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Uniqueness of Haar measures for a quasi
Woronowicz algebra

Takehiko YAMANOUCHI
(Received July 2, 1999)

Abstract. It is shown that any two Haar measures for a quasi Woronowicz algebra, a
quantum group in the von Neumann algebra framework, are proportional.
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Introduction

In [Y1], we introduced a notion of a quasi Woronowicz algebra as a
slight generalization of the object studied in [MN]. As shown there, every
matched pair of groups gives rise to a concrete quasi Woronowicz algebra.
By definition, Woronowicz algebras are quasi ones, so that there are plenty
of intriguing examples of quasi Woronowicz algebras. It is shown in [Y2]
also that one can perform the double group construction within this “cate-
gory”. Thus, it seems that, as far as the formulation of quantum groups in
the language of von Neumann algebras is concerned, the category of quasi
Woronowicz algebras provides a nice framework.

The purpose of this note is to offer one more piece of evidence to this
statement. To be more precise, we will prove uniqueness of Haar measures
for a quasi Woronowicz algebra, which is naturally expected to be true in
the “right” framework.

The organization of this note is as follows. Section 1 is concerned with
a quick review on quasi Woronowicz algebras. In Section 2, we derive some
useful property of a Haar measure for a quasi Woronowicz algebra. Our
result heavily relies on the ones obtained in [K]. In Section 3, we illustrate
how the result in [DeC , Theorem 2.3] can be extended to the case of quasi
Woronowicz algebras. The last section is devoted to proving uniqueness of
Haar measures.
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1. Notation

In this section, we give a quick review on quasi Woronowicz alge-
bras, introducing notation that will be used in our later discussion. Quasi
Woronowicz algebras are almost like Woronowicz algebras introduced in
[MN]. It is not too much to say that what is true for Woronowicz algebras
is equally true for quasi Woronowicz algebras. Thus, for the general theory
of quasi Woronowicz algebras, we refer the reader to [MN] or [Yl, 2]. Our
notation will be mainly adopted from these literatures.

Given a von Neumann algebra \mathcal{M} and a faithful normal semifinite
weight \psi on \mathcal{M} , we introduce subsets \mathfrak{n}_{\psi} , \mathfrak{m}\psi and \mathfrak{m}_{\psi}^{+} of \mathcal{M} by

\mathfrak{n}_{\psi}=\{x\in \mathcal{M} : \psi(x^{*}x)<\infty\} , \mathfrak{m}\psi=\mathfrak{n}_{\psi}^{*}\mathfrak{n}_{\psi} , \mathfrak{m}_{\psi}^{+}=\mathfrak{m}_{\psi}\cap \mathcal{M}_{+} .

The modular automorphism group of \psi is denoted by \sigma^{\psi} .

A coinvolutive Hopf-von Neumann algebra is a triple (\mathcal{M}, \delta, R) in which:
(1) \mathcal{M} is a von Neumann algebra;
(2) \delta is an injective normal *-homomorphism, called a coproduct (or a

comultiplication), from \mathcal{M} into \mathcal{M}-\otimes \mathcal{M} with the coassociativity con-
dition: (\delta\otimes id_{\mathcal{M}})\circ\delta=(id_{\mathcal{M}}\otimes\delta)\circ\delta ;

(3) R is a *-antiautomorphism of \mathcal{M} , called a coinvolution or a unitary
antipode, such that R^{2}=id_{\mathcal{M}} and \sigma\circ(R\otimes R)\circ\delta=\delta oR , where \sigma is
the usual flip.

A quasi Woronowicz algebra is a family W=(\mathcal{M}, \delta, R, \tau, h) in which:
(1) (\mathcal{M}, \delta, R) is a coinvolutive Hopf-von Neumann algebra;
(2) \tau is a continuous one-parameter automorphism group of \mathcal{M} , called

the deformation automorphism, which commutes with the coproduct
\delta and the antipode R;

(3) h is a \tau-invariant faithful normal semifinite weight on \mathcal{M} , called a Haar
measure of W, satisfying the following conditions:
(a) Quasi left invariance: For any \phi in \mathcal{M}_{*}^{+} , we have (\phi\otimes h)0\delta(x)=

h(x)\phi(1) for all x\in \mathfrak{m}_{h}^{+};

(b) Strong left invariance: For any x , y\in \mathfrak{n}_{h} and \phi\in \mathcal{M}_{*} which
is analytic with respect to the adjoint action of the deformation
automorphism \tau on \mathcal{M}_{*} , the following equality holds:

(\phi\otimes h)((1\otimes y^{*})\delta(x))=(\phi 0\tau_{-i/2}oR\otimes h)(\delta(y^{*})(1\otimes x)) .
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(c) Commutativity: h\circ\sigma_{t}^{h\circ R}=h for all t\in R (or, equivalently,
h\circ R\circ\sigma_{t}^{h}=h\circ R) .

