalities

\sum_{k=\ell}^{\infty}(a_{n_{k}}^{2}+b_{n_{k}}^{2})\leq\frac{K}{|E|}\omega^{(2)}(f, E; \frac{\pi}{n_{\ell}})^{2} (3.5)

and

\sum_{k=\ell}^{\infty}(a_{n_{k}}^{2}+b_{n_{k}}^{2})\leq\frac{K}{|E|}(E_{n_{\ell}}^{(2)}(f, E))^{2} (3.6)

hold.

Lemma 4 (Jensen’s inequality) Let \varphi(u)(u\geq 0, \varphi(0)=0) be an in-
creasing concave function. Then, for any infinite sequence of nonnegative
numbers x_{1} , x_{2} , \ldots , x_{n} , . and any infinite sequence of positive numbers
p_{1},p_{2} , . . ’ p_{n} , . , the following inequality

\frac{\sum_{k_{-}^{-}1}^{\infty}p_{k}\varphi(x_{k})}{\sum_{k=1}^{\infty}p_{k}}\leq\varphi(\frac{\sum_{k_{-}^{-}1}^{\infty}p_{k}x_{k}}{\sum_{k=1}^{\infty}p_{k}})

holds assuming that each series in the above inequality converges.

Lemma 5 [7] Let 1<p\leq 2 and p’:= \frac{p}{p-1} . Then the following inequality

\sum_{k=n}^{\infty}(a_{k}^{2}+b_{k}^{2})^{p’/2}\leq K(E_{n}(p))^{p’}

holds for all n , where K is a constant independent of n .

4. Proof of the theorems

Proof of Theorem 1. In order to simplify writing, in the sequel, we shall
write only k^{1/m} instead of [k^{1/m}] . Denote

\rho_{n}:=(a_{n}^{2}+b_{n}^{2})^{1/2} ,
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and let m>\delta+1 . Then

\sum_{j=1}^{\infty}j^{\delta}\varphi(\rho_{n_{j}})=\sum_{j=1}^{\infty}\sum_{k=1}^{j^{m}}j^{\delta-m}\varphi(\rho_{n_{j}})

\leq\sum_{k=1}^{\infty}\sum_{j=k^{1/m}}^{\infty}j^{\delta-m}\varphi(\rho_{n_{j}})=:S_{1} .

Next using Lemma 4 and the Cauchy inequality we get that

S_{1} \leq\sum_{k=1}^{\infty}(\sum_{j=k^{1/m}}^{\infty}j^{\delta-m})\varphi(\{\sum_{j=k^{1/m}}^{\infty}j^{\delta-m\}^{-1}}\sum_{j=k^{1/m}}^{\infty}j^{\delta-m}\rho_{n_{j)}}

\leq K(\delta, m)\sum_{k=1}^{\infty}k^{\frac{1+\delta-m}{m}}\varphi(K(\delta, m)k^{\frac{m-\delta-1}{m}}

x\{\sum_{j=k^{1/m}}^{\infty}j^{2(\delta-m)\}^{1/2}\{\sum_{j=k^{1/m}}^{\infty}\rho_{n_{j}}^{2}\}^{1/2})}=:S_{2} .

To estimate S_{2} we utilize Lemma 3 with (3.5) and we obtain that

S_{2} \leq K(\delta, m, |E|, \varphi)\sum_{k=1}^{\infty}k^{\frac{1+\delta}{m}-1}\varphi(k^{-\frac{1}{2m}}\omega^{(2)} (f, E; \frac{\pi}{n_{k^{1/m}}}) )

Finally the last sum, by Lemma 2 with p=2 and \alpha_{i}=\omega^{(2)} (f, E , \frac{\pi}{n_{i}} ),
is finite if and only if

\sum_{k=1}^{\infty}k^{\delta}\varphi (k^{-\frac{1}{2}}\omega^{(2)} (f, E; \frac{\pi}{n_{k}}))<\infty .

Collecting our fractional estimates we obtain that (2.1) implies that

\sum_{j=1}^{\infty}j^{\delta}\varphi(\rho_{n_{j}})<\infty , (4.1)

and the inequality (4.1) is clearly equivalent to (2.3).
If we use Lemma 3 with (3.6) in order to estimate the sum S_{2} , and

follow the same way as before we can verify that the condition (2.2) also
implies the statement (2.3).

The proof of Theorem 1 is ended. \square
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Proof of Theorem 2. First we show that already the condition

\sum_{n=1}^{\infty}n^{\delta}\varphi(\{\frac{1}{n}\sum_{k=n}^{\infty}d_{k}^{y’}\}^{1/p’})<\infty (p’= \frac{p}{p-1}) (4.2)

implies that

S_{3}:= \sum_{n=1}^{\infty}n^{\delta}\varphi(\rho_{n})<\infty , (4.3)

whence (2.5) clearly follows.
Let m>\delta+1 . A similar consideration as in the proof of Theorem 1,

first an Abel rearrangement, followed by a Jensen and H\"older inequality,
gives that

S_{3}:= \sum_{n=1}^{\infty}\sum_{k=1}^{n^{m}}n^{\delta-m}\varphi(\rho_{n})

\leq\sum_{k=1}^{\infty}\sum_{n=k^{1/m}}^{\infty}n^{\delta-m}\varphi(\rho_{n})

\leq\sum_{k=1}^{\infty}(\sum_{n=k^{1/m}}^{\infty}n^{\delta-m})\varphi(\{\sum_{n=k^{1/m}}^{\infty}n^{\delta-m}\}^{-1}\sum_{n=k^{1/m}}^{\infty}n^{\delta-m}\rho_{n})

\leq K(\delta, m, \varphi)\sum_{k=1}^{\infty}k^{\frac{1+\delta}{m}-1}

\varphi(k^{1-\frac{1+\delta}{m}}(\sum_{n=k^{1/m}}^{\infty}\rho_{n}^{p’})^{1/p’}(\sum_{n=k^{1/m}}^{\infty}n^{(\delta-m)p)^{1/p})}

\leq K_{1}(\delta, m, \varphi)\sum_{k=1}^{\infty}k^{\frac{1+\delta}{m}-1}\varphi(k^{\frac{1}{p}}m(-\Delta\sum_{n=k^{1/m}}^{\infty}d_{k}^{J’})^{1/p’})=:S_{4} .

To estimate the sum S_{4} we use Lemma 2 with \alpha_{k}=\{\sum_{n=k}^{\infty}\rho_{n}^{p’}\}^{1/p’} ,
whence we get that S_{4}<\infty if and only if the inequality (4.2) holds, namely
\underline{1}-1\overline{p}=-\frac{1}{p}, .

Herewith we have verified that (4.2) implies (4.3), and as stated, thus
the implication (4.2)\Rightarrow (2.5) also holds.

Finally, on account of the hitherto obtained result, Lemma 5 conveys
the statement of Theorem 2. \square
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