A motivation for considering quasi Woronowicz algebras rather than
Woronowicz algebras is mentioned in [Yl, 2].

Throughout the remainder of this note, we fix a quasi Woronowicz
algebra W=(\mathcal{M}, \delta, R, \tau, h) . We always think of \mathcal{M} as represented on the
Hilbert space L^{2}(h) obtained by the GNS representation from the weight
h . By the commutativity of h , there exists a non-singular positive self-
adjoint operator Q on L^{2}(h) affiliated with the centralizer \mathcal{M}_{h}=\{x\in \mathcal{M} :
\sigma_{t}^{h}(x)=x(t\in R)\} of h such that the Connes’ Radon Nikodym derivative
(D(hoR) : Dh)_{t} satisfies (D(hoR) : Dh)_{t}=Q^{it} for t\in R . In the notation
in [MN], we have Q=\rho^{-1} .

By the proof of [MN, Proposition 3.4], the modular automorphism
group \sigma^{h} of h satisfies

(\tau_{t}\otimes\sigma_{t}^{h})\circ\delta=\delta 0\sigma_{t}^{h} . (t \in R) (1.1)

Prom this and the identities R\circ\sigma_{-t}^{h} \circ R=\sigma_{t}^{hoR} , \sigma o(R\otimes R)0\delta=\delta oR , one
can easily verify that

(\sigma_{t}^{hoR}\otimes\tau_{-t})0\delta=\delta 0\sigma_{t}^{hoR}\wedge (t\in R) (1.2)

To the given W, there exists another quasi Woronowicz algebra \overline{W}=

(\overline{\mathcal{M}},\hat{\delta},\hat{R},\hat{\tau},\hat{h}),-called the quasi Woronowicz algebra dual to W. For the
construction of W, see [MN].

Finally, the intrinsic group G(W) of the quasi Woronowicz algebra W
is the set of nonzero elements u in \mathcal{M} satisfying the equation

\delta(u)=u\otimes u .

From [S] and [MN, Section 3], it follows that G(W) is a weakly closed
subgroup of the group of unitaries in \mathcal{M} .

2. Some property of a Haar measure

Define a subset D(h) of \mathcal{M}_{+} by

D(h)=\{x\in \mathcal{M}_{+} : (\phi\otimes id)(\delta(x))\in \mathfrak{m}_{h}^{+}(\forall\phi\in \mathcal{M}_{*}^{+})\} .

By the definition of quasi left invariance of h , D(h) contains \mathfrak{m}_{h}^{+} . By exactly
the same argument as in Section 1 of [K], we obtain the next proposition,
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which is tfie von Neumann algebra version of Lemma 1.3 of [K].

Proposition 2.1 For each x\in D(h) , there exists a unique nonnegative
number T_{x} such that

h((\phi\otimes id)(\delta(x)))=T_{x}\phi(1)

for all \phi\in \mathcal{M}_{*}^{+}

By using this proposition, we may define, as in Definition 1.4 of [K], a
mapping \tilde{h} : \mathcal{M}_{+}arrow[0, \infty] by

\tilde{h}(x)=\{

T_{x} , if x\in D(h) ,
\infty , otherwise.

Thus, if x\in D(h) , the quantity \tilde{h}(x)=T_{x} is characterized by the equation

h((\phi\otimes id)(\delta(x)))=\tilde{h}(x)\phi(1) (\phi\in \mathcal{M}_{*}^{+}) .

By the same proof as in Proposition 1.5 of [K], one can easily show that \tilde{h} is
a faithful normal semifinite weight on \mathcal{M} , with \mathfrak{m}_{h}\pm=D(h) , such that \tilde{h}=h

on \mathfrak{m}_{h}^{+} In particular, we have \tilde{h}\leq h . In a moment, we will prove that they
actually equal. For this purpose, we state the following proposition, which
is Proposition 1.7 of [K].

Proposition 2.2 Let x\in \mathcal{M}_{+} . Then x belongs to \mathfrak{m}_{\tilde{h}}^{+} if and only if
(\phi\otimes id)(\delta(x)) belongs to \mathfrak{m}_{h}\pm for all \phi\in \mathcal{M}_{*}^{+}

Theorem 2.3 The weight \tilde{h} equals the Haar measure h .

Proof We first recall (see (1.1)) that the modular automorphism group \sigma^{h}

of h satisfies

(\tau_{t}\otimes\sigma_{t}^{h})\circ\delta=\delta 0\sigma_{t}^{h} (t\in R) . (2.3.1)

Let x\in \mathfrak{m}_{\tilde{h}}^{+} Thanks to (2.3.1), for any \phi\in \mathcal{M}_{*}^{+} and t \in R , we have

h((\phi\otimes id)(\delta(\sigma_{t}^{h}(x))))=h((\phi\circ\tau_{t}\otimes id)(\delta(x)))

=\phi\circ\tau_{t}(1)\tilde{h}(x)=\phi(1)\tilde{h}(x)<\infty .

This shows that \sigma_{t}^{h}(x)\in D(h)=\mathfrak{m}_{h}\pm Hence we find that \sigma_{t}^{h}(\mathfrak{m}_{\tilde{h}}^{+})=\mathfrak{m}_{h}\pm

for all t\in R . From this, it follows that \tilde{h}\circ\sigma_{t}^{h}.=\tilde{h} for all t \in R. As
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noted just before this theorem, \tilde{h} equals h on \mathfrak{m}_{h}^{+} , hence on \mathfrak{m}_{h} . By [PT ,
Proposition 5.9], we have \tilde{h}=h . \square

Corollary 2.4 Let x\in \mathcal{M}_{+} . Then the following are equivalent’,
(1) x belongs to \mathfrak{m}_{h}^{+}

(2) (\phi\otimes id)(\delta(x)) belongs to \mathfrak{m}_{h}^{+} for any \phi\in \mathcal{M}_{*}^{+}

Proof The assertion immediately follows from Proposition 2.2 and TheO-
rem 2.3. \square

3. The intrinsic group of a quasi Woronowicz algebra

Let G(\overline{W}) be the intrinsic group of the dual Woronowicz algebra W. By
the same argument as in Section I of [S] (see also the discussion following
[MN, Corollary 3.11.1] ) , it is shown that each element v\in G(\overline{W}) defines an
automorphism \beta_{v} of \mathcal{M} given by

\beta_{v}(x)=vxv^{*} (x\in \mathcal{M}) .

With this notation, we can show the next theorem:

Theorem 3.1 Let v be a unitary on L^{2}(h) . Then v is in G(\overline{W}) if and
only if the two conditions below are satisfied:
(1) \beta_{v}:=Adv|\mathcal{M} is an automorphism of \mathcal{M} which satisfies

(\beta_{v}\otimes id)0\delta=\delta 0\beta_{v} ,

(2) v is the canonical implementation of \beta_{v} .

A proof of the above theorem goes exactly parallel to that of [DeC ,
Theorem 2.3] with the aid of both Proposition 2.1 and Lemma 2.2 of [DeC]

as generalized to our setting. Thus we leave the verification to the reader.
However some remarks are in order. Proposition 2.1 of [DeC] is true for
quasi Woronowicz algebras, and is shown in the same manner as in [DeC] .
Lemma 2.2 of [DeC] is also true for quasi Woronowicz algebras. But its
proof given in [DeC] can not be adopted in our setting, becasue we only
have \underline{quasi} left invariance of h . Hence we present its proof in the following
which utilizes the results obtained in the preceding section.

Lemma 3.2 If \beta is an automorphism of \mathcal{M} such that (\beta\otimes id)\circ\delta=\delta\circ\beta ,
then we have h\circ\beta=h .



110 T. Yamanouchi

Proof. It suffices to prove that \beta(\mathfrak{m}_{h}^{+})=\mathfrak{m}_{h}^{+} .
Let x\in \mathcal{M}_{+} . Then, by Corollary 1.4, we have

x\in \mathfrak{m}_{h}^{+}\Leftrightarrow(\phi\otimes id)(\delta(x))\in \mathfrak{m}_{h}^{+} (\forall\phi\in \mathcal{M}_{*}^{+})

\Leftrightarrow(\phi\circ\beta\otimes id)(\delta(x))\in \mathfrak{m}_{h}^{+} (\forall\phi\in \mathcal{M}_{*}^{+})

\Leftrightarrow(\phi\otimes id)(\delta(\beta(x)))\in \mathfrak{m}_{h}^{+} (\forall\phi\in \mathcal{M}_{*}^{+})

\Leftrightarrow\beta(x)\in \mathfrak{m}_{h}^{+}

Thus we are done. \square

4. Uniqueness of Haar measures

In this section, we prove the main theorem of this note which asserts
uniqueness of Haar measures for a quasi Woronowicz algebra.

Let \psi be another Haar measure for a quasi Woronowicz algebra W=
(\mathcal{M}, \delta, R, \tau. h) .

Lemma 4.1 The weight \psi oR commutes with h .

Proof. Set \beta_{t} :=\sigma_{-t}^{\psi}\circ\sigma_{t}^{h}(t\in R) . From (1.1), each \beta_{t} satisfies

(\beta_{t}\otimes id)\circ\delta^{o}=\delta^{o}0\beta_{t} ,

where \delta^{o}=\sigma 0\delta , which is the coproduct of the coopposite W^{o} of W. Note
that \psi oR is a Haar measure for W^{o} . Hence, by Lemma 3.2, we have

\psi\circ R\circ\beta_{t}=\psi\circ R .

Prom this, it follows that

\psi\circ R=\psi oRo\beta_{t}=\psi oRo\sigma_{-t}^{\psi}0\sigma_{t}^{h}=\psi 0\sigma_{t}^{\psi oR}oRo\sigma_{t}^{h}

=\psi oRo\sigma_{t}^{h} .

Thus we are done. \square

By the preceding lemma and [PT], there exists a nonsingular positive
self-adjoint operator S , affiliated with the centralizer \mathcal{M}_{h} of h , such that

(D\psi\circ R : Dh)_{t}=S^{it} (t\in R) .

Next we consider the automorphism \gamma_{t}(t\in R) of \mathcal{M} given by \gamma_{t}:=

\sigma_{t}^{\psi oR}\circ\sigma_{-t}^{h\circ R} . From (1.2), we easily find that each \gamma_{t} satisfies

(\gamma_{t}\otimes id)\circ\delta=\delta 0\gamma_{t} .
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Hence, by Theorem 3.1, there exists a unique group-like element w_{t}\in G(\overline{W})

that is the canonical implementation of \gamma_{t} : \gamma_{t}=Ad w_{t} .

Lemma 4.2 For each t\in R , \gamma_{t}=id_{\mathcal{M}} . In particular, we have \sigma^{\psi}=\sigma^{h} .

Proof. Let t\in R . We have

\sigma_{t}^{\psi oR}=\gamma_{t}0\sigma_{t}^{hoR}=Ad(w_{t}Q^{it})0\sigma_{t}^{h} .

On the other hand, we have \sigma_{t}^{\psi oR}=AdS^{it}\circ\sigma_{t}^{h} . It follows that Ad(w_{t}Q^{it})=

Ad S^{it} as automorphisms of \mathcal{M} . Hence S^{-it}w_{t}Q^{it} belongs to the center
Z(\mathcal{M}) of \mathcal{M} . In particular, w_{t} lies in \mathcal{M} . Since \mathcal{M}\cap \mathcal{M}=C by [MN ,
Proposition 3.11], w_{t} must be a scalar, which in turn entails that \gamma_{t} is the
identity map. Therefore, \sigma^{\psi\circ R}=\sigma^{hoR} . In particular, we have \sigma^{\psi}=\sigma^{h} .

\square

Corollary 4.3 The weight \psi commutes with h , i.e. , we have \psi 0\sigma_{t}^{h}=\psi

for any t\in R .

Theorem 4.4 If \psi be another Haar measure for a quasi Woronowicz
algebra W=(\mathcal{M}, \delta, R, \tau, h) , then \psi is proportional to h .

Proof. Since we now have Corollary 4.3 at hand, we can follow the proof
of [S , Th\’eor\‘eme III.3] to obtain the result. The details are left to the reader.

\square
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